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Featured Application: The work presented in this paper provides methods for the retrieval of
nearshore bathymetry based on active and passive remote sensing, and will serve as a reference
for shipping safety, coastal construction, island development and utilization, etc.

Abstract: Optical remote sensing is an effective means of water depth measurement, but the current
approach of mainstream bathymetric retrieval requires a large amount of onsite measurement data.
Such data are hard to obtain from places where underwater terrains are complicated and unsteady,
and from sea areas affected by issues with rights and conflicts of interest. In recent years, the emergence
of airborne light detection and ranging (LiDAR) provided a new technical means for field bathymetric
survey. In this study, water depth inversion was carried out around an island far from the mainland
by using remote sensing images and real LiDAR waveform data. Multi-Gaussian function fitting
was proposed to extract water depth data from waveform data, and bathymetric values were used
as control and validation data of the active and passive combination of water depth inversion.
Results show that the relative error was 5.6% for the bathymetric retrieval from LiDAR waveform
data, and the accuracy meets the requirements of ocean bathymetry. The average relative error of
water depth inversion based on active and passive remote sensing was less than 9%. The method
used in this study can also reduce the use of LiDAR data and the cost, thus providing a new idea for
future coastal engineering application and construction.

Keywords: optical remote sensing; LiDAR waveform; bathymetric retrieval; active and
passive combination

1. Introduction

Water depth is one of the basic elements of seabed topographic mapping and marine environment
survey. The key and basic data provided by water depth monitoring are used in coastal engineering
construction, ship navigation, and island development and utilization. The traditional bathymetric
method of using ship-borne echo sounding achieved remarkable success. However, survey vessels and
surveyors cannot easily carry out the traditional methods in shallow water (0–2 m) due to the influence
of tide and submerged reef, indicating a restriction of these methods. Compared with traditional
onsite acoustic measurements, the remote sensing inversion of water depth has the advantages of
synchronous measurement in large coverage areas, high efficiency, and low cost. Remote sensing is
an effective complement to traditional bathymetric methods in places where underwater terrains are
complicated and unstable, and in sea areas affected by issues with rights and conflicts of interest.
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The remote sensing inversion models of water depth can be divided into three types:
Theoretical models [1,2], semi-empirical and semi-theoretical models [3–5], and empirical models [6,7].
Among them, theoretical models need several physical parameters, including water environment,
seabed sediment, and atmospheric environment. On the one hand, remote sensing images usually take
the form of historical data, and deriving the physical parameters of synchronous images is difficult.
On the other hand, morbidity inversion is a serious issue owing to the excessive number of physical
parameters. Empirical models use a large amount of water depth data collected onsite and establish
functional relations in the gray levels of remote sensing image bands for data inversion, but physical
environment parameters, such as atmosphere and water quality, are ignored. Although the empirical
models are relatively uncomplicated, their universality is poor, and executing them in inaccessible sea
areas is difficult. Semi-empirical and semi-theoretical models combine the advantages of the above two
models. These models can simultaneously model the radiation transfer of sunlight in water and use
a small amount of field depth data to complete the inversion of water depth. In view of this advantage,
the semi-empirical and semi-theoretical models are presently the most mainstream method of water
depth inversion. However, the restive nature of acquiring in situ data for islands and reefs far from
the mainland, particularly those parts that are difficult or inappropriate to reach, is regarded a crucial
bottleneck in the inversion of water depth.

Airborne light detection and ranging (LiDAR) bathymetry can effectively and efficiently measure
shallow waters and oceans, but the advantages are more obvious in areas inaccessible to surveying
vessels. LiDAR bathymetry is widely used in the field of modern ocean bathymetry because of its high
accuracy, efficiency, and mobility. However, LiDAR bathymetry relies on an aircraft platform, which is
expensive. Therefore, the combination of passive remote sensing with a small amount of LiDAR
waveform data can not only reduce the cost of depth inversion but also complete the high-precision
inversion of depth data in sea areas that are difficult or inappropriate to reach.

2. Related Work

The bathymetric system of LiDAR matured as a technology in recent years. However, the data
processing software of the bathymetric system is limited to some extent, and bathymetric accuracy
is affected by the processing of waveform data, which are affected by bottom reflection, suspended
matter, and sea waves [8]. The bathymetric algorithm of the LiDAR waveform accordingly became
a research focus of many scholars. The bathymetric inversion methods mainly include the peak
detection method [9,10], mathematical function fitting method [11–13], and convolutional filtering
method [14–16]. Billard [17] proposed a method to detect seabed reflection signal by removing the
low-frequency part of the echo signal through high-pass filtering. Wagner [9] employed the peak
detection method to search the echo signal from the surface and the bottom of the sea, and the method
was found to be feasible. Wong [18] decomposed two kinds of independent reflection signals, namely,
sea surface echo signals and sea bottom echo signals, from which water depth was then estimated.
Chen [19] improved the inversion accuracy of water depth by using the phase ambiguity resolution
technique to correct wave and tide measurements. Yao [20] established a LiDAR echo waveform
model based on the bi-Gaussian pulse fitting method and applied it to separate surface and bottom
reflection signals. A minimum depth of 0.4 m was retrieved from their study. Zhang [21] utilized
a Gaussian function entailing the double fitting of simulated waveform data to retrieve water depth.
Their results showed that a mean absolute error (MAE) of 15.6 cm and a mean relative error (MRE)
of 4.58% could be achieved at the water depth of 1–15 m using the LiDAR depth-detection model.
In practice, a portion of the LiDAR effective signal leaches and the low-frequency signal is removed
when using a filtering method, but the error is larger and the efficiency rate is slower when a peak
detection method is used directly. The resultant fitting effect is unsatisfactory for deep waters due to
the large energy gap between the echo signals from the sea surface and the sea bottom. Moreover,
the bathymetric inversion error for deep waters is greater than that in shallow waters.
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The accuracy of depth inversion by passive remote sensing is lower than that by LiDAR. Meanwhile,
bathymetric retrieval by active optical remote sensing has high precision and maneuverability.
Consequently, bathymetric retrieval methods based on active and passive remote sensing were studied
in recent years. Pacheco [22] utilized the multi-band logarithmic linear model and Landsat 8 remote
sensing image to invert shallow water depths (0–12 m) in areas around islands. The inversion algorithm
of passive optical remote sensing was optimized using LiDAR bathymetric data. The average error of
the inversion results was 0.2 m, and the median error was 0.1 m. Tian [23] carried out bathymetric
retrieval by active and passive remote sensing with the use of a passive optical image from Landsat-8
and airborne LiDAR depth data, and subsequently analyzed the results of different density LiDAR data
for depth inversion by passive optical sensing. Their results showed that the change in LiDAR density
only minimally affected the water depth inversion results, and the average relative error changed by
0.3%. Many scholars also conducted substantial research and experiments on sediment classification
and topographic mapping using active and passive remote sensing data [24–26]. Depth inversion by
active and passive remote sensing can not only improve the accuracy of passive optical depth inversion,
but also reduce the use of active optical data, as well as reduce costs.

On the basis of the above discussions, this study takes Ganquan Island as an example and uses
the bathymetric values extracted from Aquarius LiDAR waveform data. Multi-Gaussian function
fitting is performed to derive the control points and validation points, and the bathymetric method of
combining active and passive remote sensing is carried out in the sea area around islands far from
the mainland.

3. Materials and Methods

3.1. Research Area and Data

3.1.1. Research Area

Ganquan Island (111◦35′10” east longitude and 16◦30′28” north latitude) belongs to the Xisha
Islands in China. The island has a tropical monsoon climate, and it is approximately 500 m from
east to west (width) and 700 m from north to south (length), with an area of approximately 0.3 km2.
The waters around Ganquan Island are clear and limpid and largely unaffected by human activities.
The study area and multispectral image are shown in the Figure 1a,b respectively.
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Figure 1. (a) The geographic location of Ganquan Island is marked with red five-star; (b) multispectral
image of Ganquan Island.
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3.1.2. Aquarius LiDAR Waveform Data

The Aquarius LiDAR bathymetry system (Optech Company, Canada) is an amphibious measuring
system for shallow sea areas which can measure both land information and shallow water information
within 15 m. The bathymetry system uses a blue-green laser (532 nm). The specific parameters are
shown in Table 1.

Table 1. The related parameters of the Aquarius bathymetry system.

Parameters Value Parameters Value

Repetition rate of pulse 33, 50, 70 kHz Sampling with full waveform 12-bit
Scanning angle 0 to ±25◦ Weight 53 kg

Footprints 30–60 cm Positioning system GNSS 1

Bathymetry depth >10 m Power 900 W; 28 V
Flight height 300–2500 m Working temperature 0–35 ◦C

Quantitative level 12-bit Relative humidity 0–95%
1 Global Navigation Satellite System.

The waveform data obtained by an Aquarius-airborne LiDAR were acquired from the findings of
an onsite survey conducted on 19 January 2013. Flight time was approximately 3 h, and total data
volume was approximately 55 GB. The information stored in each waveform data included reflected
pulse signals, received pulse signals, and GPS time. The left side of the yellow vertical line in Figure 2
represents the transmitting pulse, while the right side represents the receiving pulse. Different targets
or regions appear with varying return signal characteristics, mainly in terms of energy value, shape,
and quantity of echo signals.
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Figure 2. Two typical waveform datasets of light detection and ranging (LiDAR). The horizontal scale
is the time in nanoseconds, and the vertical scale is the relative amplitude of the waveform. the vertical
yellow line is the start of each return waveform section. The vertical red line is the location of each
return pulse.

3.1.3. QuickBird Passive Optical Image

The QuickBird satellite provides a panchromatic band with 0.61-m spatial resolution and
a multi-spectral image with 2.44-m spatial resolution, as shown in Table 2. The passive optical
image adopted in this study was the multispectral image (Figure 1b). The image acquisition time was
2:31:52 a.m. (Coordinated Universal Time, UTC) on 20 April 2012.

Table 2. Image parameters of QuickBird.

Way of Imaging Push-Broom Scanning Imaging Mode

Sensor Panchromatic band Multispectral

Resolution 0.61 m 2.44 m

Wavelength 450–900 nm

Blue: 450–520 nm

Green: 520–660 nm

Red: 630–690 nm

Near Infrared: 760–900 nm
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3.1.4. Auxiliary Data

The auxiliary data used in this study mainly included tide tables for the period covering 2012
and 2013 published by National Marine Scientific Data Center. The time period of the LiDAR data
measured onsite was approximately 3 h, and the tides changed considerably during those periods.
Therefore, performing a tidal correction on each water depth value converted from the waveform data
was necessary to ensure the accurate use of control points and validation points.

3.2. Data Processing and Method

For the LiDAR waveform data, we propose a multi-Gaussian function fitting method to extract
water depth. The bathymetric values were converted into mean lower low water (MLLW) data to
unify the standards of measurement. A series of preprocessing steps for the QuickBird image, such as
radiation calibration and atmospheric correction, were needed. The improved logarithmic conversion
ratio model (ILCRM) was used for the active and passive combination of water depth inversion in
this study.

3.2.1. QuickBird Image Preprocessing

1. Radiation calibration

The ground object signals received by satellite sensors are recorded with a dimensionless Digital
Number (DN) value, and the process of converting the DN value into a radiation brightness value
with practical physical significance is called radiation calibration. The basic principle of radiometric
calibration is to establish the quantitative relationship between the DN value and the radiation
brightness value in the corresponding field of view.

The calibration formula for the remote sensing image of QuickBird is

L =
DN × absCalFactor
e f f ectiveBandwidth

, (1)

where L is the inputted pupil radiation brightness of the sensor, DN is the pixel gray value, absCalFactor is
the absolute scaling factor, and effectiveBandwidth is the effective width of the spectrum. The information
on absolute calibration factor and effective spectral width can be found in the calibration file (*.IMD).
The details are listed in Table 3.

Table 3. Radiation scaling transformation parameters of QuickBird.

Band absCalFactor effectiveBandwidth

1 1.604120 × 10−2 6.80 × 10−2

2 1.438470 × 10−2 9.90 × 10−2

3 1.267350 × 10−2 7.10 × 10−2

4 1.542420 × 10−2 1.14 × 10−1

After radiometric calibration, the QuickBird remote sensing image is converted from one with the
original dimensionless DN into one with a radiance value with µW/cm2

× nm× sr units.

2. Atmospheric correction

Satellite sensors are affected by the scattering and absorption of atmospheric particles, aerosols,
and molecules in the process of receiving solar photoelectric and electromagnetic radiation. The effects
of scattering attenuate the signals received by the sensors. Meanwhile, some of the scattered light from
the sky directly penetrates the satellite sensor without interacting with ground objects. This part of the
signal does not contain any ground object information; we call this phenomenon atmospheric path
radiation. Therefore, the atmospheric effects need to be eliminated to obtain highly realistic ground
radiation or reflectance.
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The atmospheric correction method used in this study was the 6S model method. The 6S model,
which is the abbreviation of second simulation of the satellite signal in the solar spectrum, was
developed by adding a new scattering algorithm based on the 5S model and, thus, can better reflect
the real situation than the LOW resolution atmospheric TRANsmission (LOWTRAN) and MODerate
resolution atmospheric TRANsmission (MODTRAN) models. Figure 3 shows the technical route of the
6S atmospheric correction that consists of three parts: Parametric setting of the atmospheric correction
model, radiation calibration, and atmospheric correction [27].

Appl. Sci. 2019, 9, 4375 6 of 17 

The atmospheric correction method used in this study was the 6S model method. The 6S model, 
which is the abbreviation of second simulation of the satellite signal in the solar spectrum, was 
developed by adding a new scattering algorithm based on the 5S model and, thus, can better reflect 
the real situation than the LOW resolution atmospheric TRANsmission (LOWTRAN) and MODerate 
resolution atmospheric TRANsmission (MODTRAN) models. Figure 3 shows the technical route of 
the 6S atmospheric correction that consists of three parts: parametric setting of the atmospheric 
correction model, radiation calibration, and atmospheric correction [27]. 

 

Figure 3. Technical route of the 6S atmospheric correction model. 

The parameters of the 6S atmospheric correction model were set as follows: ground elevation, 
solar observation geometry, satellite observation geometry, and other parameters obtained directly 
from the *.IMD file corresponding to the metadata of the remote sensing image; the spectral 
response function obtained from the data disclosed by the sensor; the atmospheric model 
parameters with default values obtained according to the remote sensing image data, mainly in the 
aerosol mode, atmospheric mode, and solar spectrum function; and a customization of the actual 
situation. We selected marine aerosol and tropical atmospheric mode in accordance with the needs 
of the study area. 

After radiation calibration, the DN value of the remote sensing image is converted into an 
apparent radiation brightness value, followed by a conversion into an apparent reflectance value by 
Equations (2) and (3). Apparent reflectance is the ratio of radiation brightness at the entrant pupil of 
the satellite sensor to the descending sun brightness on top of the atmosphere, which also includes 
the role of the atmosphere. 
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The parameters of the 6S atmospheric correction model were set as follows: Ground elevation,
solar observation geometry, satellite observation geometry, and other parameters obtained directly
from the *.IMD file corresponding to the metadata of the remote sensing image; the spectral response
function obtained from the data disclosed by the sensor; the atmospheric model parameters with default
values obtained according to the remote sensing image data, mainly in the aerosol mode, atmospheric
mode, and solar spectrum function; and a customization of the actual situation. We selected marine
aerosol and tropical atmospheric mode in accordance with the needs of the study area.

After radiation calibration, the DN value of the remote sensing image is converted into an apparent
radiation brightness value, followed by a conversion into an apparent reflectance value by Equations
(2) and (3). Apparent reflectance is the ratio of radiation brightness at the entrant pupil of the satellite
sensor to the descending sun brightness on top of the atmosphere, which also includes the role of
the atmosphere.

ρTOA =
π× Lλ × d2

ESUNλ × cosθs
, (2)
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where ρTOA is the apparent emissivity, d is the relative distance between the sun and the earth,
and ESUNλ is the average solar radiation value of the band with the unit W/m2. The value of ESUNλ

can be calculated according to the spectral response function of the satellite sensor. The calculation
formula is

ESUNλ =

∫ λ2

λ1
E(λ) × S(λ)dλ∫ λ2

λ1
S(λ)dλ

, (3)

where λ1 and λ2 are the spectral wavelengths of the sensor with the unit µm, and E(λ) is the solar
radiation value outside the atmosphere with the unit W/

(
m2µm

)
. Equation (3) can be calculated from

the solar spectrum response function provided by the World Radiation Center.
After the model parametric setting is completed, the 6S atmospheric correction model can be

run to obtain the atmospheric correction parameters of Xa, Xb, and Xc. Subsequently, the apparent
reflectance data of the image are converted into surface reflectance data. The conversion formulas are
as follows:

ρs = y/(1 + Xc × y), (4)

y = Xa ∗ ρTOA −Xb, (5)

where ρs is the surface reflectance, and Xa, Xb, and Xc are the conversion parameters calculated by the
6S atmospheric correction model. The desired surface reflectance data were, thus, obtained.

3.2.2. Water Depth Inversion Model

1. Principle of bathymetry based on passive optical remote sensing

Sunlight has a perspective in a water column. The signal received by the optical remote sensor
contains reflection information of the sea bottom to the sunlight, and this information is the physical basis
of the passive optical remote sensing inversion of shallow water depth. In other words, the information
reflected from the seabed to the optical remote sensor is the direct reflection of underwater terrain,
that is, the information source of optical remote sensing bathymetry. The attenuation coefficient of
sunlight in water determines the penetrable depth of the light in water. The smaller the attenuation
coefficient of light in water is, the better its transparency in water is. This phenomenon is the basic
principle of water depth inversion.

In the process of radiation transmission, a series of complicated changes take place in the light
after sunlight passes through the atmosphere and the water column, then to the bottom of the water,
before finally entering the satellite sensor. As shown in Figure 4, the satellite sensor receives the
radiation signal Lt mainly in four parts.
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Lt = Lp + LS + Lw + Lb, (6)
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where Lp is the atmospheric radiation, LS is the reflection radiance of the water surface, Lw is the water
column radiance, and Lb is the bottom radiance. The radiative transfer equation of electromagnetic
waves in water is the physical basis of water depth inversion. Lyzenga [28,29] and Philpot [30]
developed the water depth radiation transfer equation according to Beer’s law.

L = L∞(1− exp(−gz)) + Adexp(−gz), (7)

where L = Lt − Lp − Ls is the radiative brightness value after atmospheric correction and radiative
brightness correction of the water column in deep water, L∞ is the radiation brightness value at infinite
depth, g is the two-way diffuse attenuation coefficient in the water body, z is the water depth value,
and Ad is the reflected energy value of the bottom.
2. Remote sensing bathymetric model

The radiation transfer equation and the basic principle of water depth inversion led to the rapid
development of the bathymetric method, which mainly comprises the theoretical analytical model [31],
single-band water depth inversion model [32,33], multi-band log-linear model [34–36], and logarithmic
conversion ratio model [37]. Tian [4] improved the method on the basis of the classic Stumpf model
to significantly improve water depth inversion ability. Considering the risk that the denominator
of the Tian model may be equal to zero, we added the constant factor a to the bathymetric model.
The a value may not increase model accuracy, but it can increase the stability of the model to a certain
extent. The passive optical remote sensing bathymetric model used in this study was named ILCRM,
expressed as follows:

Z = a0
ln(mRw(λi) + a)

ln
(
nRw

(
λ j

)
+ a

) + a1, (8)

where Z is the water depth, Rw(λi) and Rw
(
λ j

)
are the reflectance data of the blue and green bands,

respectively, a0 and a1 are regression coefficients, m and n are the adjustment factors, and a is the
added constant factor (i.e., users can customize its value, such as setting it to 1.01). Because blue
and green bands have strong transmission ability to water body, the signals received by sensors
contain seabed information; thus, the two bands were used in this study. This method belongs to the
classification of semi-empirical and semi-analytical models. A part of the water depth obtained from
LiDAR waveform data was used as the control point to calculate the model parameters of a0, a1, m,
and n. The other part of the water depth data was used as the validation point to evaluate the accuracy
of the bathymetric model.

3.2.3. LiDAR Waveform Processing

1. Depth extraction from waveform data

Extracting the signals of the water surface and the bottom part from an echo waveform is the key
to retrieving bathymetry based on the LiDAR waveform. The retrieving methods and parameters of
the sounding system were not disclosed, but they seem to apply the commonly used peak detection
method [9,18] and mathematical fitting method [12,38,39]. A burr phenomenon always exists in the
echo waveform signals arising from noise. A big error occurs when the peak detection method is
directly used to extract the time in which the echo signals return to the water surface and the bottom.
The method of filtering, denoising, and processing affects the response of the water component to
the seabed waveform. Although the water component is not the focus of our extraction, it has great
influence on the seabed waveform. By analyzing the radiation transmission of LiDAR in water
bodies [11], we find that the received echo signals approximate a Gaussian distribution [21,39]; thus,
we use the multi-Gaussian function fitting to extract the target echo signal.

f (t) =
n∑

i=1

aiexp
(
−((t− bi)/ci)

2
)
+ d, (9)
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where f (t) is the fitting curve expression based on the Gaussian function, ai, bi, and ci are the parameters
of the function, i is the number of Gaussian function, d is the correction parameter, and t is time.

We construct the objective function as

F(ai, bi, cid) =
1
N

tend∑
t=tbeg

( f (t) − PT(t)), (10)

where tbeg is the start time of the echo signal reception, and tend is the end time of the echo signal reception.
The Levenberg–Marquardt algorithm is used to solve the optimization problem as follows:

F = min(F(ai, bi, cid)). (11)

Given a reasonable initial value, we can derive the coefficient ai, bi, cid after optimal operation
and then use the peak detection method to extract the peak position of the fitting curve for the echo
signals of the water surface and the bottom part as (t1, p1) and (t2, p2), respectively. The expression of
the peak detection method is shown in Equation (12). The difference between the x-coordinates of
the two peak values is the time difference of the return of echo signal from the water surface and the
bottom. The bathymetry can be calculated as shown in Equation (13).

k = f ind(di f f (sign(di f f ( f ′(t)))) < 0) + 1, (12)

Z = cw(t2 − t1) cosθw/2, (13)

where f ′(t) is the sum of the Gaussian function used to iterate and fit the LiDAR echo signal, di f f (·)
is the difference between two consecutive points, i.e., di f f ( f ′(t)) = f ′(t + 1) − f ′; sign(·) is a sign
function to depict whether the input value is negative, positive, or zero, in which the return value is
−1, 1, or 0, respectively, f ind(·) returns the indices of the elements to satisfy the expressions inside
it, cw is the speed of light in water, and θw is the local incidence angle in water. The blue points in
Figure 5 represent the echo signals of LiDAR, while the red curve represents the fitting curve based on
the Gaussian function.
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2. Datum conversion

The bathymetry obtained by resolving the LiDAR waveform corresponds to instantaneous water
depth. The bathymetric data need to be corrected by using tide data to derive the water depth value
for the acquisition time of the optical remote sensing image. The relationship of instantaneous sea
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surface, mean sea level, depth, and water bottom is shown in Figure 6. However, the LiDAR data were
acquired from 11:00 a.m. to 2:00 p.m. on 19 January 2013, and the collection time of each point differed.
Therefore, performing a tide correction for each control point and validation point is necessary to
eliminate the errors caused by different tides.
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The LiDAR bathymetry data were calculated using the same reference surface as the optical image
for the satellite-derived bathymetry. MLLW data (referring to the depth data in the Figure 6) are
commonly used as the reference for bathymetric mapping. Therefore, MLLW data were selected as the
starting surface. The conversion formula is as follows:

H = h2 − ht − L. (14)

4. Results

Bathymetric inversion around Ganquan Island was carried out based on the LiDAR waveform
data and the QuickBird image. We compared the depth detected by the multi-Gaussian function and
the LiDAR processing software. Moreover, the inversion capability from combining active and passive
remote sensing was evaluated from the aspects of overall accuracy and specific depth range accuracy.

4.1. The Result of Radiation Calibration and Atmospheric Correction

The water body is the most important area after radiometric and atmospheric correction. Two sites
at different depths of water and one site of vegetation were selected to observe the changes of the
spectral curve after radiation calibration and atmospheric corrections, as shown in Figure 7. Each row
of spectral curves represents a site marked in the left image.
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4.2. Comparison of Different Waveform Processing Means

The LiDAR waveform data were fitted to extract the water depth using the multi-Gaussian
function. The bathymetric map of the whole water area (Figure 8) was obtained after tidal correction
and data-level conversion.
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The water depth profile of northwest Ganquan Island is shown in Figure 9. The horizontal
coordinate represents the offshore distance, and the vertical coordinate represents the water depth
value. In the figure, the yellow points represent the sea level, and the green and blue points represent
water depth at different ranges. The slope gradient was gentle, and the depth changed slightly from 3
to 17 m.
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Validation points were selected from the profile at intervals of 10 m to quantify the relationship
between the depth inversion result of the multi-Gaussian function and the officially published value
by the LiDAR processing software. The scatter plot of the two depth values is shown in Figure 10.
The R2 of the result of the multi-Gaussian function could reach 0.9 with an MRE of 5.6% in all water
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depth ranges. However, the MRE was relatively large in extremely shallow waters, and the time
difference of the returning echo signals from the water surface and the bottom part was somewhat
small and difficult to distinguish. The MAE of the whole water depth was 58.2 cm. When the water
depth exceeded 15 m, the MAE became larger. This phenomenon may be due to the weak echo signal
from the bottom part of the deep water that is difficult to identify.
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4.3. Overall Accuracy of Inversion Result

The data from the Aquarius LiDAR waveform were solved as survey data. A bathymetric inversion
of the QuickBird image was carried out. Control and validation points were selected uniformly and
randomly, and their numbers were 83 and 91, respectively. The distribution of the points is shown in
Figure 11a.

Appl. Sci. 2019, 9, 4375 12 of 17 

depth exceeded 15 m, the MAE became larger. This phenomenon may be due to the weak echo 
signal from the bottom part of the deep water that is difficult to identify. 

 

Figure 10. Scatter plot between the depth inversion result and the officially published value. 

4.3. Overall Accuracy of Inversion Result 

The data from the Aquarius LiDAR waveform were solved as survey data. A bathymetric 
inversion of the QuickBird image was carried out. Control and validation points were selected 
uniformly and randomly, and their numbers were 83 and 91, respectively. The distribution of the 
points is shown in Figure 11a. 

 

  

(a) (b) 

Figure 11. (a) Distribution of control and validation points; (b) depth inversion based on active and 
passive remote sensing combined. 

The regression relationship between the survey data and the inversion data of the control points 
was established with Equation (8). The Newton iteration method was applied to accomplish the 
regression of model parameters. The optimal regression parameters were 𝑎 , 𝑎 , 𝑚, 𝑎𝑛𝑑 𝑛, and the R2 
of the fitting was 0.96. Control and validation points were then used with ILCRM to retrieve the 
depth value. R2, MRE, and MAE were used as the evaluation indicators of accuracy. The overall 
accuracy of the inversion result is shown in Figure 12. 

Figure 11. (a) Distribution of control and validation points; (b) depth inversion based on active and
passive remote sensing combined.

The regression relationship between the survey data and the inversion data of the control points
was established with Equation (8). The Newton iteration method was applied to accomplish the
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regression of model parameters. The optimal regression parameters were a0, a1, m, and n, and the R2

of the fitting was 0.96. Control and validation points were then used with ILCRM to retrieve the depth
value. R2, MRE, and MAE were used as the evaluation indicators of accuracy. The overall accuracy of
the inversion result is shown in Figure 12.Appl. Sci. 2019, 9, 4375 13 of 17 
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control points. 

Figure 14 shows the MAEs and MREs of the specific depth ranges of the validation points. With 
the increase in water depth, MRE appeared to be on a downward trend. The MRE of extremely 
shallow waters (2–4 m) was the highest at 21.32%. The differences in MREs of the much deeper 
waters (>14 m) were relatively small, and the MRE in the range of 20–22 m could reach the minimum 

Figure 12. (a) Scatter plot of control points; (b) scatter plot of validation points.

Figure 11a,b show the scatter plots of the control points and the validation points, respectively.
The derived depths of both points were well fitted with the survey data. However, the result of the
validation points was more discrete than that of the control points, and the fitting coefficients of R2 were
0.95 and 0.96, respectively. The water depth of the inversion was in the range of 2–22 m. The overall
MAEs were 0.80 m and 0.95 m, and the overall MREs were 7.0% and 8.9%, respectively.

4.4. Accuracies of the Specific Depth Range

Water depth was divided into 10 ranges at the interval of 2 m to analyze the inversion ability
of different specific depth ranges, namely, 2–4, 4–6, 6–8, 8–10, 10–12, 12–14, 14–16, 16–18, 18–20,
and 20–22 m. MAE and MRE were used as the approximates of evaluation.

Figure 13 shows the MAEs and MREs of the specific depth ranges of the control points. The MRE
of extremely shallow water (2–4 m) had the largest value. With the increase in depth, MRE tended to
drop until it reached the minimum of 3.49% in the depth range of 20–22 m. The MAEs of all depth
ranges were less than 0.9 m, and the dropping or rising tendencies were not obvious. The MAEs of
10–12 m and 4–6 m were the highest and lowest values at 0.89 m and 0.46 m, respectively.
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Figure 14 shows the MAEs and MREs of the specific depth ranges of the validation points. With the
increase in water depth, MRE appeared to be on a downward trend. The MRE of extremely shallow
waters (2–4 m) was the highest at 21.32%. The differences in MREs of the much deeper waters (>14 m)
were relatively small, and the MRE in the range of 20–22 m could reach the minimum value of 2.47%.
The MAEs of all the depth ranges were within the range of 0.56–1.11 m, and dropping or rising
tendencies were not obvious. The minimum and maximum MAEs appeared in ranges of 10–12 m and
12–14 m, respectively.
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5. Discussion

Visible light is difficult to be quantitatively analyzed due to the variability and complexity of
hydrological and atmospheric factors during their propagation. The improved band ratio algorithm,
which is used to retrieve depth data from passive remote sensing, belongs to the classification of
semi-analytical models. In this model classification, the detection capability of water depths is limited
by the depth range of control points. Given that the control points provided by the Aquarius LiDAR
data are in the range of 0–20 m, the derived bathymetry can be narrowed to a relatively small range.

The extraction of echo signals from extremely shallow waters and the bottom of deep waters
has certain limitations. Further research is needed to identify and extract LiDAR waveform signals.
The incident angle is a key parameter of bathymetric inversion. This study assumes that the incident
angle for laser launching into waters is equal to the launch angle of the LiDAR. However, the assumption
is inappropriate in complex sea conditions, and it needs to be gradually improved in later experiments.

6. Conclusions

On the one hand, bathymetry derived by LiDAR has the advantage of high maneuverability and
efficiency, but the cost of using the system is high. On the other hand, the application of passive optical
remote sensing entails poor accuracy, but the cost of using it is low. On the basis of the popularity
of LiDAR bathymetry for depth measurements, bathymetric inversion with passive optical image
became a research topic with high value. In this study, a multi-Gaussian function was used to fit the
LiDAR waveform data, and the depth data were extracted for use as the measured depth data of
bathymetric inversion. Then, the improved band ratio model was applied to estimate the bathymetry
of the entire water around Ganquan Island within the QuickBird image range. The main conclusions
are highlighted below.

On the basis of the multi-Gaussian function to fit the LiDAR waveform data, the overall MAE of
the whole water depth (3–17 m) was 5.6%, the overall MRE was 58.2 cm, and the R2 could reach 0.97.
The accuracies meet the requirements of ocean surveying and bathymetric mapping.
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The bathymetric data derived from the Aquarius airborne LiDAR were divided into control points
and validation points. On the basis of the improved band ratio model, a bathymetric inversion was
carried out with the QuickBird image. The fitting coefficients R2 of validation points and control points
were 0.95 and 0.96, respectively. In the range of 2–22 m, the overall MAEs were 0.80 m and 0.95 m,
and the overall MREs were 7.0% and 8.9%, respectively. In specific depth ranges, the MAEs of all the
depth ranges were within the range of 0.5–1.2 m. From the aspect of accuracy of both overall and
specific depth ranges, the proposed method is an effective and inexpensive way to extract water depth
information, given the combination of active and passive remote sensing. At the same time, costs can
be reduced, indicating its applicability in coastal engineering in the future.

Suitable depth ranges need to be determined prior extracting the depth from LiDAR waveforms
and combing active and passive remote sensing. Bathymetric inversion is limited in extremely shallow
waters (<2 m) and deep waters. The difference in signals from the sea surface and the bottom in
extremely shallow waters is somewhat small and, thus, difficult to distinguish, and the detection
accuracy is low. By contrast, in deep waters, the signal from the bottom is too weak to be detected,
thus resulting in poor accuracy.
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