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Abstract: Feature Pyramid Network (FPN) builds a high-level semantic feature pyramid and detects
objects of different scales in corresponding pyramid levels. Usually, features within the same pyramid
levels have the same weight for subsequent object detection, which ignores the feature requirements
of different scale objects. As we know, for most detection networks, it is hard to detect small objects
and occluded objects because there is little information to exploit. To solve the above problems,
we propose an Enhanced Feature Pyramid Object Detection Network (EFPN), which innovatively
constructs an enhanced feature extraction subnet and adaptive parallel detection subnet. Enhanced
feature extraction subnet introduces Feature Weight Module (FWM) to enhance pyramid features
by weighting the fusion feature map. Adaptive parallel detection subnet introduces Adaptive
Context Expansion (ACE) and Parallel Detection Branch (PDB). ACE aims to generate the features
of adaptively enlarged object context region and original region. PDB predicts classification and
regression results separately with the two features. Experiments showed that EFPN outperforms FPN
in detection accuracy on Pascal VOC and KITTI datasets. Furthermore, the performance of EFPN
meets the real-time requirements of autonomous driving systems.

Keywords: object detection; feature pyramid network; feature recalibration; context embedding;
autonomous driving systems; augmented reality

1. Introduction

Autonomous driving systems cognize the surrounding environment by modeling the street
scenery information acquired by sensors, and then makes driving decisions. Among them,
object detection plays an important role in the construction of realistic scenes. In recent years,
the improvement of deep learning theory and computing power has significantly accelerated the
development of object detection. Nowadays, object detection methods are divided into two branches,
one-stage and two-stage. Two-stage algorithms are widely applied in tasks with a high degree of
accuracy. A typical two-stage deep learning-based detection framework includes a feature extraction
subnet, a proposal extraction subnet, and a detection subnet. The feature extraction subnet [1–3]
uses a convolutional neural network to extract features with high robustness and rich information
through end-to-end training process. The proposal extraction subnet [4,5] generates regions of interest
(RoIs), including foreground positive samples and background negative samples from the feature map.
The detection subnet utilizes the pooling feature of RoIs to predict the classification and regression
results of detected objects [5–9].

To utilize the features obtained from the feature extraction subnet, initially, researchers feed the
single scale features from the last convolution layer into the subsequent subnet [5,7,8]. Although these
features are rich in higher-level semantic information, they lack detailed information. This leads to a
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poor detection performance for small objects and occluded objects. Two kinds of network structures
are proposed to solve this problem. One is to do prediction separately on feature layers of different
resolutions [10,11]. The other is to merge multi-resolution features at first and then to predict on the
merged feature map [12,13]. Further studies show that taking advantages of both structures can get
more accurate results [14–17]. FPN is a state-of-the-art network of such structure. FPN constructs a
feature pyramid with high-level semantics throughout and independently predicts at each pyramid
level. The key design for building feature maps for each pyramid level is the lateral connection.
It merges the semantically stronger feature maps from top-down with feature maps which are rich
in detail localization information from the same bottom-up level. However, feature maps within
the same pyramid level have the same weight for subsequent object detection, which ignores the
feature requirements of different scale objects. Inspired by the features strengthen block in image
classification [18] and segmentation [19] field, we propose a generic FWM to recalibrate feature maps
in each pyramid level. For each pyramid layer, learnable weights are applied between features along
space and channel to boost useful features and suppress useless features specific for different scale
detection requirements. After that, a new enhanced feature pyramid is reconstructed with more
powerful feature representation.

After calculating the shared features, the proposal extraction subnet generates RoIs. Then,
the detection subnet adopts RoI pooling to map and extract the corresponding fixed-size features
of RoIs for classification and regression. However, for small and occluded objects whose feature
information is limited by their size or physical occlusion, their RoI features are less informative for
subsequent prediction. Researchers argue that using image evidence beyond RoI content benefits object
detection [10,13,20–23] and segmentation [21]. Such context information can be integrated by a spatial
recurrent neural network or acquired by expanding or deforming original RoI regions. We mainly
focus on local context embedding methods by expanding RoI regions. Gidaris et al. [20] defined ten
kinds of context regions around RoI to enrich the RoI representation, and then integrated each region’s
information in separate fully connected layers and concatenated them together as final features of each
RoI. It does improve accuracy at the cost of calculating a lot of redundant and overlapping context
blocks, which is incompatible with real-time autonomous driving systems. Cai et al. [10] stacked
features of a RoI and its larger context RoI together, and then compressed them by a convolution
operation as a merged RoI representation. However, all the RoIs share a fixed context expansion ratio,
which is set by human and requires careful tuning. This causes insufficient or redundant context
information supplementation of various scale objects. Wang et al. [22] introduced local competition
mechanism to select the most useful context region among three different expansion ratios of RoIs,
but all of the expansion values are still set manually. Since each object has different requirements
for context information, the amount of context complement should be distinct between each RoI.
For instance, it is difficult to detect small objects without referring to the surrounding context, while
the pure object characteristics is what a detection model should focus on in the case of large objects.
To meet this requirement, we construct an adaptive parallel detection subnet, which innovatively
introduces Adaptive Context Expansion(ACE) and Parallel Detection Branch (PDB). We naturally
leverage the pyramid shape of FPN to adaptively supply the context information of RoI of different
sizes. For example, we provide more context information for low-resolution small object while less for
large object. Then, features of context expansion RoI (ceRoI) and original RoI, respectively, serve as
the input of PDB to separately predict classification and regression results. With the parallel design,
we can make the best of two features, which not only maintains the location accuracy but also improves
classification performance.

The rest of this paper is organized as follows. In Section 2, we introduce our proposed EFPN
with an innovative enhanced feature extraction subnet and an adaptive parallel detection subnet.
In Section 3, we evaluate and discuss the object detection results of EFPN on several open datasets.
In Section 4, we introduce the application of EFPN as vision-based object detection module in an
autonomous driving cart system. Finally, conclusions are drawn in Section 5.
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2. Proposed Method

EFPN is our proposed object detection network. Its architecture is shown in Figure 1. Firstly,
in enhanced feature extraction subnet, we generate pyramid features in the same way as FPN. Features
in each pyramid level are weighted by our proposed FWM, and a new enhanced feature pyramid is
reconstructed as the input for the following procedure. Secondly, in the proposal extraction subnet,
Region Proposal Network (RPN) [5] is used to generate anchors of various shapes on the enhanced
pyramidal feature map. Thirdly, in adaptive parallel detection subnet, ACE is applied to extract the
feature of ceRoI and RoI for each foreground RoI. Two kinds of RoI features are, respectively, fed into
PDB to predict classification and regression as the final detection results.

Figure 1. The structure of EFPN.

2.1. Enhanced Feature Extraction Subnet

Generally, FPN first builds the bottom-up layers {C2, C3, C4, C5} by the feedforward computation
of backbone ConvNet. Then, FPN constructs each top-down feature maps by element-wised adding
the top-down feature maps of the last pyramid level with the bottom-up feature maps of the same
pyramid level, which is shown in t Figure 2 (left). The set of pyramidal feature maps built by FPN is
{P2, P3, P4, P5}.

Despite such a careful design for generating refined merged feature maps for different levels,
it is not strong enough for the information of spatial and channel features to different scaled objects.
We hypothesize that both spatial-wise and channel-wise recalibrating merged feature maps can
encourage current pyramid layer detection. Hence, we propose FWM to enhance the pyramid feature.
The structure of FWM is shown in Figure 2 (right).

FWM starts by modeling the feature dependency of the feature maps in each pyramid level,
and further learns the feature importance vector to recalibrate the feature maps to emphasize the
useful features. Specially, FWM in each pyramid level is in the same structure but has different
learnable weights, which results in different calculated feature weights. Each FWM consists of three
sub-modules: Feature Channel Weight Module (FCWM), Feature Spatial Weight Module (FSWM)
and Feature Channel Spatial Weight Module (FCSWM). FCWM and FSWM calculate the feature
importance vector along channel and spatial location. FCSWM combines the recalibrated weighted
feature maps after FCWM and FSWM as the new pyramidal feature maps. The detailed design of the
three submodules are described in the following subsections.
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Figure 2. The structure of enhanced feature extraction subnet.

2.1.1. Feature Channel Weight Module (FCWM)

FCWM focuses on enhancing features along channel of each pyramid level. FCWM first explicitly
models the dependency of features along channel and learns a channel specific descriptor through the
squeeze-and-excitation method [18]. Then, it emphasizes the useful channels for more efficient global
information expression of feature maps in each pyramid level.

Suppose the feature maps in nth pyramid level is Pn, which is generated by FPN. Hn and Wn are
the spatial height and width of Pn, respectively. The ith channel feature is Pi

n.
At the beginning, we do global average pooling on Pi

n to get the global distribution response Zi
n:

Zi
n =

1
Hn ×Wn

Hn

∑
p

Wn

∑
q

Pi
n(p, q). (1)

We use two fully connected layers to map the non-linear correlation between all global distribution
responses Zn and obtain the feature importance vectors Ẑn:

Ẑn = W1
n(δ(W

2
nZn)), (2)

where W1
n is the weight of the first fully connected layer. W2

n is the weight of the second fully connected
layer. δ represents the ReLU function.

Then, we normalize Ẑn to [0, 1] as a weight vector:

rn = σ(Ẑn), (3)

where σ represents Sigmoid function.
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Finally, we assign the weight rn to the original feature Pn and get the new pyramid feature Pcrn

after channel-wised recalibration:

Pcrn = Pnrn = [P1
nr1

n, P2
nr2

n, ..., Pn
n rn

n]. (4)

2.1.2. Feature Spatial Weight Module (FSWM)

Similar to the design of FCWM, FSWM enhances the features along spatial location of each
pyramid level, which emphasizes the effective pixels and depresses the ineffective or low-effect pixels.

We define P(p,q)
n as the clipping of all channel features at each feature point (p, q) of Pn. First,

we integrate all the features of each point through a convolution operation to get the spatial importance
vector O(p,q)

n :
O(p,q)

n = W3
nP(p,q)

n , (5)

where W3
n is the convolution kernel weight.

Then, we normalize Ôn to [0, 1] as a weight vector tn

tn = σ(Ôn), (6)

where σ represents Sigmoid function.
Finally, the normalized weights are spatially weighted to each pixel to get the new feature Psrn:

Psrn = Pntn = [P(1,1)
n t(1,1)

n , P(1,2)
n t(1,2)

n , ..., P(Hn ,Wn)
n t(Hn ,Wn)

n ]. (7)

2.1.3. Feature Channel Spatial Weight Module (FCSWM)

FCSWM combines the channel-wised weighted Pcrn obtained by FCWM and the spatially
weighted Psrn obtained by FSWM to generate a new recalibrated feature Prn. The combination
operation is implemented by addition:

Prn = Pcrn + Psrn. (8)

Prn encourages original feature maps to be both spatial-wise and channel-wise more informative.
In EFPN, we replace the initial feature pyramid features {P2, P3, P4, P5} by the recalibrated
enhanced pyramid features {Pr2, Pr3, Pr4, Pr5} as the input feature of proposal extraction subnet
and detection subnet.

2.2. Adaptive Parallel Detection Subnet

To inject object context information, we design adaptive parallel detection subnet, as shown in
Figure 1. Adaptive parallel detection subnet includes ACE and PDB. ACE calculates the context region
extension ratio of each RoI, and then generates and extracts the feature of ceRoI and original RoI after
RoI pooling. PDB inputs the feature of ceRoI and RoI separately to object classification branch and
regression branch to predict the classification and regression as the final detection results.

2.2.1. Adaptive Context Expansion (ACE)

As we know, small objects need extra information to help detection. FPN assigns small RoIs to
finer-resolution level to add extra detailed RoI feature. Suppose a RoI has width w and height h (on the
input image of the network); the level k of RoI is determined by its area size S:

S = wh, (9)

k = bk0 + log2(
√

S/S0)c. (10)
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Similarly, in ACE, an extra context feature is embedded for adding surrounding information for
small RoIs. We define two context expanding criteria, which guide the calculation of context region
expansion ratio for each RoI.

Vertical expansion criterion leverages the hierarchical structure of pyramid network to calculate the
vertical context expansion ratio Rv:

Rv = αk, (11)

where α denotes the vertical context enlarge coefficient. Since context expending of RoI is positively
correlated with the level of RoI, α is always positive. In Figure 3, the small RoIb and the large RoIc

belong to different pyramid levels, hence their Rv are clearly distinct from each other, that is a larger
one for RoIb and a smaller one for RoIc.

Figure 3. The structure of Adaptive Context Expansion (ACE).

Horizontal expansion criterion focuses on the calculation of refined expansion ratios between
different objects on the same pyramid level. Although RoIs within the same scale range have the same
Rv, their varying sizes lead to different requirements. We take this factor into account to provide more
precise horizontal context expansion ratio Rh:

Rh = β(log2(
√

S/S0) + k0 − k), (12)

where β denotes the horizontal context enlarge coefficient. log2(
√

S/S0) + k0 − k is the residual part
of level vector, ranging [0, 1], which indicates the size difference among the RoIs of the same pyramid
level. In Figure 3, for RoIa and RoId of the same pyramid level, the smaller its area is, the more context
information it needs. Thus, they have slightly different Rh, with a larger one for RoIa and a smaller
one for RoId.

Above all, the final context expansion ratio R, which considers the two independent criteria of
each RoI, is:

R = Rv + Rh + γ, (13)

where γ is used to adjust magnitude of extension ratio among different dataset resulting from factors,
such as background complexity, objects density, etc.

Next, the scale-up operation Θ based on the center point of each RoI is used to get the context
region ceRoI:

ceRoI = Θ(RoI), (14)
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where the ceRoI has the width of w× R and height of h× R with the same center as the original RoI.

2.2.2. Parallel Detection Branch (PDB)

ceRoI enriches the feature of RoI by aggregating its context environment information around,
which will be helpful for object recognition. However, ceRoI changes the geometric position
representation of original RoI. The misalignment of two features may somehow cause negative effects
to sensitive bounding box regression.

To make better use of the context information, unlike most popular detection subnets, we design
a divide-and-conquer prediction strategy, as shown in Figure 1. Features of ceRoI and RoI after RoI
pooling are extracted and separately fed into two parallel branches. Each branch includes two hidden
1024D fully connected layers, which are attached by ReLU for object classification and regression.

2.2.3. Loss Function

When training the adaptive parallel detection subnet, the parameters W are randomly initialized.
Then, W are learned from a set of training samples S = {(Xi, Yi)}N

i=1, where Xi is a training RoI,
and Yi = (yi, bi) is the combination of its class label yi ∈ 0, 1, 2, ...K and bounding box coordinates
bi = (bx

i , by
i , bw

i , bh
i ). K is the number of classes.

We use a multi-task loss L on each labeled Xi to jointly train for classification and regression:

L(X, Y|W) = Lcls(p(Θ(X)), y) + λ[y ≥ 1]Lloc(b̂, b), (15)

where p(X) = (p0(X), ..., pK(X)) is the probability distribution over classes, λ is a trade-off coefficient,
Lcls(p(Θ(X)), y) = − log py(Θ(X)) is the cross-entropy loss, b̂ = (b̂x, b̂y, b̂w, b̂h) is the regressed
bounding box, and

Lloc(b̂, b) =
1
4 ∑

j∈{x,y,w,h}
smoothL1(b̂j, bj) (16)

is the smoothed bounding box regression loss [7]. The bounding box loss is only used for positive
samples and the optimal parameters W∗ = argminWL(W) are learned by stochastic gradient
descent optimizer.

3. Experiments on Open Datasets

We evaluated our method using three challenging open datasets.
Pascal VOC [24] contains 20 categories of indoor and outdoor objects class. We mainly focused

on the average precision (AP) of six classes appearing in road scenes and the mean average precision
(mAP) of the whole dataset. We used VOC07+12 dataset, which contains 16551 images for training and
4952 images for testing to evaluate our proposed method. To further investigate the effectiveness of
each module structure, we used VOC07 dataset, which contains 5011 training images and 4952 testing
images for ablation study.

KITTI [25] is a large automatic driving dataset. Here, we used its 2D object detection dataset for
evaluation. In our experiment, we redefined the object classes into two classes: car and pedestrian.
car includes [Van, Truck, Car, Tram] and pedestrian includes [Personsitting, Pedestrian, Cyclist]. KITTI
provides 7481 images for training and 7518 for testing. Since no ground truth is available for the test
set, we split the training set into training set and validation set by 8:1.

Cityscapes [26] is a road scene image segmentation dataset. Pixel-level annotation for segmentation
task contains more small and occluded labeled objects than detection datasets, which is full of
challenges. Therefore, we converted Cityscapes into detection dataset to further test our model.
The definition of object class is the same as that of KITTI. Cityscapes detection dataset consists of
2842 images.
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3.1. Implementation Details

We implemented EFPN in Python within Pytorch deep-learning framework. Following Lin et al. [14],
we resized each image so that its shorter side has 600 pixels. The network was trained using one
NVIDIA RTX 2080 GPU with 1 image per mini-batch.

For proposal extraction subnet, we adopted the same design and training parameters as FPN.
For adaptive parallel detection subnet, we adopted RoI align [27] as RoI Pooling mechanism. We

used a weight decay of 0.0001 and a momentum of 0.9. The learning rate started from 0.001 and was
divided by 10 at every five epochs. The model had 10 total epochs.

For the parameter setting in ACE, we set k0 to 4 and S0 to 224 in Equation (10), consistent with
the canonical ImageNet pre-training size. We set the [α, β, γ] in Equation (13) for different datasets:
[0.1, 0.01, 0.6] for VOC07+12, [0.2, 0.01, 1.1] for VOC07, [0.15, 0.1, 0.9] for KITTI, and [0.15, 0.1, 0.9]
for Cityscapes.

3.2. Object Detection Results on Pascal VOC

To evaluate the performance of EFPN and the two new subnets proposed in this paper, we
compared them with other related object detection algorithms on VOC07+12 dataset. Results are
shown in Table 1. Note that Approaches (b)–(d) and (i) were implemented and tested on the same
platform as the proposed EFPN, while the results of Approaches (e)–(h) and (j) were from their
corresponding publications.

Table 1. Object detection results evaluated on VOC07+12.

Approach Backbone Car Person Bus Bike Motorbike Train mAP

(a) EFPN Res101 88.7 85.4 88.4 86.8 88.2 88.0 81.6
(b) FPN with enhanced
feature extraction subnet Res101 88.6 85.4 86.7 86.6 89.0 86.4 81.3

(c) FPN with adaptive
parallel detection subnet Res101 88.5 84.4 88.0 88.5 86.4 86.9 81.4

(d) FPN Res101 88.2 84.7 86.9 85.5 85.5 87.2 81.1
(e) SSD 513 Res101 88.1 83.0 88.2 87.6 87.5 87.2 80.6
(f) DSSD 513 Res101 88.7 83.7 89.0 86.2 87.5 85.7 81.5
(g) R-FCN Res101 88.5 81.2 86.8 87.2 79.9 85.9 80.5
(h) MR-CNN VGG 85.9 76.4 88.0 84.1 85.0 85.0 78.2
(i) Faster R-CNN Res101 85.3 75.4 85.1 80.7 80.9 85.3 76.4
(j) ION VGG 85.1 74.4 85.4 83.1 82.2 84.2 75.6

Compared with baseline (d), the controlled experiments (b) and (c), which separately replace one
part of the original FPN model, prove the validity of the proposed enhanced feature extraction subnet
and adaptive parallel detection subnet. Since the two subnets enhance the feature by applying weight
distribution of the entire feature map and feature supplementary of each RoI, respectively, they do
not overlap or inhibit each other. This is evidenced by the increased accuracy of the merged method
(a) compared with either single module (b) or (c). Overall, among all related methods, the proposed
EFPN (a) holds the highest mAP and highest AP in car, person and train.

Adaptive parallel detection subnet assembles two new module ACE and PDB. We designed
ablation studies to quantify the effect of the two modules on the VOC07 dataset. The results are
reported in Table 2.
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Table 2. Ablation study of the proposed ACE and PDB in adaptive parallel detection subnet on VOC07.

Approach Context Expansion Detection Branch mAP

(a) FPN 0 share 75.8
(b) FPN with 0.1 PDB 76.3
(c) FPN with 0.3 PDB 76.3
(d) FPN with 0.5 PDB 75.8
(e) FPN with 0.7 PDB 76.2
(f) FPN with 0.5 merge 76.2
(j) FPN with ACE merge 75.5
(h) FPN with ACE concat 76.1
(i) FPN with ACE PDB 76.6

The increased detection accuracy in (b)–(e) compared with baseline (a) proves that adding
context to a tight-fitting RoI is beneficial. However, different AP improvement of different context
expansion ratio indicates that the expansion range has different effects on various objects. If we simply
introduce a fixed context expansion ratio for all objects, it may result in mismatching for different object
requirements. In the case that the detection branches are all in parallel design, the performance of our
proposed ACE (i) is better than all fixed context expansion methods, which proves the effectiveness of
our adaptive strategy.

We compared four detection architectures in context integration networks.
Share in (a) denotes the normal object detection network, which shares the fully connection layer

of both classification and regression without context embedding.
Merge is the context embedding method proposed in [10], where the features extracted from RoI

and ceRoI after RoI pooling are paired and merged by a 3× 3 convolution, and then same as Share
design. We tested a fixed context expansion ratio of 0.5, which is the same as [10] in (f). The result
shows it slightly improves by 0.4 mAP. Nevertheless, we found that the accuracy is reduced when
applying the adaptive context ratio to (j). One cause may be that the inconsistent expansion ratio leads
to variable feature representation of ceRoI, thus it is hard to train a convolution kernel to merge the
various feature pair.

Concat in (h) reproduces the context embedding design proposed in [20]. It sends each ceRoI into
different fully-connected layers for feature generation, and then concatenates the features. The rest of
the design is the same as Share. Since we mainly focused on the design of detection branch, for lighting
parameters and equally contrasting with other methods, we concatenated one ceRoI with context
expansion ratio of 0.5 with the original RoI in our experiment. Among all the architectures, Concat
with maximal parameters only improves by 0.3 mAP. We suppose it is hard to take full advantage of
this design for the integration of a few features.

Unlike the popular design of sharing parameters for classification and regression, PDB (i) offers
precision improvements over traditional context embedded detection branch paradigms. Parallel
branches can be trained to attentively strengthen their information integration ability for specific task.
Moreover, cooperating with ACE, PDB can maximize the usage of context features, boosting detection
performance by 0.8 points within the affordable calculations increase.

3.3. Object Detection Results on KITTI

We evaluated model performance in autonomous driving scene dataset KITTI in Table 3.
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Table 3. Object detection results evaluated on KITTI.

Approach Test on Car Pedestrian mAP

(a) FPN@0.5 KITTI 90.3 78.3 84.3
(b) EFPN@0.5 KITTI 90.4 81.0 85.7
(c) FPN@0.75 KITTI 73.6 33.4 53.5
(d) EFPN@0.75 KITTI 74.0 35.8 54.9

(a) and (b) show the results of FPN and EFPN, which were both tested and trained on KITTI with
a 0.5 IoU threshold. The mAP of EFPN is 1.4 points higher than baseline FPN. Moreover, the AP of
pedestrian, which contains more small size objects, is increased lot by 2.7 points.

The comparison of (c) and (d) shows that the performance of EFPN with an IoU threshold of 0.75
also increases by 1.4 points. We suppose that the improvement of localization accuracy is probably
caused by proposed PDB. The parallel design forces each fully connected layer to attentively focus
on its own task. The AP improvement of high IoU threshold denotes the increase of high-quality
detections, which demonstrates the proposed EFPN is well-qualified for high-security applications
such as autonomous driving. Figure 4 shows several detection examples on KITTI. We can see that
more accurate boxes are generated by EFPN and more small and occluded objects have been detected.

(a) (b)

Figure 4. Detection examples on KITTI dataset with FPN and EFPN model. For each pair, on the left is
the result of FPN (a) and on the right is the result of EFPN (b). We show detections with scores higher
than 0.3.

3.4. Object Detection Results on Cityscapes

To verify the model generalization ability of EFPN, we trained the model on KITTI and tested on
Cityscapes. The results are shown in Table 4.
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Table 4. Object detection results evaluated on Cityscapes.

Approach Test on Car Pedestrian mAP

(a) FPN@0.5 Cityscapes 38.5 19.9 29.2
(b) EFPN@0.5 Cityscapes 38.9 21.4 30.1

EFPN is better than the baseline by 0.4, 1.5, and 0.9 points in the AP of car, pedestrian and mAP,
respectively. Figure 5 shows some detection examples on Cityscapes, where more small objects and
occluded objects are detected by proposed EFPN. To a certain extent, EFPN can be extended to other
environments and maintain its accuracy improvement.

(a) (b)

Figure 5. Detection examples on Cityscapes dataset with FPN and EFPN model. For each pair, one the
left is the result of FPN (a) and on the right is the result of EFPN (b). We show detections with scores
higher than 0.3.
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Compared with the test results in KITTI, the overall APs in Cityscapes are much lower for some
reasons. One cause is that the proportion of small objects and occluded objects increases greatly in
Cityscapes and some of the pixel-level small object vanished after several down samplings. It may also
be due to the great differences in image quality, lighting situation and traffic environment complexity
between Cityscapes and KITTI.

4. Application in Autonomous Driving System

To further test the model practicality in real autonomous driving scenes, we installed the proposed
EFPN in an autonomous driving cart for freight transportation inside a factory. The testing shows that
EFPN can effectively provide surrounding object information for autonomous vehicles.

EFPN works in the perception module of autonomous driving cart. The perception module first
feeds the data obtained from binocular vision camera into EFPN for object detection. Then, the results
are validated by laser radar information. Next, all object information in current frame is wrapped into a
ROS message and sent to decision module for further path planning and vehicle control. More broadly,
EFPN supports plenty of functions such as obstacle avoidance, trajectory following and automatic
parking in autonomous driving cart.

Three of the most crucial measures for object detection algorithms in autonomous driving cart are
accuracy, real-time performance and vision range.

For accuracy, to satisfy production demand, the autonomous driving cart needs full-time work,
including daytime, nighttime and extreme weather such as rain and snow. Besides, there are many
special engineering vehicles in the factory whose appearances are significantly different from normal
cars. Moreover, closely parked custom vehicles along roadside are always viewed as overlapped
objects. The aforementioned challenges increase the detection difficulty and put forward higher
requirements on the accuracy of object detection algorithm. The proposed deep learning model EFPN
ensures the capacity of robustly detecting complex objects. For better adapting to the factory scene, we
constructed a factory object detection dataset based on Pascal VOC, KITTI, and special vehicles that
appear in the factory. Meanwhile, we defined a new object class cone for further traffic control and
parking management. Overall, the factory dataset includes 21392 images, and four classes, which are
car, person, cone and bicycle. We trained EFPN on the factory dataset using the same setting as KITTI.

For real-time performance, EFPN operates up to 16 fps cooperating with the 10 Hz vehicle
controller, adequately ensuring the safety of autonomous driving cart.

For vision range, due to the restricted limit in the factory, the speed of the autonomous cart is
lower than 10 km/h. The max braking distance is less than 0.5 m, which results in 15 m visualization
demand of object detection system. Therefore, the proposed EFPN with the small object detection
ability within 80 m in daytime and 50 m at nighttime well satisfies the vehicle reaction requirement
within safe distances.

Figure 6 shows the real-time detection results of EFPN under some challenging scenarios. Until
now, the autonomous driving cart has been operated in the factory for several months. The practical
applicability of EFPN has been effectively verified.
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(a)

(b)

(c)

Figure 6. Real-time detection results in different lighting conditions and weathers in factory scenarios.
(a) Detection results on sunny days; (b) Detection results on rainy days; (c) Detection results in the nighttime.
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5. Conclusions

This paper proposes EFPN, a feature reinforced update based on FPN. By weighting the features
in each pyramid level and adaptively utilizing the context information of object, EFPN enhances
the feature expression and further improves object detection accuracy. Experiments showed that the
accuracy of EFPN surpasses FPN in open datasets. The application of EFPN in autonomous driving
cart proves that it can meet the demands of accuracy, efficiency and visibility in multiple scenarios.
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