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Abstract: A semiconductor ring laser with a long cavity supports propagating localised structures
with a chiral charge, named phase solitons. In this paper we study the dependence of the velocity
and of the duration of the phase solitons on the characteristic time scales of the laser, namely the
photon lifetime and the carrier lifetime. We show numerically that phase solitons are stable over
a large range of those parameters and verify that the propagation velocity decreases linearly with the
ratio of the carrier lifetime to the photon lifetime, while the duration is proportional to the ratio of the
carrier lifetime to the cavity roundtrip time.
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1. Introduction

Dissipative temporal solitons are light pulses moving round and round indeterminately inside
a nonlinear optical cavity [1-4]. They can be found in mode locked lasers, where they are usually
modelled by means of delay differential equations [5] or of the cubic-quintic Ginzburg-Landau [6],
as well as in driven passive resonators such as fibers [7] or microcavities [8], where they are interpreted
as localised solutions of the Lugiato-Lefever equation [9]. The interest in dissipative temporal solitons
is related to their use as frequency combs, with several applications for instance in spectroscopy,
metrology and astronomy [10].

Recently a novel kind of dissipative temporal soliton was found in a highly multimode
semiconductor ring laser with a long cavity driven by a coherent field [11]. Unlike solitons in passive
media, these solitons are not locked to the driving field. During a roundtrip the complex electric field
performs a full rotation of 277 in such a way that at the end it still satisfies the boundary condition
imposed by the forcing beam. The motion is not a pure rotation since the amplitude also varies
considerably giving rise to a pulse. Nevertheless these structure are named dissipative phase solitons
because phase dynamics plays a major role. In principle the rotation in the complex plane could be
either clockwise or anticlockwise and we can associate, respectively, a chiral charge of —1 or +1 to it.
Yet, both experiments and numerical simulations showed that only the phase solitons with positive
chiral charge are stable due to the inertia of the active medium [12]. Consequently during a roundtrip
time the phase evolves as a positive kink from 0 to 27t. Further studies have shown that phase solitons
display long range interaction and can form complexes with multiple chiral charge [13] or give rise to
complex dynamics and extreme or abnormal events [14,15].
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Phase solitons are common in spatially extended oscillatory systems to which a nearly resonant
forcing is applied [16]. In our case it is the mismatch between the frequency of the free running laser
and that of the injected field that leads to the formation of 27t phase kinks. Therefore phase solitons
are intrinsically different from the dissipative temporal solitons mentioned above.

So far the study of phase solitons was limited to a very small set of parameters. The aim of this
paper is to study how their stability and main properties depend on the relevant time scales of a laser,
that is, the photon lifetime and the the gain recovery time or carrier lifetime in a semiconductor laser.

In Section 2 we present the simplest laser model that can account for the existence and stability of
phase solitons in a ring semiconductor laser with optical injection and recall the main properties of such
solitons. In Section 3 we present the results of our numerical simulations which allow to determine
simple linear laws that relate the propagation velocity of the phase solitons and their duration with the
time scales of the laser. In the final Section 4 we summarize our results and suggest the possibility of
miniaturizing the experiment using a quantum cascade laser instead of a diode laser.

2. Methods

We consider a semiconductor ring laser made by an antireflection coated semiconductor medium
(few mm long) placed in a long ring resonator of length L (about 1 m). The semiconductor medium is
pumped electrically and the laser is driven by a coherent field injected into the cavity.

The long cavity combined with the large gainwidth allow highly multimode operation.
In Reference [11] the system was studied using a set of effective Maxwell-Bloch equation where the
coherent dynamics of the active medium was described by an effective macroscopic polarisation variable.
However, very soon it was realised that as long as phase solitons are concerned a rate equation model
suffices, where the polarisation variable is adiabatically eliminated [12]. The equations are
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The dynamical variables are the dimensionless slowly varying envelope of the electric field E,
which obeys a periodic boundary condition and the gain D = {(N /Ny — 1), where ( is a dimensionless
parameter of order 1 [17], N is the carrier density and Nj its transparency value, hence D is proportional
to the excess of carriers with respect to transparency. We neglect the dependence of E and D on the
transverse coordinates.

The parameters are the mismatch 6 = (w. — wy)T, between the cavity frequency w, and the
frequency of the injected field w; multiplied by the photon lifetime, the dimensionless amplitude E;
of the injected field, the linewidth enhancement a and the pump parameter y = ((I/Iy — 1), where
I is the injected current and I its transparency value. At the lasing threshold we have py,, = 1,
which means that the threshold current is Iy, = Io(1 + {~1). The longitudinal coordinate z is scaled to
the length of the active medium and time is scaled to the cavity roundtrip time Tz = L/c, being L the
cavity length and c the light speed in vacuum. Consequently the decay rates of the electric field and of
the population variable are defined as

o==R, p=1K €)
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where 7, and T, are, respectively, the photon and carrier lifetimes. Since the photon lifetime is by
definition equal to the roundtrip time tg divided by cavity losses, the parameter ¢ coincides with
the cavity losses. The carrier lifetime 7. for a semiconductor laser is of the order of 0.1-1 ns and
the roundtrip time is on the order of some ns for a cavity length on the order of 1 m, hence the
parameter b is on the order of 10-100. For suitable values of y, « and 6 the stationary homogeneous
solution is bistable. In this paper we fix the values y = 1.1, which means that the laser is 10% above
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threshold, « = 3, which is a typical value for semiconductor lasers and 6 = —2.7, so that 6 +a = 0.3.
Since 6 +a = (wp — wr)Tp, where wy, is the laser frequency [18], the latter choice means that the
frequency of the driving field is some GHz larger than that of the nearest empty cavity resonance but
smaller than the lasing frequency.

In Figure 1 we show the S-shaped homogeneous solution together with the branch of stable phase
solitons obtained with that choice of the parameters and setting also o = 0.3, b = 50.
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Figure 1. Intensity of the stationary states for the choice of the parameters y = 1.1, = 3,60 = -2.7,
o = 0.3 and b = 50 as a function of the injected field amplitude E;. The blue curve is the homogeneous
solution. The phase solitons, whose maximum and minimum intensity are shown in red, exist in the
interval delimited by the dashed vertical lines. In that region the homogeneous solution is triple valued.
The upper state A is stable, the state B in the negative slope branch is unstable as usual, the lower state
C is an unstable focus.

The phase solitons are obtained letting the system evolve from an initial state whose amplitude
is that of the state A but to which a phase profile in the form of a positive phase kink from 0 to 277 is
superimposed. In the extended system where the dynamical variables are allowed to depend on the
longitudinal coordinate z the homogeneous state A is still stable but it coexists with the phase soliton,
that is, a state in which the phase varies by 27t. The stability of the phase soliton is checked as usual
by adding dynamical noise to the equations. In Reference [13] the stability and the properties of the
phase solitons were studied assuming that all the parameters but the amplitude E; of the injected field
are fixed. In other words the different phase solitons that can be observed varying one experimental
parameter in a given laser configuration were considered. Here we take a different approach and,
by fixing the amplitude E; of the injected field, we study how the stability and the properties of
the phase solitons change for different laser configurations, defined by the fundamental time scales
associated with the active material (7.) and with the cavity (1, 7).

Precisely, in the following we set E; = 0.0445 and let ¢ and b vary, which means that for a fixed
cavity length we assume to vary the photon lifetime Tz and the carrier lifetime 7,. Figure 2 shows
a typical example of phase soliton obtained for our initial choice of the parameters ¢ = 0.3 and b = 50.
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Figure 2. Phase soliton for ¢ = 0.3 and b = 50. (a) Spatio-temporal diagram of the field intensity over
500 roundtrips. The numbers on the left of this panel indicate the position of the phase soliton along the
horizontal axis f for the corresponding roundtrip. Time evolution of (b) the field intensity and (c) the
phase over the last roundtrip, i.e., for 500 < t < 501. The three numbers above (b) denote, respectively,
the minimum, mean and maximum intensity. (d) Trajectory of the tip of the electric field in the complex
plane. A, B and C are the three homogeneous stationary solutions, whose dynamical role is explained
in the text; the blue dot is the origin. (e) Power spectrum.

Panel (a) is a space-time intensity plot where the horizontal axis is time scaled to the roundtrip time
and the vertical axis counts the number of roundtrips. Here we assume to observe the field intensity
at a fixed position inside the cavity (for instance at the exit of the active medium). We could as well
imagine to fix time and follow the evolution of the spatial profile of the intensity one roundtrip after
the other. In that case, however, the horizontal axis should be reversed, so that an image symmetric
with respect to the vertical axis would be obtained. In our false-color plots, the abscissa represents
time in a frame moving at velocity c, thus a rightward (leftward) tilted evolution corresponds to v < ¢
(v > ¢). All stable phase solitons propagate at a velocity smaller than c, so that a stable phase soliton is
described by a line inclined to the right. The larger is the inclination, the slower is the phase soliton.

Panels (b) and (c) show the time evolution of the field intensity and phase, respectively, over the
last roundtrip. The phase soliton displays a deep minimum followed by a small maximum in the
intensity and a positive 27t phase kink in the phase.

Panel (d) shows the evolution of the complex electric field during one roundtrip time. The labels
A, B and C denote the three fixed points of the homogeneous stationary curve. The trajectory starts
and terminates in A, which is the stable fixed point on the upper branch of the bistable curve, it is
repelled by B, which is the unstable fixed point on the negative slope branch and circles around the
origin O and around C, which is the unstable focus on the lower branch of the bistable curve. The tip
of the complex electric field moves anticlockwise along the trajectory, apart for the small portion
between A and B. This motion results in the positive phase kink of 27t shown in (c). The phase soliton
with a negative phase kink is always unstable [11,12]. Finally, panel (e) shows the power spectrum
of the phase soliton that is, the intensities of the longitudinal modes that compose the phase soliton.
The central mode (1 = 0), which is always largely dominant because pumped by the external field,
is not shown. The spectra are asymmetric, with a prevalence of modes with negative index.
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3. Results

Starting from the choice of the parameters o and b of Figure 2 we investigated how the properties
of the phase solitons depend on those two parameters. For fixed b = 50 we varied ¢ from 0.1 to 0.9 by
steps of 0.1 and for fixed o = 0.3 we varied b from 10 to 100 by steps of 10. In our study we focused
mainly on two properties of the phase solitons: their velocity and their width or duration.

As mentioned above, the propagation velocity of the phase soliton is related to the inclination of the
straight line that depicts the phase soliton in the space-time diagrams. We calculate the propagation velocity
in the following way [13]. Let us call At the delay accumulated during N roundtrips. Then the velocity is

_NL o L/m c W
~ Nt.+At  1+At/(Nt) 1+At/(N7)
and A
v T
—=~1-—
. Nt ®)

since AT < NT.. As shown in panel (b) of Figure 2 in presence of a phase soliton the field intensity is
approximately uniform for most of the time and approximately equal to the intensity of the stable fixed
point A. This intensity level is the background for the phase soliton and we call it I,,;. The phase soliton
consists of a deep negative pulse where the intensity reaches its minimum value I, followed by a small
positive pulse where the intensity reaches its maximum value Inay. If we introduce the intensities

Lnin + | Imax + 1
11 _ min bg, 12: max bg, (6)

2 2
we can define the duration of the phase soliton or its width, 7,5 = 72 — 77 as the interval between the
instant 71 when the intensity reaches for the first time the value I; and the instant 7 when the intensity
reaches for the second time the value I,.

As a first result we found that when b is fixed and ¢ is varied the only property of the phase soliton
that changes is its velocity. In Figure 3 we show the space-time plots for b = 50 fixed and three values
of oc: ¢ = 0.1in (a), ¢ = 0.51in (b) and ¢ = 0.9 in (c). The propagation velocity of the phase soliton
decreases with o, while its shape, spectrum and trajectory in the complex plane remain unchanged.
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Figure 3. Spatio-temporal diagram of the field intensity over 500 roundtrips for b = 50 and (a) ¢ = 0.1,
(b) o = 0.5, (c) o = 0.9. As 0 increases the slope of the vertical line associated with the phase soliton decreases,
indicating that the phase soliton moves more slowly. The shape of the pulse, instead, does not change.
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The situation is different when ¢ is kept fixed and b is varied. Figures 4 and 5 show the phase
solitons for the same value ¢ = 0.3 as in Figure 2 but b = 10 in Figure 4 and b = 100 in Figure 5.
Here both the velocity and the shape of the phase soliton change considerably and consequently also
the spectrum. The phase soliton is much narrower and much faster for b = 100 and the phase kink is
also much steeper. Only the shape of the trajectory in the complex plane is the same in the two cases
but it must be considered that in Figure 5 the representative point remains close to the fixed point A
for almost all the roundtrip time and the trajectory around the origin is travelled much faster.
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Figure 4. (a—e) Same as Figure 2 but with b = 10. The phase soliton is wider and slower.
0.00819 0214 0.265
0.698 500 (a) (b) (c)
0692 450 0.25 1 —
0686 400 3 02 & :
068 4350 20.15 2 0.5
£ s 2
0.674 g 300 % 01 e
E .
0.668 5 250 005 S
5 0
0.662 é 200 500 5005 501 500 5005 501
S t t
0657 Z 150
0651 100 ) (e)
0.645 50 40
Jan]
0.639 0 e =
. >
t £-50
c
Iz
0.0026 0.13 .
06
02 0 02 04 200 0 200
Re(E) mode index

Figure 5. (a—e) Same as Figure 2 but with b = 100. The phase soliton is narrower and faster.

The change in shape of the phase solitons is accompanied by a different modal composition.
We can compare the panels (e) of Figures 4 and 5. The number of modes with intensity larger than
—70 dB is 39 for b = 10 and 247 for b = 100.
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An explanation for the above results can be found looking at the structure of the dynamical
Equations (1) and (2). We see that the equations can be made to depend just on the ratio ¢/b by
defining the new spatial and temporal variables z’ = bz and t' = bt

JE OE o

S tsp = 3lEi—(1+i0)E+(1—ia) DE], @)
oD 2
s = n-(1+IER)D. ®)

Therefore, the velocity of the phase soliton can depend only on that ratio, while their duration
scales with b. More precisely, if we look for a solution of Equations (7) and (8) of the form E = E(w),
D = D(w) with w = zc/v — t, that is, a pulse propagating at velocity v, we obtain from Equation (7)

)
E(S-1) =3/ )
where we have denoted by fr the content of the square brackets at the right hand side of Equation (7)
and by E’ the derivative of E with respect to w. This equation can be made independent of the ratio
o /b by setting

C (%
S -1=Kig. (10)

Since v is very close to c this is equivalent to v/c = 1 — Ky0/b.

From this discussion it follows that the propagation velocity of the phase soliton decreases linearly
with the ratio /b = 7./7p, while its width is inversely proportional to the parameter b = Tz /.
Two phenomena concur in slowing down the phase solitons—the inertia of the active medium, which is
proportional to T, and the escape of photons from the cavity, which is inversely proportional to 7.
The width of the phase soliton, instead, is determined only by inertia of the active medium.

The above assumptions were fully confirmed by the plots shown in Figure 6a,b, where we collected all
the results obtained by varying independently ¢ and b. The numerical data admit the linear fits

%:1f1<1%, Tps = =2 (11)

The constants K; and K, depend on all the parameters of the system. Here we found
K; = 0.03908 £ 0.00006 and K, = 1.48285 + 0.00266.

The above consideration, however, do not allow to determine the range of values of ¢ and b for
which the phase solitons exist and are stable. A complete analysis is beyond the scope of this paper
but from our simulations we can at least state that in order for the phase solitons to be stable the ratio
o /b must be sufficiently small, that is, we must be in the class-A laser limit. For fixed ¢ = 0.3 the
smallest value of b for which we found a stable phase soliton is stable is b = 5, that is, c/b = 0.06.
If the medium is too slow, the laser cannot support stable phase solitons. Assuming that the roundtrip
time is 7, = 3.6 ns as in the experiment of Reference [11] this means that the phase soliton is stable for
T, < 0.72 ns.
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Figure 6. (a) Plot of the phase soliton velocity as a function of ¢/b. (b) Plot of the temporal width of

the phase soliton scaled to the roundtrip time as a function of 1/b. Both plots admit a linear fit, shown
as a red line.

Figure 7a—e shows that before loosing stability the phase soliton changes considerably with
respect to the typical shape shown in Figure 2. Here the soliton is much wider and slower and now
its trajectory in the complex plane never touches the stable fixed point A. Panel (f) of the same figure
shows the process of destabilization of the phase soliton as we lower the parameter b to b = 4 starting
from the stable solution of b = 5. The electric field evolves in a complex dynamical state over 2000
roundtrip times.
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Figure 7. (a—e) Same as Figure 2 but with b = 5. (f) Evolution of the field intensity when we take as
initial condition the stable phase soliton with b = 5 and set b = 4. The phase soliton evolves into
a complex spatio temporal state.

4. Conclusions

In this paper we have investigated how the stability, velocity, duration and modal composition of
phase solitons depend on the dimensionless decay rates ¢ = Tr /7, and b = Tr / T.. We have interpreted
our results having in mind the experiment of Reference [11] where the cavity length L is on the order
of 1 m and the carrier lifetime 7, on the order of 0.1-1 ns. We could however imagine an experiment in
which the active medium is much faster. For instance, for a quantum cascade laser, the carrier lifetime on
the order of 1 ps. Since b = 1./ 7. and T = L/c, we have L = bct,. With fixed cavity losses o = 0.3 we
have found stable phase solitons for b of the order of 10 to 100. This suggests the interesting possibility of
miniaturizing the experiment down to the scale of the cm. This means that the cavity roundtrip time is on
the order of 0.1 ns and therefore the duration of the phase solitons would be on the order of 10 ps.
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