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Abstract: Driver assistance systems are a major focus of the automotive industry. Although technological
functions that help drivers are improving, the monitoring of driver state functions receives less attention.
In this respect, the human heart rate (HR) is one of the most important bio-signals, and it can be detected
remotely using consumer-grade cameras. Based on this, a video-based driver state monitoring system
using HR signals is proposed in this paper. In a practical automotive environment, monitoring the
HR is very challenging due to changes in illumination, vibrations, and human motion. In order to
overcome these problems, source separation strategies were employed using joint blind source separation,
and feature combination was adopted to maximize HR variation. Noise-assisted data analysis was then
adopted using ensemble empirical mode decomposition to extract the pure HR. Finally, power spectral
density analysis was conducted in the frequency domain, and a post-processing smoothing filter was
applied. The performance of the proposed approach was tested based on commonly employed metrics
using the MAHNOB-HCI public dataset and compared with recently proposed competing methods.
The experimental results proved that our method is robust for a variety of driving conditions based on
testing using a driving dataset and static indoor environments.
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1. Introduction

The heart rate (HR) is one of the most important cardiac signals in the human body. The HR
can be used to monitor medical emergencies and to determine general medical health. However,
when measuring the HR, it is often difficult to apply measurement sensors in daily life outside of
specific situations because of the restriction of human activity caused by attached sensor. Also, patients
who have skin irritations in medical institutions such as hospitals can experience difficulty due to
direct contact of the sensor with the skin. Overall, people experience a great deal of discomfort if any
sensor is attached to their body parts. Non-contact HR measurement can overcome these problems.
This approach is based on the fact that HR signals can be detected via the human skin [1], with optical
changes on the skin surface visible due to blood perfusion caused by the heartbeat.

The optical variation caused by heartbeats is very subtle, meaning that the accurate detection of
cardiac signals was studied in great detail. For example, in Reference [2], the green channel produced
the strongest photoplethysmography (PPG) signal among the red/green/blue (RGB) image channels;
thus, it was analyzed in the frequency domain as an HR feature [3]. In addition, Li et al. delicately
cropped the face region and then applied an adaptive filter to determine the difference between the face
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and the background regions based on the assumption that there is a motion correlation between the
two regions [4]. However, although the green channel can reflect PPG variation, using this channel only
can generate severe noise. To overcome this, blind source separation (BSS) was proposed. Poh et al.
reported an HR estimation method using independent component analysis (ICA) with a webcam [5,6].
The webcam took RGB image sequences of the subject’s face, and the RGB images were separated into
three motion reflecting source components. Each source component was then analyzed by comparing
it with the HR ground-truth, and the second component was selected, showing the best similarity
fit with the ground-truth, as the desired HR source component. In Reference [7], joint blind source
separation (advanced BSS), with the goal of source separation while maintaining consistent sources
across multiple datasets, was applied to denoise facial signals.

Wu et al. attempted to detect HR signals by magnifying subtle source components based on
changes to skin color due to the pulse [8]. However, applying this in real-world situations is limited
because most signals are significantly larger than the color variation caused by the HR, meaning that it
can only operate under controlled conditions, e.g., with no motion or changes in illumination.

An approach that linearly combines observation signals was introduced by Haan et al. [9]. It was
based on the use of RGB channels under the assumption of a standardized skin tone, and several
linear combination features extracted from the RGB signals were compared under equal conditions.
Wang et al. then proposed a spatial pruning and temporal filtering method that improved upon
previous linear combination features [10]. After the pruning procedure, the HR was extracted using
principal component analysis (PCA) based on the assumption that a periodic signal such as the HR
should have the highest variance because subject motion is occasional.

Deep-learning-based approaches were also proposed. Niu et al. built a feature map learning
framework using synthetic spatiotemporal maps to overcome the problem of limited training data [11].
The estimator model pre-trained using ImageNet was trained on the synthetic data and fine-tuned using
limited real facial data. Relying on the same deep-learning method, Tang et al. used a convolutional
neural network (CNN) for region-of-interest (RoI) selection divided into three stages: face detection,
tracking, and skin-region selection [12]. However, deep-learning-based methods require large datasets
and significant computing resources and, if the testing environment changes, a new training dataset
is needed.

In this paper, our goal is to achieve more accurate non-contact HR estimation under more
challenging and practical conditions in a driving environment. With the rapid development of
advanced driver assistance systems (ADASs) and automotive vehicles, ensuring driver and passenger
safety is paramount. In particular, car accidents caused by medical emergencies afflicting the driver,
such as a heart attacks, are a major concern. Using non-contact HR measurement, the status of
a driver’s heart can be monitored, and the driver can be notified when abnormal symptoms are
detected. In addition, in automated vehicle systems, the vehicle can automatically be redirected
to a nearby hospital. Although Kuo et al. previously attempted to employ the non-contact HR
estimation approach in a driving environment, the extraction of pure HR signals was difficult, leading
to poor performance [13]. Improving on previous research under driving conditions, a sliding window
framework using a linear combination of RGB signals was proposed in Reference [14], achieving
excellent performance and a rapid reaction time, making it suitable for driving conditions. In the same
test framework as in Reference [14], our proposed method was tested in a public indoor environment,
as well as under driving conditions, in order to verify the robustness of our multi-faceted approach.

The structure of this paper is as follows: the overall proposed framework is described in detail in
Section 2. In Section 3, two experiments are described: testing on a public indoor dataset to verify our
method, and testing on a driving dataset containing rapid illumination changes, motion, and vibration.
Finally, the experimental results are discussed in Section 4, and conclusions are drawn in Section 5.
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2. Materials and Methods

While the signals in a typical video vary greatly, meaning that changes in pixel intensity can be
confirmed visually, HR variation is very subtle. Therefore, the HR is likely to be affected by other
source components, which need to be separated out. In this section, the framework for our approach
to this problem is described. Firstly, the facial skin region was selected as an RoI. Source separation
was then used to separate pure HR signals from other noisy signals using joint blind source separation
(JBSS) and ensemble empirical mode decomposition (EEMD) [15,16]. Finally, the extracted source
component was analyzed in the frequency domain using the power spectral density (PSD) analysis
proposed by Welch [17].

2.1. Facial Regions of Interest

There are non-skin regions that cannot be used to observe the HR in the face, such as the eyes,
eyebrows, and mustache. However, because typical face detector algorithms (e.g., the Viola–Jones face
detector) include non-skin regions, they are not adequate for selecting the RoIs for HR estimation [18].
Previous HR estimation research also showed that the strength of PPG signals differs between different
regions of the face, with the cheek and forehead regions tending to produce the strongest PPG
signals [19]. Due to forehead occlusion depending on the hair style, the cheek region was selected
as the RoI using a discriminative response map fitting (DRMF) face detector that detects 66 facial
landmark points to extract only the region needed to detect the PPG signals (Figure 1) [20].

Figure 1. Region-of-interest (RoI) selection procedure: (a) face detection and cheek region cropping.
(b)Selectedskinregionand(c)backgroundregionexcept foranyskinregionwhere thephotoplethysmography
(PPG) signal can be detected (the skin region is indicated in yellow).

However, face detection in every frame not only requires significant resources, but slight changes
to the face or fading caused by light saturation or shadows can also lead to face detection failure.
For this reason, our method adopted kernelized correlated filter (KCF) face tracking [21]. Even though
face detection and tracking can be used to select the target facial region, regions that are not suitable
for the extraction of the HR may be included within the tracked region. In order to obtain the
skin region directly associated with HR variation, hue channels were employed as in Reference [14],
which demonstrated reasonable performance.

2.2. HR Joint Blind Source Separation

Unlike the environments tested by previously proposed methods, driving conditions have a lot
of dynamic signals. In order to extract the HR from these extreme conditions, sophisticated signal
extraction techniques are required. In the present study, before the extraction process, each RGB
channel was normalized with a mean unit variance of zero.

As a noisy component separation technique, our method adopted JBSS. Standard BSS is limited
by the necessity to maintain the consistency of the separated source components across different
datasets. For example, in ICA, which is a form of BSS, if the source components are separated in the
frequency domain, there is a permutation problem in that the separated frequency bins have to be
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aligned. This is caused by blindness to permutation, meaning ICA cannot automatically perform the
alignment. Therefore, JBSS is suitable for datasets consisting of several subjects, and it was employed
in this paper.

In the JBSS framework, it is assumed that groups of sources from multiple datasets are uncorrelated,
while sources within each dataset are highly correlated. Based on this assumption, independent vector
analysis (IVA) was adopted to separate the HR source component from other noise [22]. IVA was
devised to solve the permutation problem with Kullback–Leibler divergence between the source and
observation joint probability in ICA. The cost function C was described by

C = KL

p(s1, . . . , sL) ‖
∏

i

q(si)

, (1)

where p(s1, . . . sL) and
∏

i
q(si) denote the probability density function and the marginal probability

distribution function of the source component, respectively. The cost function converged to
simultaneously minimize the entropy of all source components, and the mutual information was
maximized within each source component. Detrending was then applied to each source component
with the smoothing parameter λ = 10 to remove nonstationary components [23].

However, as mentioned previously, due to the fact that our algorithm was employed under driving
conditions, the use of JBSS only was not sufficient to filter out noisy components. We assumed that
there would be residual noise components after the JBSS process. The signals that undergo JBSS can be
divided into face and background regions. The HR component should be present in the face region,
while other noisy components are present in both regions. This assumption means that there should be
some correlation between the face and the background regions. Based on this assumption, the noise
components could be excluded, and the HR signal could be retained by subtracting the background
signals from the face signals as follows:

HRcomp = SFace − SBack, (2)

where SFace and SBack are the face and background signals after the JBSS process, respectively.
The background region was defined as the uncorrelated region with skin that can emit a PPG
signal. The background region is illustrated in Figure 1c. In order to validate this, we plotted the
correlation between the face and background results from JBSS for each channel in Figure 2. Because of
the presence of significant noise, the correlation coefficients were not strong, but they were positive
because a large portion of the noise was present in both the face and background regions.

Figure 2. Plots of the correlation and correlation coefficients (ρ) between the face (horizontal axis) and
background (vertical axis) signals in each channel. Each dot denotes samples of the joint blind source
separation (JBSS) results at every frame: (a) red channel; (b) green channel; (c) blue channel.

2.3. Normalized Least Squares Filter and Ensemble Empirical Mode Decomposition

Because the driving environment is dynamic, HRcomp cannot be used directly as a measure of
the HR. In order to refine the extracted features via post-processing, an adaptive filter was applied.
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The normalized least mean squares (NLMS) filter is one of the most useful adaptive filters used in
noise cancellation [24]. The reasonable performance of an NLMS filter in a remote PPG experiment
was previously reported [4]. Although Li et al. used NLMS to subtract the noisy background signal
from the face signal, our method employed it to refine each HRcomp channel. NLMS can be represented
as follows:

di = xt
iwi + ni,, (3)

where xt
i and ni are the input vector and white Gaussian noise with N

(
0, σ2

v

)
, which is independent

from xt
i , at the ith iteration, respectively, and di is the signal to be refined. For each iteration, the optimal

weight coefficient is updated and di is estimated as

wi = wi−1 − µ
[
∇

2 J[wi−1]
]−1

[∇J[wi−1]]
∗, (4)

where * and ∇ denote the conjugate operation and derivation, respectively, and J(wi−1) is the cost
function with respect to the weight coefficient. The NLMS algorithm operated iteratively to minimize
the error ni, which was the difference between the desired signal di and xt

iwi. The weight coefficient w
was initialized as zero at the beginning of the iterations.

Haan et al. proposed several HR feature signals using a linear combination of RGB channels,
and Lee et al. analyzed the optimal feature signals in a dataset for various environments [8,15]. Based
on previous results, the signal for each channel refined using NLMS was transformed into a RoverG
signal, which was the ratio of the red and blue channels.

Ensemble empirical mode decomposition (EEMD) is a noise-assisted method for extracting the
intrinsic mode function (IMF) from observed data. EEMD operates by iteratively averaging a series of
trials in which white noise is added to the observed signal. As demonstrated in Reference [25], IMFs
representing the source components of complicated observations can be decomposed after several
iterations. Therefore, EEMD was employed on the RoverG signals to extract the IMF corresponding to
the HR. In Reference [25], Chen et al. discovered that the fourth IMF of facial observation signals is the
closest to the HR; thus, our approach also used the fourth IMF from RoverG via EEMD.

An example of these steps is presented in Figure 3. While the other approaches fluctuated over
time, HR estimation using the NLMS filter followed the ground-truth in a relatively stable manner.

Figure 3. Heart rate (HR) estimation over time. RoverGJBSS+EEMD adds JBSS to Lee et al.’s method [15].
RoverGexcluded employs the consistent correlation assumption by subtracting the noisy components
in the background from the face signal. RoverGNLMS is our proposed method. EEMD—ensemble
empirical mode decomposition; NLMS—normalized least mean squares.

2.4. HR Determination Using Sliding Window and Temporal Filtering

In the previous steps, we extracted the HR signal from an input image. However, even after
considerable signal processing, detecting a subtle HR signal in a driving environment, which is
characterized by severe interference, is challenging. In order to produce stable estimation results,
our method used sliding windows of different lengths to derive several candidate estimation results at
a single time point. The number of candidate estimates was set at seven, with a window length ranging
from 8 to 14 s, and the Mahalanobis distance measure was employed for the final estimated HR to
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exclude those results that differed the most from the others, as in the same framework as Reference [14].
The final estimation result was, thus, the average of the remaining candidate HRs. To transform the
HR into a time-series signal, the Welch method was employed [13]. Finally, temporal filtering was
applied to smooth the intermittently fluctuating final HR as follows:

HRt =
1
s

t−1∑
r=t−s

HRr when HRt
−HRt−1

≥ α, (5)

where HRt denotes the HR at time t. HRt is determined by whether the threshold α of the difference
between the current final HR at time t and the previous HR at time t− 1 is exceeded.

3. Results

In this step, we evaluate our framework by firstly applying it to a public human–computer
interaction (HCI) dataset in an indoor environment, and then by applying it to a driving dataset.
The indoor dataset was used to validate our framework, with our method implemented in MATLAB
2019a with an Intel i7-4790 central processing unit (CPU) and 24 GB of memory.

3.1. Comparison of Features Using a Public Dataset

In order to determine the optimal algorithm structure, the performance of each step was analyzed.
Our framework could be divided into three stages. Firstly, JBSS was applied to the detected RoIs and
transformed into a RoverG feature signal, followed by HR IMF decomposition using EEMD. Secondly,
the correlation between the background region and the face region was analyzed for each channel to
exclude noise that was found in both regions before transformation into RoverG. Finally, NLMS was
applied to each channel after the noise was excluded in the previous stage.

For stable analysis, the MAHNOB-HCI public indoor dataset was used [26]. The dataset contains
videos of the frontal facial images of 27 subjects (15 females and 12 males) captured at a resolution of
780 × 580 and a frame rate of 61. It is the result of two experiments—emotion elicitation and implicit
tagging—but we only used emotion elicitation because it was recorded in color and captured by the
subject in various genres of motion situations reflecting every possible pulse change. The HRs of the
subjects were recorded as electrocardiography (ECG) signals at 256 Hz while the subjects watched
several video clips, and they were synchronized with the video.

In order to allow an accurate comparison with previously proposed methods, the metrics used in
previous methods were employed in this paper. Me and SDe are the mean and standard deviation of
Equation (6), respectively.

HRdi f = HRest −HRgt, (6)

where HRest and HRgt denote the estimated result and ground-truth, respectively.
In addition, root-mean-square error (RMSE) and MeRate were employed as shown below.

RMSE =

 1
N

N∑
n=1

[
HRest[n] −HRgt[n]

]2


1/2

, (7)

MeRate =
N∑

n=1

(∣∣∣∣∣∣HRdi f |n|

HRgt|n|

∣∣∣∣∣∣
)
× 100, (8)

where N denotes the length of the entire video in seconds, and n is time index for each second. Finally,
the Pearson correlation coefficient r between the estimated HR and ground-truth was evaluated.
Table 1 displays the performance of each stage of our framework using the MAHNOB-HCI dataset in
terms of these metrics.
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Table 1. Comparison of the performance for each stage of the proposed framework using the MAHNOB-HCI
dataset (best performance in bold). RMSE—root-mean-square error; JBBS—joint blind source separation;
EEMD—ensemble empirical mode decomposition; NLMS—normalized least mean squares.

Feature Me(SDe) RMSE MeRate r

RoverGJBSS+EEMD −3.36 (5.10) 7.39 9.29% 0.10
RoverGexcluded −1.22 (4.16) 7.49 9.58% 0.06
RoverGNLMS −3.36 (3.33) 5.31 6.57% 0.72

RoverGJBSS+EEMD, RoverGexcluded, and RoverGNLMS represented stages 1, 2, and 3, respectively.
Their performance was somewhat consistent with the overall metrics. However, the performances of
RoverGJBSS+EEMD and RoverGexcluded were poor in terms of Pearson correlation r except for the other
metrics (e.g., Me, SDe, RMSE, MeRate). This is because the estimated HR fluctuated inconsistently,
leading to a difference between the ground-truth and the estimated HR. Based on the experimental
results, RoverGNLMS was verified to be the superior framework.

3.2. Validation Using the MAHNOB-HCI Indoor Dataset

In this section, our proposed method is compared with previous approaches using the
MAHNOB-HCI public dataset. The evaluation metrics used in the previous section were also
employed (Table 2).

Table 2. Comparison of the performance of our proposed framework with other approaches using the
MAHNOB-HCI dataset (best performance in bold).

Method Me(SDe) RMSE MeRate r

Poh (2010) −8.95 (24.3) 25.9 25.0% 0.08
Poh (2011) 2.04 (13.5) 13.6 13.2% 0.36
Li (2014) −3.30 (6.88) 7.62 6.87% 0.81

Tulyakov (2016) 3.19 (5.81) 6.23 5.93% 0.83
Lee (2018) 0.80 (3.35) 3.26 3.68% 0.75

Ours −3.36 (3.33) 5.31 6.57% 0.72

The algorithm that produced the best performance differed for each evaluation metric. Even though
our method only outperformed the others in terms of SDe, it did not demonstrate a notably worse
performance compared to the best algorithms based on the other metrics. In contrast to earlier studies,
recent frameworks were steadily refined and improved; given that the performance of our proposed
method falls within the top three based on the metrics overall, it can be concluded that our method is
fairly stable and that it was validated by the public dataset.

3.3. Demonstration Using a Driving Dataset

Because our framework was designed to be employed under driving conditions, a real driving
dataset was collected. This dataset included 19 subjects, both male and female, in their 20s to 30s.
The test subjects were from the Middle East and Asia (Korean, Chinese, and Taiwanese), with some
wearing glasses (Figure 4).

Figure 4. Examples of the appearance of the subjects used in the driving dataset: (a) Asian; (b) Asian
with glasses; (c) Middle Eastern.
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The driving dataset was captured using a GoPro HERO3+, with the camera fixed on the windscreen
looking at the subject’s face. The video was recorded at a resolution of 1920 × 1080 and a frame rate
of 30. The ground-truth was obtained using a contact-based pulse sensor (the MP507 model from
MEK) attached to each subject’s earlobe and synchronized with the captured video data. The subjects
sat in the passenger seat to ensure their safety. In order to simulate the most common movements
of real drivers, the subjects were asked to rotate their head and to look up, down, left, and right.
In addition, in order to determine whether our method was able to accurately detect a change in the
pulse while driving, the subjects were asked to run on a steep hill before entering the vehicle. In all
driving situations, subjects were asked to freely make motions with no special restrictions, to set the
environment as close as possible to the actual driving conditions. The driving course was subject to
a lot of shadows, rapid illumination changes, and vibrations caused by the unevenness of the road
surface. As stated in Appendix A, we collected driving dataset on research ethics.

Table 3 presents the experimental results compared with recent methods for the driving dataset.
The compared methods were selected based on the latest results and major algorithms, and these
methods were re-implemented to obtain the results on the same driving dataset. Poh (2011) and Zhao
(2013) were some of the backbones of related research, but they did not show robustness in the driving
dataset in dynamic conditions. Unlike the previous methods, Cheng (2017) showed significantly higher
results in Me but did not show strength in other metrics. On the other hand, Lee (2018) showed an
overall high performance compared with previous methods in several metrics. However, in terms of r,
there was a slight increase compared to the previous results, but still no reliable performance. On the
other hand, our method demonstrated a slightly lower performance using the public dataset compared
to recently published approaches. Our method not only showed the best performance in most metrics,
but experimenting on this driving dataset (e.g., condition) also illustrated that our method is robust in
various driving and environmental situations.

Table 3. Experimental results for the driving dataset (best performance in bold).

Method Me(SDe) RMSE MeRate r

Poh (2011) 20.73(35.45) 40.10 29.56% −0.21
Zhao (2013) 14.85(16.43) 21.76 20.12% −0.01

Cheng (2017) 4.48(17.93) 17.93 20.43% −0.06
Lee (2018) 2.66(2.42) 4.74 4.15% 0.26

Ours −1.64 (3.70) 3.94 3.97% 0.66

Figure 5 displays the relationship between the ground-truth and the estimated HR results.
The estimated HR followed the ground-truth closely and did not fluctuate dramatically due to
external factors.

Figure 5. Relationship between the ground-truth HR and the estimated HR results. Vibrations caused
by irregularities on the road surface occurred consistently over the whole period. The red zones
represent periods during which there was a rapid illumination change.

In order to assess the precision of our method, we used Bland–Altman plots on driving subject
samples, which represent a statistical method for comparing two kinds of data, for the results from
the driving dataset (Figure 6). The Bland–Altman plot was proposed to quantify the agreement
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between two measurements by Altman and Bland. Not only is it a simple way to compare the bias
between the mean differences, but it also analyzes the deviation within a 95% confidence interval.
The Bland–Altman agreement is calculated as

A =
1
N

n∑
i=1

ai × 100, with ai =

1, i f
∣∣∣HRest −HRgt

∣∣∣ > 1.96× σ

0, i f
∣∣∣HRest −HRgt

∣∣∣ < 1.96× σ
, (9)

where N and σ denote total number of measurements and the standard deviation between HRest and
HRgt, respectively. The vertical axis denotes the difference between the ground-truth and estimated
results, and the horizontal axis denotes the average of both at each second. The plots had a low bias
and standard deviation, and illustrated high agreement.

Figure 6. Bland–Altman plots for the driving dataset analyzed at a 95% confidence level. The above
four plots were selected to show the stable results for various human heart-rate cases. The red and blue
lines denote the means and standard deviations of the data points, respectively. Agreement levels were
as follows: (a) 96.49%, (b) 96.72%, (c) 93.33%, and (d) 97.37%.

It may not be as apparent that the experimental results in Figure 6 followed the tendency of the
HR, because the subjects included in Figure 6 ranged from the relatively short interval of a fast HR
to the long interval of the normal state. However, even though it was not sharply revealed by the
Bland–Altman plot, not only were the differences between the estimated values and the ground-truth
less than 5 bpm, but the highest performance was also obtained based on the quantitative numerical
values shown in Table 3. Moreover, as shown in Table 3, the Pearson correlation (r), which is related to
tendency, yielded the highest performance using the proposed algorithm compared to other algorithms.

4. Conclusions

In this paper, we proposed a heart-rate estimation framework that operates under driving
conditions to prevent car accidents caused by acute heart disease. Because the driving environment
has a lot of noise that needs to be excluded in order to extract a driver’s HR, various signal processing
techniques are employed in our method. Firstly, JBSS is applied to an input image to separate the
source components. Secondly, the noise components found in both the face and background regions are
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excluded by analyzing the correlation between the two regions. Thirdly, an adaptive noise cancelling
filter is employed on the results of the previous step to remove the remaining noise using NLMS.
Fourthly, the refined signal is transformed into a RoverG feature, and the IMF corresponding to the
HR is extracted using EEMD. Finally, the results are analyzed in the frequency domain, and temporal
filtering is applied to smooth intermittently fluctuating values.

In previous methods, the environment within which the HR was measured was specifically
constructed so that the proposed algorithm could work well, and most of these methods were tested
indoors. However, tests conducted in such environments do not accurately reflect real-world suitability
and robustness. To demonstrate the robustness of our method, we tested it on an unrestricted
driving dataset containing illumination changes and motion. Prior to testing on the driving dataset,
we divided our framework into several stages and analyzed the performance of each stage. We then
tested our framework on the publicly available dataset NAHNOB-HCI to verify that our method
can be generalized and that it is not specific to our driving dataset. We then demonstrated our
proposed method using the driving dataset, which included various challenging disturbances such as
illumination change, vibration, and head rotation. Our approach produced a stable performance in
this environment, and there was no significant degradation in performance compared to the indoor
environment dataset.

5. Patents

The authors have a patent entitled “method for estimating the condition of a driver” (Korea
application number 10-1988581).

Author Contributions: Conceptualization, K.L.; methodology, K.L.; software, K.L.; investigation, K.L.;
writing—original draft preparation, K.L.; writing—review and editing, H.K.; supervision, H.K.; funding acquisition,
J.L., C.H., and M.H.

Funding: This work was funded by Hyundai Autron Co., Ltd. and was technically supported by the Application
SW Development Team and the R&D Innovation Team.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Authors complied with the WMA Declaration of Helsinki when collecting the driving dataset.
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