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Abstract: Multi-switching combination synchronization of three fractional-order delayed systems
is investigated. This is a generalization of previous multi-switching combination synchronization
of fractional-order systems by introducing time-delays. Based on the stability theory of linear
fractional-order systems with multiple time-delays, we propose appropriate controllers to obtain
multi-switching combination synchronization of three non-identical fractional-order delayed systems.
In addition, the results of our numerical simulations show that they are in accordance with the
theoretical analysis.
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1. Introduction

Fractional calculus has attracted researchers from various fields due to fractional dimensions
widely existing in nature and engineering fields [1–3]. Compared to the integer-order dynamical
systems, the fractional-order counterparts can exhibit more complex dynamical behaviors. Some of
the researches on integer-order dynamical systems can be generalized to fractional-order dynamical
systems. Fractional-order dynamical systems have been widely investigated, such as synchronization [4],
identification [5], stabilization [6] and approximate entropy analysis [7,8]. Time-delay is a frequently
encountered phenomenon in real applications, such as physical, communication, economical,
pneumatic and biological systems [9]. Introducing time-delay into a system can enrich its dynamic
characteristics and describe a real-life phenomenon more precisely. Thus, the fractional-order delayed
differential equation (FDDE) is becoming a hot topic for scientists and engineers, and it has many
theoretical and practical applications [10]. Nowadays, the chaotic behavior and synchronization of
FDDE attract intensive research interests. In [11], Bhalekar et al. introduced the fractional-order delayed
Liu system. The fractional-order delayed financial system was presented in [12], and hybrid projective
synchronization between the aforementioned two systems was achieved in [13]. The fractional-order
delayed Chen system was proposed in [14], while its adaptive synchronization was investigated in [15].
The fractional-order delayed porous media was proposed in [16]. In [17], a fractional-order delayed
Newton–Leipnik system was taken as an example to present intermittent synchronizing delayed
fractional nonlinear system.

Due to its wide applications in secure communication, synchronization of fractional-order
delayed chaotic systems are extensively investigated [18–21]. However, all the above-mentioned
and other synchronization schemes are in traditional drive–response ways, which only have unique
drive and response systems. Recently, Luo et al. [22] extended the traditional drive–response
synchronization to combination synchronization, which has two drive systems and one response
system. Compared to the drive–response synchronization, combination synchronization has stronger
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anti-decode and anti-attack abilities in image encryption and secure communication, in which
origin messages are split into two parts and each part can be embedded into two separate drive
systems. There are many works on combination synchronization [23–26]. To further strengthen
the security in secure communication, Vincent et al. [27] proposed multi-switching combination
synchronization scheme, in which the two drive systems are synchronized with the response system
in different states. Based on the nonlinear control technique, Zheng [28] studied multi-switching
combination synchronization of three non-identical chaotic systems. Khan [29] investigated adaptive
multi-switching combination synchronization among three non-identical chaotic systems. In [30],
Ahmad et al. proposed globally exponential multi-switching combination synchronization scheme,
and applied it to secure communications. Multi-switching combination synchronization was applied
in encrypted audio communication in [31]. The previous work on multi-switching combination
synchronization schemes are based on integral-order chaotic systems. To improve the security
in these synchronization schemes, based on fractional-order chaotic systems, Bhat et al. [32]
extended the work in [27] to study multi-switching combination synchronization among three
non-identical fractional-order chaotic systems. Khan et al. [33] investigated multi-switching
combination-combination synchronization among a class of four non-identical fractional-order chaotic
systems. In multi-switching combination-combination synchronization scheme, the state variables of
two drive systems synchronize with different state variables of two response systems simultaneously,
which makes the security of this scheme higher than that in [32].

Since time-delay is a frequently encountered phenomenon in real applications, and the time-delay
can be used as an additional parameter in synchronization to increase security in secure communication,
we consider the work in [32] to investigate multi-switching combination synchronization scheme for
non-identical fractional-order delayed systems by introducing time-delays in fractional-order systems.

The rest of this paper is organized as follows. In Section 2, the concept of fractional calculus and the
stability theory of linear fractional-order systems with multiple time-delays are briefly introduced. The
multi-switching combination synchronization scheme of three non-identical fractional-order delayed
systems is analyzed in Section 3. In Section 4, numerical simulations performed using MATLAB are
presented. Finally, conclusions are drawn in Section 5.

2. Preliminaries

Fractional calculus is a generalization of integration and differentiation to non-integer order
fundamental operator aDr

t , which is defined as

aDr
t =


dr

dtr : r > 0,
1 : r = 0,∫ t

a (dτ)−r : r < 0.
(1)

There are several different definitions for the fractional-order differential operator [34]. Because the
Caputo definition is easy to understand and is frequently used in the literature, we apply this definition
in this paper, which is

aDr
t f (t) =

1
Γ(n− r)

∫ t

a

f (τ)
t− τ

r−n+1

dτ (2)

where 1 < r < n.

Lemma 1 ([35]). Suppose f (t) ∈ Cα
a ([a, b]), Dα

a f (t) ∈ Cβ
a ([a, b]), α > 0, β > 0, m− 1 < β < m, n− 1 <

α < n, then
C
a Dβ

t

(
C
a Dα

t f (t)
)
=C

a Dα
t (

C
a Dβ

t f (t)) =C
a Dα+β

t f (t) (3)
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Lemma 2 ([35]). Consider

C
a Dα

t xn =
Γ(n + 1)xn−α

Γ(n + 1− α)

C

a
Dα

t x (4)

Lemma 3 ([35]). Let φ(t) ∈ R be a continuous and derivable function. Then, for any time instant t ≥ t0

1
2

Dqφ2(t) = φ(t)Dqφ(t), ∀q ∈ (0, 1) (5)

Given the following n-dimensional linear fractional-order system with multiple time-delays [36]:

Dq1 y1(t) = α11y1(t− τ11) + α12y2(t− τ12)

+ · · ·+ α1nyn(t− τ1n),

Dq2 y2(t) = α21y1(t− τ21) + α22y2(t− τ22)

+ · · ·+ α2nyn(t− τ2n),
...

Dqn yn(t) = αn1y1(t− τn1) + αn2y2(t− τn2)

+ · · ·+ αnnyn(t− τnn),

(6)

where qi ∈ (0, 1) is the fractional-derivative order, yi(t) is the state, and τij > 0 is the time-delay,
the initial value yi(t) = φi(t) is given by −maxτij = −τmax ≤ t ≤ 0, A = [aij] ∈ Rn×n is the
coefficient matrix.

Performing Laplace transform on the system in Equation (6) yields

∆(s) ·Y(s) = b(s), (7)

where Y(s) = (Y1(s), Y2(s), ..., Yn(s))T is the Laplace transform of y(t) =

(y1(t), y2(t), ..., yn(t))T , b(s) = (b1(s), b2(s), ..., bn(s))T is the remaining non-linear part,
the characteristic matrix of the system in Equation (6) is

∆(s) =


sq1 − α11e−sτ11 −α12e−sτ12 · · · −α1ne−sτ1n

−α21e−sτ21 sq2 − α22e−sτ22 · · · −α2ne−sτ2n

...
...

. . .
...

−αn1e−sτn1 −αn2e−sτn2 · · · sqn − αnne−sτnn

 . (8)

Theorem 1 ([36]). If all the roots of the characteristic equation det(∆(s)) = 0 have negative real parts, then
the zero solution of the system in Equation (6) is Lyapunov globally asymptotically stable.

Corollary 1 ([36]). If q1 = q2 = · · · = qn = β ∈ (0, 1), all the eigenvalues λ of the coefficient matrix
A satisfy | arg(λ)| > βπ/2, and the characteristic equation det(∆(s)) = 0 has no purely imaginary roots
for any τij > 0, i, j = 1, 2, . . . , n, then the zero solution of the system in Equation (6) is Lyapunov globally
asymptotically stable.

3. Multi-Switching Combination Synchronization Scheme

Multi-switching combination synchronization among three non-identical fractional-order delayed
systems is investigated in this section.

The two drive systems are

Dαx(t) = x(t) + x(t− τ) + A(x(t), x(t− τ)),

x(t) = x(0), t ∈ [−τ, 0],
(9)
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and
Dαy(t) = y(t) + y(t− τ) + B(y(t), y(t− τ)),

y(t) = y(0), t ∈ [−τ, 0].
(10)

The response system is

Dαz(t) = z(t) + z(t− τ) + C(z(t), z(t− τ)) + U,

z(t) = z(0), t ∈ [−τ, 0],
(11)

in which, α ∈ (0, 1) is the fractional order, τ > 0 is the time-delay, U = (U1, ..., Un) is the controller
vector, x = (x1, ..., xn)T ∈ Rn, y = (y1, ..., yn)T ∈ Rn and z = (z1, ..., zn)T ∈ Rn are state vectors,
and A : R2n → Rn, B : R2n → Rn and C : R2n → Rn are continuous vector functions.

Define the error state as eklm = fkzk − gl xl − hmym(k, l, m = 1, ..., n). Then, we have the error
state vector

e(t) = Fz− Gx− Hy, (12)

where e(t) is the vector form of eklm, F = diag{ f1, f2, . . . , fn} ∈ Rn×n, G = diag{g1, g2, . . . , gn} ∈ Rn×n

and H = diag{h1, h2, . . . , hn} ∈ Rn×n are real scaling matrix. Accordingly, eklm(t− τ) = fkzk(t− τ)−
gl xl(t− τ)− hmym(t− τ).

Definition 1 ([27]). The systems in Equations (9) and (10) and the system in Equation (11) are defined to be
multi-switching combination synchronization if F, G, H are non-zeros, and k 6= l 6= m, k = l 6= m, k 6= l =
m, k = m 6= l, such that:

lim
t→+∞

‖ e(t) ‖= lim
t→+∞

‖ Fz− Gx− Hy ‖= 0 (13)

where ‖ . ‖ represents the matrix norm.

Remark 1. If k = l = m, the systems in Equations (9) and (10) and the system in Equation (11) are defined to
be combination synchronization [22].

Remark 2. If the scaling matrix F 6= 0, G = 0 or H = 0, the multi-switching combination synchronization
mentioned above is simplified to multi-switching hybrid projective synchronization.

From the systems in Equations (9)–(11), we have the error system as follows

Dαe(t) = FDαz(t)− GDαx(t)− HDαy(t) (14)

To achieve multi-switching combination synchronization among the above systems, a non-linear
controller is constructed:

U = K̃e(t) + GA(x(t), x(t− τ)) + HB(y(t), y(t− τ))− FC(z(t), z(t− τ)), (15)

where K̃ = K− I, I is an n-dimensional unit matrix, K = diag{k1, k2, . . . , kn} is a feedback gain matrix.
Substituting the systems in Equations (9)–(11) and (15) into the system in Equation (14), we have

Dαe(t) = (k̃ + I)e(t) + e(t− τ) = Ke(t) + e(t− τ). (16)

Thus, the multi-switching combination synchronization between the systems in Equations (9)
and (10) and the system in Equation (11) is changed into the analysis of the asymptotical stability of
the system in Equation (16).

In light of Corollary 1, a sufficient condition to achieve multi-switching combination
synchronization between the systems in Equations (9) and (10) and the system in Equation (11)
is obtained as follows.
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Proposition 1. Multi-switching combination synchronization between the systems in Equations (9) and (10)
and the system in Equation (11) can be achieved if there exists a matrix K = diag{k1, k2, . . . , kn} in the system
in Equation (16) such that ki < −1/ sin(απ/2), (i = 1, 2, . . . , n).

Proof. For the system in Equation (16), A = K + I is the coefficient matrix. Since ki <

−1/ sin(απ/2), α ∈ (0, 1), the eigenvalues of A are λi = ki + 1 < 0, (i = 1, 2, . . . , n). Then,
|arg(λ)| > π/2 > απ/2 holds.

Performing Laplace transform on the system in Equation (16) yields

∆(s) · E(s) = sα−1e(0) + e(0)e−sτ
∫ 0

−τ
e−sτ dx, (17)

where E(s) is the Laplace transform of e(t), e(0) = Fz(0)− Gx(0)− Hy(0), ∆(s) = sa I − K− e−sτ I is
the characteristic matrix. Then,

det(∆(s)) =
∣∣sα I − K− e−sτ I

∣∣ = (sa − k1 − e−sτ)(sa − k2 − e−sτ) . . . (sa − kn − e−sτ) = 0. (18)

Assume
(sa − ki − e−sτ) = 0, i = 1, 2, . . . , n. (19)

has a root s = wi = |w| (cos(π/2) + i sin(±π/2)). Thus,

|w|α (cos(απ/2) + i sin(±απ/2))− ki − cos(ωτ) + i sin(ωτ) = 0. (20)

From the above equation, we can get

|w|α cos(απ/2)− ki = cos(ωτ),

|w|α sin(±απ/2) = − sin(ωτ).
(21)

Hence,
|w|2α − 2ki cos(απ/2) |w|α + k2

i − 1 = 0. (22)

Since ki < −1/ sin(απ/2), α ∈ (0, 1), the discriminant of the roots satisfies

∆ = (−2ki cos(απ/2))2 − 4(k2
i − 1)

= 4(1− k2
i sin2(απ/2))

< 0.

(23)

Then, Equation (22) has no real solutions, and Equation (18) has no purely imaginary roots.
In light of Corollary 1, the zero solution of the system in Equation (16) is globally asymptotically

stable, i.e., multi-switching combination synchronization is obtained between the systems in
Equations (9) and (10) and the system in Equation (11).

4. Numerical Examples

Numerical simulations were carried out to illustrate the above proposed multi-switching
combination synchronization scheme. We used the same systems as in [32] with time-delays, which
are fractional-order delayed Lorenz, Chen, and Rössler systems, and the numerical simulations were
carried out in MATLAB.
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The fractional-order delayed Lorenz system [37] was considered as the first drive system
Dαx1 = a1(x2 − x1),

Dαx2 = c1x1 − x2 − x1x3,

Dαx3 = x1x2 − b1x3(t− τ).

(24)

The system in Equation (24) exhibits a chaotic attractor, as illustrated in Figure 1. The system in
Equation (24) can be rewritten as

Dαx(t) = x(t) + x(t− τ) + A(x(t), x(t− τ)),

x(t) = x(0), t ∈ [−τ, 0],
(25)

where

A(x(t), x(t− τ)) =

 a1x2 − (a1 + 1)x1 − x1(t− τ)

c1x1 − 2x2 − x1x3 − x2(t− τ)

x1x2 − (b1 + 1)x3(t− τ)− x3

 . (26)
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Figure 1. Chaotic attractor of Lorenz system with α = 0.95, τ = 0.4: (a) x3 − x1 plane; (b) x3 − x2

plane; (c) x2 − x1 plane; and (d) x3 − x1 − x2 space.

The fractional-order delayed Chen system [14] is the second drive system
Dαy1 = a2(y2 − y1),

Dαy2 = (c2 − a2)y1 − y1y3 + c2y2,

Dαy3 = y1y2 − b2y3(t− τ).

(27)
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The system in Equation (27) displays a chaotic attractor, as shown in Figure 2. We rewrite the
system in Equation (27) as

Dαy(t) = y(t) + y(t− τ) + B(y(t), y(t− τ)),

y(t) = y(0), t ∈ [−τ, 0],
(28)

where

B(y(t), y(t− τ)) =

 a2(y2 − y1)− y1 − y1(t− τ)

(c2 − a2)y1 − y1y3 + (c2 − 1)y2 − y2(t− τ)

y1y2 − (b2 + 1)y3(t− τ)− y3

 . (29)
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Figure 2. Chaotic attractor of Chen system with α = 0.95, τ = 0.4: (a) y3 − y1 plane; (b) y3 − y2 plane;
(c) y2 − y1 plane; and (d) y3 − y1 − y2 space.

The fractional-order delayed Rössler system is the response system, given by
Dαz1 = −(z2 + z3) + 0.2z1(t− τ) + U1,

Dαz2 = z1 + a3z2 + U2,

Dαz3 = z3(z1 −m3) + b3 + U3.

(30)

where U1, U2 and U3 are determined afterwards. Without the controllers, the system in Equation (30)
exhibits a chaotic attractor, as illustrated in Figure 3. The system in Equation (30) is rewritten as

Dαz(t) = z(t) + z(t− τ) + C(z(t), z(t− τ)) + U,

z(t) = z(0), t ∈ [−τ, 0],
(31)
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where

C(z(t), z(t− τ)) =

 −(z2 + z3)− 0.8z1(t− τ)− z1

z1 + (a3 − 1)z2 − z2(t− τ)

z3(z1 −m3) + b3 − z3 − z3(t− τ)

 . (32)

For the systems in Equations (24), (27) and (30), there are eight possible switch combination
synchronization cases.

When k 6= l 6= m, we have e123, e231, e312 and e132, e213, e321.
When k = m 6= l, we have e121, e232, e313 and e131, e212, e323.
When k 6= l = m, we have e122, e233, e311 and e133, e211, e322.
When k = l 6= m, we have e112, e223, e331 and e113, e221, e332.
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Figure 3. Chaotic attractor of Rössler system with α = 0.95, τ = 0.4: (a) z1 − z3 plane; (b) z2 − z3 plane;
(c) z1 − z2 plane; and (d) z2 − z1 − z3 space.

We randomly pick two cases
e123 = f1z1 − g2x2 − h3y3,

e231 = f2z2 − g3x3 − h1y1, case 1

e312 = f3z3 − g1x1 − h2y2.

(33)

and 
e112 = f1z1 − g1x1 − h2y2,

e223 = f2z2 − g2x2 − h3y3, case 2

e331 = f3z3 − g3x3 − h1y1.

(34)

In the following, we analyze these two cases in detail.
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Case 1

From the systems in Equations (24), (27) and (30), we have the error dynamical system
Dαe123 = f1Dαz1 − g2Dαx2 − h3Dαy3,

Dαe231 = f2Dαz2 − g3Dαx3 − h1Dαy1,

Dαe312 = f3Dαz3 − g1Dαx1 − h2Dαy2.

(35)

such that 
lim

t→+∞
‖ f1z1 − g2x2 − h3y3 ‖= 0,

lim
t→+∞

‖ f2z2 − g3x3 − h1y1 ‖= 0,

lim
t→+∞

‖ f3z3 − g1x1 − h2y2 ‖= 0.

(36)

Substituting the systems in Equations (24), (27) and (30) into the system in Equation (35) yields

Dαe123 = f1(−(z2 + z3) + 0.2z1(t− τ) + U1)− g2(c1x1 − x2 − x1x3)

− h3(y1y2 − b2y3(t− τ)),

Dαe231 = f2(z1 + a3z2 + U2)− g3(x1x2 − b1x3(t− τ))

− h1(a2(y2 − y1)),

Dαe312 = f3(z3(z1 −m3) + b3 + U3)− g1(a1(x2 − x1))

− h2((c2 − a2)y1 − y1y3 + c2y2).

(37)

Here, we obtain the following results.

Theorem 2. Multi-switching combination synchronization between the systems in Equations (24) and (27)
and the system in Equation (30) can be achieved with the following controllers

U1 =
1
f1
{(k1 − 1)( f1z1 − g2x2 − h3y3) + g2(c1x1 − 2x2 − x1x3 − x2(t− τ))

+ h3(y1y2 − (b2 + 1)y3(t− τ)− y3)− f1(−(z2 + z3)− 0.8z1(t− τ)− z1)},

U2 =
1
f2
{(k2 − 1)( f2z2 − g3x3 − h1y1) + g3(x1x2 − (b1 + 1)x3(t− τ)− x3)

+ h1(a2(y2 − y1)− y1 − y1(t− τ))− f2(z1 + (a3 − 1)z2 − z2(t− τ))},

U3 =
1
f3
{(k3 − 1)( f3z3 − g1x1 − h2y2) + g1(a1x2 − (a1 + 1)x1 − x1(t− τ))

+ h2((c2 − a2)y1 − y1y3 + (c2 − 1)y2 − y2(t− τ))

− f3(z3(z1 −m3) + b3 − z3 − z3(t− τ))}.

(38)

Supposing F 6= 0 and G = 0 or H = 0, we have the following results.
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Corollary 2. (i) Supposing that fi 6= 0, gi = 0 and hi 6= 0 (i = 1, 2, 3), multi-switching hybrid projective
synchronization between the systems in Equations (27) and (30) can be achieved with the following controllers

U1 =
1
f1
{(k1 − 1)( f1z1 − h3y3) + h3(y1y2 − (b2 + 1)y3(t− τ)− y3)

− f1(−(z2 + z3)− 0.8z1(t− τ)− z1)},

U2 =
1
f2
{(k2 − 1)( f2z2 − h1y1) + h1(a2(y2 − y1)− y1 − y1(t− τ))

− f2(z1 + (a3 − 1)z2 − z2(t− τ))},

U3 =
1
f3
{(k3 − 1)( f3z3 − h2y2) + h2((c2 − a2)y1 − y1y3 + (c2 − 1)y2 − y2(t− τ))

− f3(z3(z1 −m3) + b3 − z3 − z3(t− τ))}.

(39)

(ii) Similarly, supposing that fi 6= 0, gi 6= 0 and hi = 0 (i = 1, 2, 3), multi-switching hybrid projective
synchronization between the systems in Equations (24) and (30) can be achieved with the following controllers

U1 =
1
f1
{(k1 − 1)( f1z1 − g2x2) + g2(c1x1 − 2x2 − x1x3 − x2(t− τ))

− f1(−(z2 + z3)− 0.8z1(t− τ)− z1)},

U2 =
1
f2
{(k2 − 1)( f2z2 − g3x3) + g3(x1x2 − (b1 + 1)x3(t− τ)− x3)

− f2(z1 + (a3 − 1)z2 − z2(t− τ))},

U3 =
1
f3
{(k3 − 1)( f3z3 − g1x1) + g1(a1x2 − (a1 + 1)x1 − x1(t− τ))

− f3(z3(z1 −m3) + b3 − z3 − z3(t− τ))}.

(40)

Corollary 3. Supposing that fi 6= 0, gi = 0 and hi = 0 (i = 1, 2, 3), the system in Equation (30) can be
stabilized to its equilibrium O(0, 0, 0) with the following controllers

U1 =
1
f1
{(k1 − 1)( f1z1)− f1(−(z2 + z3)− 0.8z1(t− τ)− z1)},

U2 =
1
f2
{(k2 − 1)( f2z2)− f2(z1 + (a3 − 1)z2 − z2(t− τ))},

U3 =
1
f3
{(k3 − 1)( f3z3)− f3(z3(z1 −m3) + b3 − z3 − z3(t− τ))}.

(41)

Case 2

From the systems in Equations (24), (27) and (30), we have
Dαe112 = f1Dαz1 − g1Dαx1 − h2Dαy2,

Dαe223 = f2Dαz2 − g2Dαx2 − h3Dαy3,

Dαe331 = f3Dαz3 − g3Dαx3 − h1Dαy1.

(42)

such that 
lim

t→+∞
‖ f1z1 − g1x1 − h2y2 ‖= 0,

lim
t→+∞

‖ f2z2 − g2x2 − h3y3 ‖= 0,

lim
t→+∞

‖ f3z3 − g3x3 − h1y1 ‖= 0.

(43)
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Substituting the systems in Equations (24), (27), and (30) into the system in Equation (42) yields:

Dαe112 = f1(−(z2 + z3) + 0.2z1(t− τ) + U1)− g1(a1(x2 − x1))

− h2((c2 − a2)y1 − y1y3 + c2y2),

Dαe223 = f2(z1 + a3z2 + U2)− g2(c1x1 − x2 − x1x3)

− h3(y1y2 − b2y3(t− τ)),

Dαe331 = f3(z3(z1 −m3) + b3 + U3)− g3(x1x2 − b1x3(t− τ))

− h1(a2(y2 − y1)).

(44)

Here, we have the following similar results.

Theorem 3. Multi-switching combination synchronization between the systems in Equations (24) and (27)
and the system in Equation (30) can be achieved with the following controllers

U1 =
1
f1
{(k1 − 1)( f1z1 − g1x1 − h2y2) + g1(a1x2 − (a1 + 1)x1 − x1(t− τ))

+ h2((c2 − a2)y1 − y1y3 + (c2 − 1)y2 − y2(t− τ))− f1(−(z2 + z3)− 0.8z1(t− τ)− z1)},

U2 =
1
f2
{(k2 − 1)( f2z2 − g2x2 − h3y3) + g2(c1x1 − 2x2 − x1x3 − x2(t− τ))

+ h3(y1y2 − (b2 + 1)y3(t− τ)− y3)− f2(z1 + (a3 − 1)z2 − z2(t− τ))},

U3 =
1
f3
{(k3 − 1)( f3z3 − g3x3 − h1y1) + g3(x1x2 − (b1 + 1)x3(t− τ)− x3)

+ h1(a2(y2 − y1)− y1 − y1(t− τ))− f3(z3(z1 −m3) + b3 − z3 − z3(t− τ))}.

(45)

Corollary 4. (i) Supposing that fi 6= 0, gi = 0 and hi 6= 0 (i = 1, 2, 3), multi-switching hybrid projective
synchronization between the systems in Equations (27) and (30) can be achieved with the following controllers

U1 =
1
f1
{(k1 − 1)( f1z1 − h2y2) + h2((c2 − a2)y1 − y1y3 + (c2 − 1)y2 − y2(t− τ))

− f1(−(z2 + z3)− 0.8z1(t− τ)− z1)},

U2 =
1
f2
{(k2 − 1)( f2z2 − h3y3) + h3(y1y2 − (b2 + 1)y3(t− τ)− y3)

− f2(z1 + (a3 − 1)z2 − z2(t− τ))},

U3 =
1
f3
{(k3 − 1)( f3z3 − h1y1) + h1(a2(y2 − y1)− y1 − y1(t− τ))

− f3(z3(z1 −m3) + b3 − z3 − z3(t− τ))}.

(46)

(ii) Supposing that fi 6= 0, gi 6= 0 and hi = 0 (i = 1, 2, 3), hybrid projective synchronization between the
systems in Equations (24) and (30) can be achieved with the following controllers

U1 =
1
f1
{(k1 − 1)( f1z1 − g1x1) + g1(a1x2 − (a1 + 1)x1 − x1(t− τ))

− f1(−(z2 + z3)− 0.8z1(t− τ)− z1)},

U2 =
1
f2
{(k2 − 1)( f2z2 − g2x2) + g2(c1x1 − 2x2 − x1x3 − x2(t− τ))

− f2(z1 + (a3 − 1)z2 − z2(t− τ))},

U3 =
1
f3
{(k3 − 1)( f3z3 − g3x3) + g3(x1x2 − (b1 + 1)x3(t− τ)− x3)

− f3(z3(z1 −m3) + b3 − z3 − z3(t− τ))}.

(47)
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Corollary 5. Supposing that fi 6= 0, gi = 0 and hi = 0 (i = 1, 2, 3), the system in Equation (30) can be
stabilized to its equilibrium O(0, 0, 0) with the following controllers

U1 =
1
f1
{(k1 − 1)( f1z1)− f1(−(z2 + z3)− 0.8z1(t− τ)− z1)},

U2 =
1
f2
{(k2 − 1)( f2z2)− f2(z1 + (a3 − 1)z2 − z2(t− τ))},

U3 =
1
f3
{(k3 − 1)( f3z3)− f3(z3(z1 −m3) + b3 − z3 − z3(t− τ))}.

(48)

The system parameters are given as a1 = 10, b1 = 8
3 , c1 = 28, a2 = 35, b2 = 3, c2 =

28, a3 = 0.4, b3 = 0.2, m3 = 10, thus the systems in Equations (24), (27) and (30) exhibit chaotic
behaviors, respectively. We assume f1 = f2 = f3 = 1, g1 = g2 = g3 = 1 and h1 = h2 = h3 = 1,
and the initial values are (x1(0), x2(0), x3(0)) = (−20, 2, 3), (y1(0), y2(0), y3(0)) = (7, 4.04, 20) and
(z1(0), z2(0), z3(0)) = (1, 2, 40), respectively. Multi-switching combination synchronization between
the systems in Equations (24), (27) and (30) can be realized with K = diag{−10,−10,−10}. Figure 4
illustrates synchronization errors e123, e231, e312. Figure 5 shows synchronization states x2 + y3 vs. z1,
x3 + y1 vs. z2 and x1 + y2 vs. z3 of the drive systems in Equations (24) and (27) and the response
system in Equation (30). Figure 6 displays synchronization errors e112, e223, and e331. Figure 7 illustrates
synchronization states x1 + y2 vs. z1, x2 + y3 vs. z2 and x3 + y1 vs. z3 of the drive systems in
Equations (24) and (27) and the response system in Equation (30). In Figures 4–7, we can see that
the multi-switching combination synchronization errors converge to zero, i.e., the multi-switching
combination synchronizations for Cases 1 and 2 are achieved, respectively.

The feedback gain matrix K is an important factor to affect the convergence of the error systems.
With the increase of the absolute value of ki, the convergence time will be shortened. Thus, we carried
out one more simulation with K = diag{−40,−40,−40}. Figures 8 and 9 illustrate the synchronization
errors for Cases 1 and 2, respectively. By comparing Figures 4 and 8, as well as Figures 6 and 9, it is
easy to see that convergence times are shortened obviously.
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Figure 4. Synchronization errors among the systems in Equations (24), (27) and (30) with k1 = k2 =

k3 = −10: (a) e123; (b) e231; and (c) e312.
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Figure 5. Responses for states between the systems in Equations (24) and (27) and the system in
Equation (30): (a) x2 + y3 vs. z1; (b) x3 + y1 vs. z2; and (c) x1 + y2 vs. z3.
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Figure 6. Synchronization errors among the systems in Equations (24), (27) and (30) with k1 = k2 =

k3 = −10: (a) e112; (b) e223; and (c) e331.
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Figure 7. Responses for states between the systems in Equations (24) and (27) and the system in
Equation (30): (a) x1 + y2 vs. z1; (b) x2 + y3 vs. z2; and (c) x3 + y1 vs. z3.
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Figure 8. Synchronization errors among the systems in Equations (24), (27) and (30) with k1 = k2 =

k3 = −40: (a) e123; (b) e231; and (c) e312.
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Figure 9. Synchronization errors among the systems in Equations (24), (27) and (30) with k1 = k2 =

k3 = −40: (a) e112; (b) e223; and (c) e331.

5. Conclusions

We extended previous work [32] to investigate multi-switching combination synchronization
among three non-identical fractional-order delayed systems by introducing time-delays. Based on the
stability theory for linear fractional-order systems with multiple time-delays, we designed appropriate
controllers to obtain multi-switching combination synchronization among three non-identical
fractional-order delayed systems. The simulations are in accordance with the theoretical analysis.

On the one hand, when applying multi-switching combination synchronization of fractional-order
delayed chaotic systems in secure communications, fractional-order and time-delay can enrich systems’
dynamics. On the other hand, the origin information can be separated into two parts and embedded
different parts in separate drive systems via combination synchronization scheme. Besides, because
the switched states are unpredictable, this synchronization scheme can increase the security of the
transmitted information in secure communication. Thus, the communication security will be enhanced,
which makes multi-switching combination synchronization of fractional-order delayed chaotic systems
able to find better applications in security communication.
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