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Abstract: In this paper, in view of the low efficiency of the traditional finite element method (FEM), which
has been widely used in the insulation design of power transformers, the response surface methodology
(RSM) is proposed to optimize the insulation structure of a power transformer electrostatic ring.
Firstly, the power transformer model was built using the ANSYS parametric design language (APDL)
to realize the automatic pre-processing of numerical calculation. Then with the objective of reducing
the maximum electric field intensity, the Taguchi method was used to select the parameters that have a
greater impact on the maximum electric field intensity, by which the subsequent optimization process
could be effectively simplified. The test points were constructed by the central composite design (CCD)
and a response surface model was established by the mutual calls of MATLAB and ANSYS. Finally,
the variance analysis, diagnostic analysis, and significance test of regression were carried out to obtain
the final response surface model. By comparing the result of RSM with that of FEM, we can find that
the results obtained by the two methods are consistent and the maximum electric field strength is
obviously reduced. The RSM is more systematic and convincing, which improves the optimization
efficiency and provides a reliable and fast way for the optimization of power transformers.

Keywords: power transformer; response surface methodology (RSM); ANSYS parametric design
language (APDL); electric field analysis; electrostatic ring optimization

1. Introduction

As the main device of power systems, the power transformer is essential to the safe and reliable
operation of the whole electrical network [1].The insulation structure determines the electric field
distribution; thus, the optimization of the main insulation structure is of great importance to ensure the
safe and stable operation of the power transformer [2,3].With the increase of voltage levels, more and
more attention has been paid to the electrical insulation problem of the power transformer. However, the
insulation structure of a transformer is particularly complex, which makes the electric field distribution
non-uniform. Therefore, to confirm the rationality and reliability of the main insulation structure of
the transformer, it is necessary to test, calculate, and analyze the electric field distribution [4].

In engineering applications, electric field analysis methods can be divided into two types,
the analytical methods and the numerical methods. A few simple problems may be solved by the
analytic method; but in the majority of cases, an analytical method simply does not exist or it is
extremely difficult to obtain.As a numerical method, the FEM (finite element method) has been applied
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in theelectric field calculation [5–7]. In the electrostatic ring structure optimization [8], the traditional
finite element method (FEM was used to analyze the influence of each variable on the electric field
intensity and summarize its changing rule through several specific points. The FEM generally adopted
the inference method [8,9], and the optimal values of the parameters were obtained by summarizing
the changing law of each variable. Although it is possible to get the result, it cannot prove that the final
result is the optimal solution, and it needs to constantly modify the model parameters for modeling
analysis, which increases the calculation time.

In addition to the FEM, the structure optimization methods roughly fall into two types. One is
to establish the function expression between the optimization objective and the variables by using
sensitivity analysis methods [10].Sometimes the selection of step length is involved in the sensitivity
analysis methods and the accuracy cannot be guaranteed. Moreover, the sensitivity formulas are
difficult to derive, and the process is rather complicated [11]. When the analytical expression for the
relationship between the optimization variables and optimization objectives cannot be found, the other
type of methods, the global optimization methods, or the response surface methodology(RSM)combined
with FEM can be used for the optimization design. Global optimization methods such as the genetic
algorithm [12–16] and the particle swarm optimization algorithm [8,17–19] need to call a large
number of modeling and optimization programs repeatedly, which significantly affect the efficiency of
optimization. Most importantly, without appropriate fitness functions the local search ability may
become worse and the search efficiency may be reduced.

The RSM constructs an approximate function expression between the objective function and variables,
and visualizes the objective function that is originally implicit. The repeated modeling and simulation
can be avoided; thereby, the efficiency of the optimization can be significantly improved [20]. As a
mathematical and statistical optimization method [21,22], the RSM has been applied in many aspects.
References [23] and [24] combined the RSM with the genetic algorithm and indicated that this
method could reduce the number of experiments and solve the problem of fitness function selection.
Reference [25] used the RSM to optimize the armature structure, and proved that this method had high
feasibility, which provided an effective method for armature structure improvement. References [26–28]
posed the methods for the optimization of an oil-immersed transformer cooling system and improved
the design of the permanent magnet motor using RSM. In Reference [29], the RSM was employed to
optimize the structure of the motor and the experiment on the prototype was carried out to verify
the efficiency and reliability of the RSM. Reference [30] proposed a method by combining the RSM
with the geometric feature charge simulated method to get the electric field; by using this method, the
workload could be reduced and the computing time could be shortened as well. In addition, the RSM
has been successfully applied in the mechanism of brake squeal [31], biochemistry [32], medicine [33],
ships [34], machine design [35], and other fields.

According to the research above, the RSM demonstrates the ability to deal with many optimization
problems with good speed and convenience on the premise of ensuring accuracy and efficiency.
However, there is no relevant research on its application to the electrostatic ring structure optimization
design of the power transformer.

In this paper, the RSM was applied to optimize the electrostatic ring structure of a 500 kV power
transformer. The power transformer model was built with ANSYS parametric design language
(APDL) [36,37] and the response surface model was constructed according to the optimization
parameters selected by the Taguchi method [38,39].Then, the fitting degree and prediction ability of
the response surface model were analyzed to get the optimal result. Furthermore, we compared the
optimization result with that of traditional FEM, and the accuracy and validity of the RSM were proved.
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2. Finite Element Model and Research Method

2.1. Calculation Model

The calculation model of a 500 kV power transformer is shown in Figure 1 and the values of the
initial parameters are listed in Table 1.
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Figure 1. Calculation model of 500kV power transformer insulation structure. (a) Integral structure;
and (b) partial structure.

Table 1. Initial parameter values.

Parameters Physical Meanings Initial Values

R1 Upper arc radius of the electrostatic ring 18 mm
R2 Lower arc radius of the electrostatic ring 8 mm
T Thickness of the electrostatic ring 26 mm
H Distance from the upper surface of the electrostatic ring to the iron yoke 274 mm
S Thickness of the insulating layer 4 mm
W Starting position of the first arc 48 mm

The boundary value problem of the electrostatic field can be expressed by Equation (1).

−∇ · ε∇ϕ = ρ, ϕ ∈ Ω;
ϕ
∣∣∣
Γ1

= 5× 105, ϕ
∣∣∣
Γ2

= 2× 105;

ϕ
∣∣∣
Γ3

= 0;
∂ϕ
∂n

∣∣∣∣
Γ4,5

= 0.

(1)

where ε is the dielectric constant; φ is the electric scalar potential of the electrostatic field; Ω is the
whole computational domain; Г1 is the high voltage winding boundary; Г2 is the low voltage winding
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boundary; Г3 is the regulating winding, the upper, and the right boundary; and Г4,5 are the left and
lower boundary, respectively.

The APDL is applied to realize automatic pre-processing as follows: (1) The relative dielectric
constants of oil and pressboard were 2.2 and 4.5, respectively; (2) the voltage applied on the high voltage
winding was 500 kV (Г1), the low voltage winding was 200kV (Г2), and the voltage regulating winding
and the upper and the right boundary were 0kV (Г3). These are the first kind of boundary conditions
and (3) the left and lower boundary are the second kind of homogeneous boundary conditions (Г4,5).
In addition, the boundary conditions of Figure 1b were interpolated based on the results of Figure 1a.

The computer processor we used had an Intel(R) Core(TM) i5-7500 with 8.00 GB of memory. After
modeling, meshing, applying boundary conditions, and solving by APDL, the electric field intensity
nephogram of the initial structure is shown in Figure 2. By analyzing the initial insulation structure of
the power transformer, it can be found that the maximum electric field intensity appeared at the upper
right corner of the electrostatic ring. Therefore, we try to reduce the maximum electric field intensity
by changing the structure parameters related to the electrostatic ring.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 16 

The APDL is applied to realize automatic pre-processing as follows: (1) The relative dielectric 

constants of oil and pressboard were 2.2 and 4.5, respectively;(2) the voltage applied on the high 

voltage winding was 500 kV (Г1), the low voltage winding was 200kV (Г2),and the voltage regulating 

winding and the upper and the right boundary were 0kV (Г3).These are the first kind of boundary 

conditions and (3) the left and lower boundary are the second kind of homogeneous boundary 

conditions (Г4,5).In addition, the boundary conditions of Figure 1bwere interpolated based on the 

results of Figure 1a.  

The computer processor we used had an Intel(R) Core(TM) i5-7500 with 8.00 GB of memory. 

After modeling, meshing, applying boundary conditions, and solving by APDL, the electric field 

intensity nephogram of the initial structure is shown in Figure 2. By analyzing the initial insulation 

structure of the power transformer, it can be found that the maximum electric field intensity 

appeared at the upper right corner of the electrostatic ring. Therefore, we try to reduce the 

maximum electric field intensity by changing the structure parameters related to the electrostatic 

ring. 

 

Figure 2.Electric field intensity distribution of the initial structure of a 500kV power transformer 

main insulation. 

2.2. Taguchi Method 

In the optimization experiments, the selection of the parameter that has no influence on the 

optimization result as a variable will not only increase the workload, but will also affect the accuracy 

of the optimization result. Therefore, the Taguchi method was employed to eliminate the irrelevant 

variables and select the parameters which have great influence on the maximum electric field 

intensity [40,41]. Then the response surface experiments were carried out with these filtered 

parameters, by which the optimization efficiency can be significantly improved. 

The Taguchi method designs the horizontal combination of each parameter by establishing an 

orthogonal table, carries on an orthogonal experiment to calculate the proportion of the influence of 

each parameter on the optimization target, and filters the parameters according to the proportion. 

Each parameter that needs to be optimized usually takes three values in the range of change, which 

is called the impact factor. 

2.3. RSM 

The response surface model is also called the response surface function and the regression 

equation [42,43]. A proper function can make the approximation more precise and the design space 

more suitable for wider use. The quadratic polynomials can describe the real function and ensure 

that the model is as simple as possible with fewer undetermined coefficients. Its expression can be 

written as 

2

0
1 1 1

n n n n

j j jj j ij i j
j j i j i

y x x x x   
   

      , (2) 

Figure 2. Electric field intensity distribution of the initial structure of a 500kV power transformer
main insulation.

2.2. Taguchi Method

In the optimization experiments, the selection of the parameter that has no influence on the
optimization result as a variable will not only increase the workload, but will also affect the accuracy
of the optimization result. Therefore, the Taguchi method was employed to eliminate the irrelevant
variables and select the parameters which have great influence on the maximum electric field
intensity [40,41]. Then the response surface experiments were carried out with these filtered parameters,
by which the optimization efficiency can be significantly improved.

The Taguchi method designs the horizontal combination of each parameter by establishing an
orthogonal table, carries on an orthogonal experiment to calculate the proportion of the influence of
each parameter on the optimization target, and filters the parameters according to the proportion.
Each parameter that needs to be optimized usually takes three values in the range of change, which is
called the impact factor.

2.3. RSM

The response surface model is also called the response surface function and the regression
equation [42,43]. A proper function can make the approximation more precise and the design space
more suitable for wider use. The quadratic polynomials can describe the real function and ensure
that the model is as simple as possible with fewer undetermined coefficients. Its expression can be
written as

ỹ = β0 +
n∑

j=1

β jx j +
n∑

j=1

β j jx2
j +

n∑
i=1

n∑
j=i

βi jxix j, (2)



Appl. Sci. 2019, 9, 4286 5 of 16

where ỹ is the objective function; β0, βj, βjj, and βij are the polynomial coefficients; xj is the jth
experimental variable; and n is the number of experimental variables. Assuming that k times tests are
needed to obtain the response surface model, Equation (2) can be expressed in the following matrix form:


y1

y2
...

yk


=


1 x11 · · · x1n x2

11 · · · x2
1n x11x12 · · · x1nx1n−1

1 x21 · · · x2n x2
21 · · · x2

2n x21x22 · · · x2nx2n−1
...

...
...

...
...

...
...

1 xk1 · · · xkn x2
k1 · · · x2

kn xk1xk2 · · · xknxkn−1

·
{
β0 β1 · · · βn β11 · · · βnn β12 · · · βnn−1

}T

+
{
µ1 µ2 · · · µk

}T

(3)

or
y = Xβ+ µ, (4)

where µ is the error of y. The polynomial coefficients are obtained according to Equation (5) by using
the least squares principle to minimize the sum of the squares of the errors.

β = (XTX)
−1

XTy. (5)

2.4. Central Composite Design (CCD)

The fitting accuracy of the RSM depends largely on the distribution of sample points in the design
space. The CCD method follows specific rules when selecting the sample points [44–46]. According
to the traditional method, when three variables and five levels are selected for experiments, at least
125(53) experiments are needed. The CCD can minimize the number of experiments on the premise of
good accuracy.

Figure 3 shows the distribution of sample points, taking three variables as an example [29]. Where
α = 2n/4; (0,0,0) is the center point; (±1,±1,±1) is the cubic point; and (±α,0,0), (0,±α,0), and (0,0,±α) are
the axial points.
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2.5. Test for Significance of Regression

A test which is usually used to verify the overall applicability of the model and the significance of
regression is called null hypothesis [21,47], as follows:

H0: β1 = β2 = . . . = βn = 0,

H1: βj , 0 for at least one j.

The value H0 means that the variables have the same effect on the response value, and the error is
only caused by the selection of the sample points. The rejection of H0 indicates that at least one of
the variables has a significant contribution to the model, that is, the model is reasonable. In addition,
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the p-value approach, which reflects the probability of the H0, can be used to test the null hypothesis.
If the p-value is less than 0.05, the null hypothesis is rejected, that is, the H0 is invalid.

The value R2 is the determination coefficient and R2
adj is the adjusted R2. The closer their values

are to 1, the better is the fitting effect of the model.

3. Experimental Process and Analysis

As can be seen in Section 2.1, the maximum electric field intensity emerged at the upper right
corner of the electrostatic ring. Therefore, we can select the parameters related to the electrostatic
ring as the variables to optimize. The structure and parameters of the electrostatic ring are shown in
Figure 4.
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Due to the existence of the pressboard, for easy analysis, H is simplified as h, the distance from
the top surface of the electrostatic ring (without insulation layer) to the first pressboard above the
electrostatic ring. The relationship between the two arcs of the electrostatic ring can be expressed by
Equation (6). 

θ1 + θ2 = 180
◦

y1 = T1 −R1

R2 =
(y1+R1∗cosθ1−T2)

1+cosθ1

x2 = x1 + (R1 −R2) ∗ sinθ1

y2 = y1 + (R1 −R2) ∗ cosθ1

. (6)

Among them, the coordinates of the center of the two arcs are (x1, y1) and (x2, y2). Values T1

and T2 are the ordinate values of the upper and lower surfaces of the electrostatic ring (excluding
the insulating layer). As can be seen from the above equation, R2 and θ2 can be derived from R1 and
θ1. Therefore, the four optimization variables R1, θ1, R2, and θ2 can be simplified into two variables,
namely R1 and θ1.

The optimization process is demonstrated in Figure 5.

3.1. Taguchi Experiment

Through the above analysis, the Taguchi experiment was carried out with R1, θ1, h, s, and w as
variables to be optimized. Taking the median values of the variables on both sides and their adjacent
values as the impact factors, the impact factors of the optimized parameters are listed in Table 2.

Table 2. Parameters to be optimized and impact factors.

Parameters R1/mm θ1/
◦ h/mm s/mm w/mm

impact factor 1 10 52.5 12.5 2.75 42.5
impact factor 2 14 75 15 3.5 45
impact factor 3 18 97.5 17.5 4.25 47.5
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The orthogonal table L9(35) is obtained by the Taguchi method, where L represents an orthogonal
matrix; 9 stands for the number of trials; 3 is the number of times each variable is taken, and 5 symbolizes
the number of optimization parameters. According to the orthogonal table, the maximum electric field
intensity can be achieved by the mutual call between MATLAB and ANSYS, as shown in the Table 3.

Table 3. Orthogonal matrix and results of L9(35).

Number of Experiments R1/mm θ1/
◦ h/mm s/mm w/mm Emax/(V/mm)

1 1 1 1 1 2 10385.95
2 1 2 2 2 1 9794.79
3 1 3 3 3 3 9615.61
4 2 1 2 3 1 9170.99
5 2 2 3 1 2 9928.34
6 2 3 1 2 3 9866.17
7 3 1 3 2 3 9681.51
8 3 2 1 3 2 9167.40
9 3 3 2 1 1 9559.65

From the results obtained by Table 3, the proportion of each parameter is calculated by Equation (7).

EE = 3
3∑

i=1

[
mxi(Ei) −m(E)

]2
, (7)

where xi represents R1, θ1, h, s, and w; EE is the proportion of each optimization parameter; mxi(Ei)
is the average value of Emax under the ith impact factor of x; and m(E) is the average value of Emax.
The proportion of each optimization parameter is listed in Table 4.
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Table 4. Influence proportion of the optimized parameters on Emax.

Parameters EE Proportion (%)

R1/mm 325,162.8862 25.0
θ1/mm 20,294.4814 1.6
h/mm 140,533.0000 10.8
s/mm 655,163.7245 50.3
w/mm 160,650.0366 12.3
Total 1,301,804.1290 100

It can be seen from Table 5 that R1, h, s, and w have greater influence on the maximum electric
field intensity,while θ1 can be eliminated from the impact variables. The Taguchi method effectively
reduced the workload of the numerical analysis of the subsequent response surface. In the following
experiment, for the convenience of analysis, the electrostatic ring was divided into two arcs; both of
them were 90 degrees. The values R1, h, s, and w were selected as experimental variables.

Table 5. Level of test factors by CCD.

Variables
Levels

−α −1 0 1 α

R1 5 6 14 22 24
h 5 10 15 20 25
s 0.5 2 3.5 5 6.5
w 35 40 45 50 55

Note: The −α and α levels of R1 are −1 and 27, respectively, which exceed the range of variation and are
appropriately adjusted.

3.2. Experimental Data

After determining the experimental variables, the appropriate range of values was selected for
the response surface experiment. There are four optimization variables in this experiment, so α=2.
The design and combination of the experimental sample points were carried out by the CCD method,
as shown in Table 5. Table 6 is the experimental data results of the sample points which were obtained
by calling each other between ANSYS and MATLAB.

Table 6. Experimental data.

Run
Actual/mm Coded Emax Number of

Elements
DOFs

R1 h s w x1 x2 x3 x4 /(V/mm)

1 6 10 5 40 −1 −1 1 −1 10,909.89 2074 3958
2 24 15 3.5 45 1.571 0 0 0 9154.23 2125 4038
3 13 15 0.5 45 0 0 −2 0 11,831.83 2528 4700
4 20 10 5 40 1 −1 1 −1 8599.39 2081 3967
5 6 20 5 50 −1 1 1 1 11,053.85 2080 3962
6 6 10 2 50 −1 −1 −1 1 12,416.88 2133 4047
7 13 15 3.5 45 0 0 0 0 9664.49 2090 3981
8 13 15 3.5 45 0 0 0 0 9664.49 2090 3981
9 20 20 5 50 1 1 1 1 8870.22 2080 3957

10 13 15 6.5 45 0 0 2 0 9328.45 2087 3983
11 13 5 3.5 45 0 −2 0 0 10,048.23 2131 4060
12 20 20 5 40 1 1 1 −1 8243.91 2082 3963
13 6 20 2 50 −1 1 −1 1 11,789.22 2140 4057
14 6 10 2 40 −1 −1 −1 −1 11,656.15 2128 4044
15 13 15 3.5 45 0 0 0 0 9664.49 2090 3981
16 13 25 3.5 45 0 2 0 0 9151.81 2129 4035
17 17 15 3.5 55 0 0 0 2 10,380.85 2088 3973
18 6 10 5 50 −1 −1 1 1 11,564.39 2076 3959
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Table 6. Cont.

Run
Actual/mm Coded Emax Number of

Elements
DOFs

R1 h s w x1 x2 x3 x4 /(V/mm)

19 20 20 2 50 1 1 −1 1 10,083.12 2153 4073
20 5 15 3.5 45 −1.413 0 0 0 11,879.20 2102 4004
21 13 15 3.5 45 0 0 0 0 9664.49 2090 3981
22 20 10 2 40 1 −1 −1 −1 9758.90 2137 4053
23 13 15 3.5 45 0 0 0 0 9664.49 2090 3981
24 20 10 2 50 1 −1 −1 1 10,391.28 2147 4006
25 20 10 5 50 1 −1 1 1 9179.16 2079 3961
26 6 20 5 40 −1 1 1 −1 10,354.56 2082 3970
27 13 15 3.5 45 0 0 0 0 9664.49 2090 3981
28 20 20 2 40 1 1 −1 −1 9314.94 2145 4064
29 13 15 3.5 35 0 0 0 −2 9077.65 2086 3977
30 6 20 2 40 −1 1 −1 −1 11,046.17 2131 4047

The last two columns of Table 6 are the number of elements and nodes (degrees of freedom) of the
local finite element model in Figure 1b. According to statistics, it took only 61.8 seconds to complete
the above 30 CCD experiments. Without the CCD method, 625 RSM experiments would be required.
Thus, by using CCD method, the optimization efficiency was greatly improved.

Referring to the above data, the coefficients of the response surface model were obtained by
Equation (5). We can get the initial response surface model from Table 7.

Table 7. Coefficients of RSM model.

Factor df Standard Error 95% CI Low 95% CI High Coefficient Estimate

Intercept 1 54.99 9583.37 9817.79 12419.312
R1 1 31.52 −1120.49 −986.12 −371.458
h 1 28.29 −290.01 −169.40 −55.687
s 1 28.29 −588.97 −468.36 −783.092
w 1 28.29 275.97 396.58 84.888

R1h 1 34.65 −18.43 129.30 1.584
R1s 1 34.65 −175.73 −28.00 −9.701
R1w 1 34.65 −89.55 58.18 −0.448
hs 1 34.65 −57.65 90.08 2.162
hw 1 34.65 −60.77 86.95 0.524
sw 1 34.65 −95.39 52.33 −2.870
R1

2 1 42.70 382.68 564.71 9.667
h2 1 26.20 −90.83 20.87 −1.399
s2 1 26.20 154.20 265.90 93.357
w2 1 26.20 −58.52 53.18 −0.107

3.3. Analysis of Variance

The ANOVA table summarizes the results of the variance analysis, as shown in Table 8.
As shown in Table 8, the p-value of the regression model was less than 0.0001, which means

that the choice of the quadratic polynomial model is reasonable, and the relationship between the
maximum electric field intensity value, y, and the regression equation is extremely significant. Thus,
the null hypothesis, H0, is not valid and can be rejected. The p-value of all linear terms were less than
0.0001, indicating that each variable in R1, h, s, and w is an extremely significant factor affecting the
optimization objective. Except that the interaction between R1 and s was significant, the p-value of
each of the other two was greater than 0.05, demonstrating the interaction between the two has little
effect on the response. The p-values of the quadratic terms R1

2 and s2were less than 0.0001, and the
significance was higher than the other two, which is an extremely significant factor. In addition, R2

adj is
0.9841, which is very close to 1. The model can explain 98.41% of the test changes and better reflect the
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law of data changes with less experimental error and better fitting. Furthermore, from the confidence
interval listed in Table 8, the significant items are also R1, h, s, w, R1s, R1

2, and s2, for the upper and
lower bounds of their confidence intervals do not contain zero.

Table 8. Analysis of variance.

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F0 p-Value Significance

Regression 3.468 × 107 14 2.477 × 106 128.92 <0.0001 ***
R1 2.146 × 107 1 2.146 × 107 1116.64 <0.0001 ***
h 1.266 × 106 1 1.266 × 106 65.91 <0.0001 ***
s 6.708 × 106 1 6.708 × 106 349.10 <0.0001 ***
w 2.714 × 106 1 2.714 × 106 141.25 <0.0001 ***

R1h 4.917 × 104 1 4.917 × 104 2.56 0.1305
R1s 1.660 × 105 1 1.660 × 105 8.64 0.0101 *
R1w 3.936 × 103 1 3.936 × 103 0.20 0.6573
hs 4.207 × 103 1 4.207 × 103 0.22 0.6466
hw 2.741 × 103 1 2.741 × 103 0.14 0.7109
sw 7.415 × 103 1 7.415 × 103 0.39 0.5438
R1

2 2.365 × 106 1 2.365 × 106 123.06 <0.0001 ***
h2 3.424 × 104 1 3.424 × 104 1.78 0.2018
s2 1.235 × 106 1 1.235 × 106 64.26 <0.0001 ***
w2 199.590 1 199.590 0.01 0.9202

Lack of Fit 2.882 × 105 15 2.882 × 105

Pure Error 0.000 5 0.000
Total 3.497 × 107 29

Note: *** Extremely significant; ** Very significant; * Significant

3.4. Diagnostic Analysis

To verify the applicability of the model, the diagnostic analysis was generally made by making
the regression analysis and giving some diagnostic plots.

The design of the normal probability plot made the cumulative normal distribution a straight line.
In Figure 6a, the points on the normal probability plot were approximately distributed in a straight
line, which indicates the accuracy of the data for calculating the electric field intensity.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 16 

Internally Studentized Residuals

N
o

rm
a

l 
%

 P
ro

b
a

b
ili

ty

Normal Plot of Residuals

-2.00 -1.00 0.00 1.00 2.00 3.00

1

5

10

20
30

50

70
80

90

95

99

 Run Number

In
te

rn
a

lly
 S

tu
d

e
n

ti
z
e

d
 R

e
s
id

u
a

ls

Residuals vs. Run

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

1 5 9 13 17 21 25 29

3

-3

0

 Actual(V/mm)

P
re

d
ic

te
d

(V
/m

m
)

Predicted vs. Actual

8000

9000

10,000

11,000

12,000

13,000

8000 9000 10,000 11,000 12,000 13,000

 

(a) (b) (c) 

Figure 6. (a)Normal probability distribution of residuals; (b) residuals versus run; and (c) predicted 

values versus actual values. 

As can be seen from the residuals versus run plot in Figure 6b, the residuals of runs were 

distributed within the prescribed appropriate range, which implies that choosing the quadratic 

polynomial as the response surface function is particularly suitable. In Figure 6c and Table 9, there 

was a good correlation between the predicted value and the actual value, which indicates that the 

polynomial model has a good predictive ability. In a word, the response surface model adopted in 

this study is acceptable. 

Table 9.Comparisons between predicted and actual values. 

Run Actual Values/(V/mm) Predicted Values/(V/mm) 

1 10,909.89 10,924.76 

2 9154.23 9215.12 

3 11,831.83 11,598.13 

4 8599.39 8534.92 

5 11,053.85 11,047.78 

6 12,416.88 12,488.54 

7 9664.49 9700.58 

8 9664.49 9700.58 

9 8870.22 8816.94 

10 9328.45 9483.46 

11 10,048.23 10,020.08 

12 8243.91 8192.64 

13 11,789.22 11,912.01 

14 11,656.15 11,767.75 

15 9664.49 9700.58 

16 9151.81 9101.26 

17 10,380.85 10,362.45 

18 11,564.39 11,559.45 

19 10,083.12 10,088.63 

20 11,879.20 11,523.06 

21 9664.49 9700.58 

22 9758.90 9785.36 

23 9664.49 9700.58 

24 10,391.28 10,443.42 

25 9179.16 9106.87 

26 10,354.56 10,360.74 

27 9664.49 9700.58 

Figure 6. (a) Normal probability distribution of residuals; (b) residuals versus run; and (c) predicted
values versus actual values.

As can be seen from the residuals versus run plot in Figure 6b, the residuals of runs were distributed
within the prescribed appropriate range, which implies that choosing the quadratic polynomial as the
response surface function is particularly suitable. In Figure 6c and Table 9, there was a good correlation
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between the predicted value and the actual value, which indicates that the polynomial model has a
good predictive ability. In a word, the response surface model adopted in this study is acceptable.

Table 9. Comparisons between predicted and actual values.

Run Actual Values/(V/mm) Predicted Values/(V/mm)

1 10,909.89 10,924.76
2 9154.23 9215.12
3 11,831.83 11,598.13
4 8599.39 8534.92
5 11,053.85 11,047.78
6 12,416.88 12,488.54
7 9664.49 9700.58
8 9664.49 9700.58
9 8870.22 8816.94
10 9328.45 9483.46
11 10,048.23 10,020.08
12 8243.91 8192.64
13 11,789.22 11,912.01
14 11,656.15 11,767.75
15 9664.49 9700.58
16 9151.81 9101.26
17 10,380.85 10,362.45
18 11,564.39 11,559.45
19 10,083.12 10,088.63
20 11,879.20 11,523.06
21 9664.49 9700.58
22 9758.90 9785.36
23 9664.49 9700.58
24 10,391.28 10,443.42
25 9179.16 9106.87
26 10,354.56 10,360.74
27 9664.49 9700.58
28 9314.94 9378.21
29 9077.65 9017.35
30 11,046.17 11,138.85

3.5. 3-D Response Surface Analysis

For a better demonstration of the influence of the interaction between two variables, the 3-D plots
were adopted. If the interaction has a significant impact on the response surface, the variation of 3-D
plot will be accordingly large.

Figure 7a shows that when R1 and s interact, if we fix one of the variables and increase the other
variable, the maximum electric field intensity will decrease. As can be seen from the trend of the
surface graph, the maximum electric field intensity decreased faster with R1 than with s, indicating that
R1 has a greater influence on the response value. Comparing Figure 7a with Figure 7b, the response
surface of Figure 7b fluctuated slightly, which means that the change of the interaction term hw has
no significant effect on the maximum electric field intensity. Similarly, hs and sw are not significant
factors either.

As can be seen from Figure 7c,d, compared with s and w, the change of the maximum electric field
intensity was larger with the change of R1. The maximum electric field intensity increases with the
increase of w, which has negative effects on the model. Therefore, in the structural design process, a
smaller starting position w should be selected as far as possible within a reasonable range. From the
variation range of the two figures, the interactions between R1 and h, R1, and w may be a significant
factor affecting the maximum electric field intensity. However, since their p-values in Table 8 are little
larger than 0.05, R1h and R1w can be considered insignificant factors.
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Through the above analysis, the insignificant factors, such as R1h, R1w, hs, hw, sw, h2, and w2,
are removed, and the final response surface equation with a higher prediction ability is shown in
Equation (8).

y = 12419.312− 371.458 ∗R1 − 55.687 ∗ h− 783.092 ∗ s + 84.888 ∗w
−9.701 ∗R1 ∗ s + 9.667 ∗R1

2 + 93.357 ∗ s2 (8)

4. Results and Discussion

It is an important goal of the response surface optimization to get the optimal results with the
appropriate values assigned to each variable. Equation (8) is the quadratic response surface model with
single objective optimization, which can be solved quickly by quadratic programming. By comparing
the maximum electric field intensities on the electrostatic ring before and after optimization in Figure 8,
the decrease of the maximum electric field intensity can be observed more intuitively. The result shows
that the maximum electric field intensity has been significantly reduced.
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In order to verify the validity of the RSM, we compared the result of RSM with that of traditional
FEM. The FEM taking much time and requiring many experiments, to ensure the fairness of the
experiment and save the calculation time, thirty experiments were carried out by using the FEM. As can
be seen from Table 10, the results obtained by RSM and FEM were consistent, while the time the of
RSM experiments was much less, which demonstrates the effectiveness of RSM and also shows the
high optimization efficiency and good prediction ability of this method.

Table 10. Optimization results.

Before and After
Optimization

Variables Emax
(V/mm)

Decline
Rate (%)

Experimental
Time(s)R1(mm) h(mm) s(mm) w(mm)

Before
Optimization 18 15 4 48 9303.30 -

FEM 22 20 5 40 8219.83 11.6 2400
RSM 22 20 5 40 8192.64 12.1 61.8

In Figure 9, a comparison of the variations of variables predicted by the FEM and those actually
obtained by the RSM was made. It can be observed that the variations of variables in this paper
are monotonic, so FEM can obtain the optimal results by inference in this special case. However,
this method is no longer applicable when the variables are not monotonic. The RSM has a wider range
for applications and the result obtained by it is more rigorous and convincing.
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5. Conclusions

In this paper, the response surface methodology, Taguchi method, and ANSYS parametric
modeling language were combined to optimize the electrostatic ring of a 500 kV power transformer.
The APDL extracted the maximum electric field intensity automatically and the mutual calls between
MATLAB and ANSYS solved the problem of repeated manual modeling and meshing in traditional
methods. To avoid the increased calculating workload of developing experiments aroused by irrelevant
variables, the Taguchi method was utilized to filter the variables before making response surface
experiments, by which the optimization process was effectively simplified. The experimental points
were constructed by the experimental design method of CCD, and the response surface model was then
obtained. In order to ensure the accuracy and predictability of the model, the response surface model
was analyzed by ANOVA, diagnostic analysis, and the significance test of regression, and the final
response surface equation was determined. Comparing the optimization results with the traditional
finite element method, on the premise of ensuring accuracy, the proposed method in this paper has a
higher optimization efficiency.
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In general, the structure of the electrostatic ring is optimized more systematically and completely
through the Taguchi method and response surface experiments. The feasibility and efficiency of this
method were verified, which provides a new and more systematic, fast, and efficient way for the
optimization of the transformer insulation structure.
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