
applied  
sciences

Article

A Multi-Level Optimization Method for Elastic
Constants Identification of Composite Laminates

Chien Yang Huang and Tai Yan Kam *

Mechanical Engineering Department, National Chiao Tung University, 1001 Ta Hsueh Road, Hsin Chu 300,
Taiwan; youngs503@gmail.com
* Correspondence: tykam@mail.nctu.edu.tw

Received: 28 August 2019; Accepted: 3 October 2019; Published: 11 October 2019
����������
�������

Featured Application: Material testing for elastic constants determination.

Abstract: A new and effective elastic constants identification technique is presented to extract the
elastic constants of a composite laminate subjected to uniaxial tensile testing. The proposed technique
consists of a new multi-level optimization method that can solve different types of minimization
problems, including the extraction of material constants of composite laminates from given strains.
In the identification process, the optimization problem is solved by using a stochastic multi-start
dynamic search minimization algorithm at the first level in order to obtain the statistics of the
quasi-optimal design variables for a set of randomly generated starting points. The statistics of
the quasi-optimal elastic constants obtained at this level are used to determine the reduced feasible
region in order to formulate the second-level optimization problem. The second-level optimization
problem is then solved using the particle swarm algorithm in order to obtain the statistics of the
new quasi-optimal elastic constants. The iteration process between the first and second levels of
optimization continues until the standard deviations of the quasi-optimal design variables at any level
of optimization are less than the prescribed values. The proposed multi-level optimization method,
as well as several existing global optimization algorithms, is used to solve a number of well-known
mathematical minimization problems to verify the accuracy of the method. For the adopted numerical
examples, it has been shown that the proposed method is more efficient and effective than the
adopted global minimization algorithms to produce the exact solutions. The proposed method is
then applied to identify four elastic constants of a [0◦/±45◦]s composite laminate using three strains
in 0◦, 45◦, and 90◦ directions, respectively, of the composite laminate subjected to uniaxial testing.
For comparison purposes, several existing global minimization techniques are also used to solve
the elastic constants identification problem. Again, it has been shown that the proposed method is
capable of producing more accurate results than the adopted available methods. Finally, experimental
data are used to demonstrate the applications of the proposed method.

Keywords: optimization; composite plate; elastic constants identification; strain analysis

1. Introduction

As is well known, the determination of the true elastic constants is an essential step for design,
fabrication, and the structural health monitoring of structures. Therefore, the development of efficient
and effective methods for determining the actual elastic constants of materials and structures has
become an important topic of research. However, for engineering applications, having simple testing
procedures that can produce good estimations of the elastic constants of composite materials in an
efficient way is always desirable. In recent years, measured mechanical characteristics, together with
optimization techniques such as the genetic algorithm, particle swarm optimization method, stochastic
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global optimization method, simulated annealing algorithm, hybrid method, etc., have been used to
determine the material constants of different types of structural parts/specimens [1]. For example,
a number of researchers have used optimization techniques to extract elastic constants of laminated
composite plates from vibration test data [2–8]. Most of the previously proposed vibration-based
elastic constants identification techniques used a number of measured, structural natural frequencies to
formulate the minimization problem, which is solved by using a minimization algorithm to determine
the material constants. It is noted that the vibration testing techniques that involve the selection of
plate restraints, installation of sensors/accelerometers, exertion of excitation force, extraction of modal
characteristics (natural frequencies and mode shapes), etc., may be time consuming and expensive.
Furthermore, the uncertainties of, for instance, the measured modal characteristics, the mathematical
model for analyzing composite plate vibration, modeling the actual boundary conditions, etc., may
significantly affect the accuracy of the identified elastic constants. Therefore, at this stage, the techniques
of using vibration data for elastic constants identification of composite materials/structures may not be
completely viable for practical applications. However, a number of papers are devoted to the use of
measured strains/displacements to identify the elastic constants of isotropic/composite materials [9–19].
In particular, the full-field measurements of strains/displacements have been used to identify the elastic
constants of solids. For instance, Grédiac et al. [10] proposed an experimental procedure for the direct
identification of the in-plane elastic properties of T-shaped orthotropic composite plates from measured
heterogeneous strain fields using an optical method. In their study, the accuracy of the elastic constants
extracted from the experimental data was not verified. A review of different full-field methods has been
conducted by Avril et al. [11]. The full-field strain measurement is a relatively complicated process in
which the identification of parameters requires the use of suitable computational strategies to analyze
the experimental data. Furthermore, the capability of the full-field methods to identify accurate elastic
constants of composite materials/structures has yet to be demonstrated. However, without the need to
perform any full-field measurements, Kam and his associates [12,17–19] used optimization methods
and measured strains/displacements at some particular points on composite plates to identify the
elastic constants of the constituent composite materials. For instance, Wang and Kam [12] constructed
a constrained minimization problem to identify the material constants of laminated composite plates
subjected to point or uniformly distributed loads using measured strains and/or displacements at some
particular points on the plates. They have also shown that the coefficients of variation, of the measured
strains/displacements falling in the range of 5%, can lead to acceptable elastic constants (E1 = Young’s
modulus in fiber direction, E2 = Young’s modulus in the direction perpendicular to the fiber direction,
ν12 = Poisson’ ratio, and G12 = in-plane shear modulus) with coefficients of variation less than 15%.
Therefore, it is obvious that the use of strains for material constants identification of composite plates is
viable and may produce good estimations of the elastic constants. Nevertheless, the material constants
identification via the plate bending testing approach is also time consuming and requires the design of
a special clamping fixture. Furthermore, it may be difficult to model the actual boundary conditions of
the plate, which have been tested in the analysis of the plate deformation. Thus, the search for simple
testing procedures and for the accurate identification of elastic constants, for engineering applications,
still remains an important topic of research. To tackle this problem, Kam and his associates [17–19]
attempted to test composite axial members or beams to identify the elastic constants. In particular,
Chen and Kam [18] have used one angle-ply laminated member in uniaxial tensile testing to determine
the elastic constants of the laminate. The testing of this type of laminate required the use of a pair
of special mechanical end grips to restrain the two ends of the member so that the St. Venant’s end
effects can be reduced and the deformations at the laminate center can be similar to the shearing and
extension of an unrestrained laminate. If the end grips cannot allow the in-plane shearing of the
laminate to occur freely, it may not be able to attain good estimations of the elastic constants. However,
if the conventional/hydraulic grips are used to perform the tensile testing, in which the two ends of a
laminated member are totally clamped, two symmetric angle-ply composite laminates with different
fiber angles can be used to identify the elastic constants [19]. While the use of two symmetric angle-ply
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laminates can produce good results, in terms of time, it is still expensive to fabricate the laminates
and perform the tests. Therefore, as far as engineering applications are concerned, it is worthwhile to
investigate whether it is possible to use only one composite laminate in the simple uniaxial tensile
testing to identify the elastic constants of the laminate. It is noted that if a non-angle-ply composite
laminate is used in the identification process, the search for accurate elastic constants may become very
difficult and the previously proposed optimization techniques for elastic constants identification using
one or two angle-ply laminates may be unable to produce good results in an efficient and effective way.
Therefore, a new and effective optimization technique should be developed to extract elastic constants
of a non-angle-ply composite laminate.

In this paper, a simple yet effective multi-level optimization method for elastic constant identification
of composite materials is presented. The solutions of a number of well-known minimization problems
using the proposed multi-level optimization method, as well as several other existing global minimization
algorithms, are first given to demonstrate the capability of the proposed method to search for the global
minima. The elastic constants identification of a [0◦/±45◦]s composite laminate is then performed
to illustrate the applications of the proposed method. The accuracy and feasibility of the proposed
method to identify elastic constants of different composite materials are studied by way of several
numerical and experimental examples.

2. Multi-Level Optimization Method

The following constrained minimization problem should be considered, which is stated in terms
of N design variables x = = [x1, x2, . . . ., xN], the objective function F(x), and a set of initially prescribed
side constraints g(x) = [g1(x), g2(x), . . . ., g2N(x)]T

≤ 0, with the superscript T denoting the transpose of
the row vector.

Minimize F(x)
Subject to gk(x) ≤ 0; k = 1, 2, . . . , 2N

(1)

In general, a number of local minima in the feasible region of the above minimization problem
may exist, especially in the case of elastic constants identification of composite materials. Herein,
a multi-level optimization method (MLOM) in which several level-wise optimization problems were
solved sequentially for determining the global minimum was proposed to deal with the above constraint
minimization problem. In the proposed method, for any level of optimization, a set of starting points,
randomly generated from a uniform distribution in the level-wise feasible region, were used to
determine the quasi-global minima when solving the level-wise minimization problem. The statistics
(means and standard deviations) of the quasi-optimal design variables associated with the quasi-global
minima were determined to see if the true global minimum was attained, and if not, whether it was
necessary to construct the new feasible region of the next level of optimization. The search for the true
global minimum at different levels was terminated when the standard deviations of the quasi-optimal
design variables were less than the prescribed value. Without the loss of generality, the commonly used
global minimization algorithms such as the multi-start global search technique (MGST) [20] and particle
swarm optimization technique (PSOT) [21] were adopted, respectively, at two consecutive levels to
determine the quasi-global minima. Hence, in the proposed MLOM, the MGST was used to solve
the first level optimization problem. The means and standard deviations of the quasi-optimal design
variables obtained at this level were used to produce a contracted/reduced level-wise feasible region
to establish the second level optimization problem. Following this line, the MGST and PSOT took
turns to solve the subsequent levels of optimization problems. The advantage of the proposed solution
strategy was that the adoption of a series of contracted level-wise feasible regions at different levels
enhanced the chance of attaining the true global minimum. Herein, at the first-level of optimization,
the constrained minimization problem of Equation (1) was converted to the following unconstrained
minimization problem by introducing the general augmented Lagrangian [22].
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(3)

where the superscript U and subscript L denote the upper and lower bounds, respectively; α j, η j, and rp

are multipliers; and max [*,*] takes on the maximum value of the numbers in the bracket. The updated
formulas for the multipliers α j, η j, and rp are
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j = αn

j + 2rn
pzn

j
ηn+1

j = ηn
j + 2rn

pφ
n
j ; j = 1−N

rn+1
p =

{
γ0rn

p if rn+1
p ≥ rmax

p
rmax

p if rn+1
p ≥ rmax

p

(4)

where the superscript n denotes the iteration number; γ0 is a constant; and rmax
p is the maximum value

of rp. Following the guidelines given in the literature [22], the parameters µ0
j , η

0
j , r0

p, γ0, and rmax
p were

chosen as
α0

j = 1.0, η0
j = 1.0, j = 1−N

γ0 = 2.5, r0
p = 0.4, rmax

p = 100
(5)

The above unconstrained minimization problem was solved using the MGST. First, a set of starting
points were randomly generated and for each starting point, the MGST was used to search for the
lowest local minimum along the search path. The adopted search technique was formulated on the
basis of the energy conservation of a travelling point mass, which tends to roll down from a hilltop
(starting point) towards the valleys (local minima) along a chosen trajectory in the feasible region.
The search did not stop until the rolling point mass reached a position/height with potential energy
equal to that of the starting point. Therefore, a number of local minima could be attained along the
search trajectory and the comparison among these local minima produced the lowest local minimum,
which was termed a quasi-global minimum. In this way, a set of quasi-global minima could be obtained
for the adopted starting points. Through a series of numerical tests, it was found that the quasi-global
minima were generally in the vicinity of the global minimum. The statistics, namely, the means, µi,
and standard deviations, σi, of the design variables associated with the quasi-global minima were
calculated to determine whether the global minimum was attained, and if not, the current feasible
region was updated. Herein, the means of the design variables associated with the quasi-global minima
were defined as the quasi-optimal design variables at the level of optimization under consideration,
while the standard deviations were used to measure the dispersions of the quasi-optimal design
variables. It was assumed that, based on the limit theorem, when the number of starting points was
large, the distributions of the quasi-optimal design variables were normal, and the expected values of
the quasi-optimal design variables were the true design variables. It is noted that the quasi-global
minimum was treated as the global minimum when the standard deviations of the quasi-true design
variables are less than the small-prescribed value σζ. Otherwise, the quasi-optimal design variables
and their standard deviations were used to construct the contracted feasible range, which became the
level-wise feasible range of the second-level optimization problem. The contracted level-wise feasible
ranges of the design variables for the next level were obtained as

(µi − qiσi ) ≤ xi ≤ (µi + qiσi) i = 1 − N (6)
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where qi are constants. Based on a series of numerical analyses, as will be described in the following,
the choice of [1 ≤ qi ≤ 2] was capable of producing appropriately reduced feasible regions.

Once the (reduced) level-wise feasible ranges were available, the second-level optimization
problem could be stated as

Minimize F(x)
Subject to gk

*(x) ≤ 0; k = 1, 2, . . . ., 2N
(7)

where gk
*(x) ≤ 0 are the contracted side constraints derived from Equation (6).

A detailed description of the solution of a constrained optimization problem using PSOT can be
found in the literature [23,24]. Herein, a brief introduction of the PSOT used to search for the global
minimum is given. The above constrained optimization problem is first converted to the unconstrained
minimization problem, as stated in Equation (2) and the M sets of K particles (starting points) that
were randomly generated in the feasible region of this level were used in the PSOT to search for the
global minimum. There were M runs to be performed. For each run, a set of K particles was used in
the process of searching for the global minimum. The search involved the determination of the new
positions of the particles via an iterative approach. For illustration, the search process of a particle can
be used to show the idea of updating the position of the particle, as shown schematically in Figure 1.
The movement of the particle in the iterative process of global minimum search is governed by the
following equations:

Vi(t + 1) = ω×Vi(t) + c1r1(pBest−Xi(t)) + c2r2(gBest−Xi(t))
Xi(t + 1) = Xi(t) + Vi(t + 1)

(8)

where Vi and Xi illustrate the speed and position of particle i, respectively; t is the time step; ω is inertia
weight; c1 is the cognitive coefficient; c2 is the social coefficient; r1 and r2 are the random coefficients for
cognitive and social coefficients, respectively; pBest is the individual optimal solution of the particle
at time step t; gBest is the current global optimal solution of all the particles in the chosen set before
the time step t + 1. In each iteration step, the position of the particle at time step t + 1 was derived
from the information of the position and speed of the particle at time step t and two reference particle
positions, i.e., one was the optimal solution of the particle itself (individual optimal solution, pBest)
at time step t and the other was the temporary global optimal solution of all the particles (group
optimal solution, gBest) before time step t + 1. It is noted that the use of a large inertia weight induces
large particle motion inertia, of which the consequence is that the particle swarm will have a strong
global exploration, i.e., a wide range of global search. On the contrary, the use of a small inertia
weight will restrict the particle motion inertia, which makes the particle swarm have a strong local
search exploration. Since the size of the reduced level-wise feasible region adopted for this level of
optimization has become small, a small inertia weight was used to search for the quasi-global minimum
of the K particles. It is noted that during the global minimum search, if the pBest of a particular particle,
which is not the current group global minimum (gBest), repeatedly takes on the same local minimum
for Np times, a new particle will be generated to replace that particle. The quasi-global minima of the
M sets of particles will lead to M sets of optimal design variables, which can be used to determine
statistics such as the means and standard deviations of the optimal design variables. Again, the means
of the M sets of optimal design variables are termed as quasi-optimal design variables and a new
reduced feasible region was attained by following the rule in Equation (6). It is noted that the goal
was achieved and the means of the quasi-optimal design variables were treated as the true design
variables when the standard deviations of the quasi-true design variables were less than the prescribed
value σζ. Otherwise, the search for the global minimum continued by returning back to the first level
of optimization with the use of the new contracted feasible region. Therefore, the iteration process
between the first and second levels of optimization continued until all the standard deviations of the
quasi-optimal design variables at any level of optimization were less than the prescribed value σζ.
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Figure 1. The schematic diagram of the particle swarm optimization technique.

3. Numerical Examples of Global Minimum Determination

The proposed MLOM was first used to find the global minima of the following well-known functions.

f = 0.5 +
sin2(x2

− y2) − 0.5

[1 + 0.001(x2 + y2)]2
(9)

f = 100
√∣∣∣y− 0.01x2

∣∣∣+ 0.01|x + 10|

for − 15 5 x 5 −5, −3 5 y 5 3
or for − 100 5 x 5 100, −100 5 y 5 100

(10)

The function f in Equation (9) or (10) that was minimized can be expressed in the form of
Equation (1). The proposed multi-level optimization technique, as described in Section 2, was used
to search for the global minimum of the function. At the first level where MGST was applied to
solve the unconstrained minimization problem, as stated in Equation (2), ten starting points were
randomly generated from a uniform distribution to determine the quasi-global minima. For example,
the contracted feasible region, adopted for the next level, was determined as [µi ± qiσi], where qi = 1.
At the second level, where PSOT was applied to solve the optimization problem, five sets, of which
each set contained 10 randomly generated starting points, were used to search for the quasi-global
minima. The contracted feasible region, adopted for the next level, was also determined as [µi ± σi].
The iteration between the two levels continued until the standard deviations of the quasi-true design
variables were less than the prescribed value (σζ = 10−7). Herein, three levels were used to search for
the global minima of the functions. Using the Bukin function (I) as an example, the initial and reduced
feasible regions at different levels of optimization are shown in Figure 2. It is noted that, at any level,
the reduced feasible region was significantly smaller than the initial one.
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The solutions of the functions, including the statistics of the identified design variables, are listed
in Table 1. It is noted that the present method can very accurately predict results with less than or equal
to 0.01% errors. For comparison purposes, other global minimization techniques, for instance, genetic
algorithm (GA) and particle swarm (PS), available in MATLAB and the Statistical Multi-start Global
Optimization Method (MSGO) [25], were also used directly to search for the global minima of the
functions. The GA and PS are available in the global optimization toolbox of MATLAB [26]. Regarding
GA, ten sets of randomly generated starting points were used to find the global minimum. For each set,
the number of starting points (population size) was 10,000, the maximum number of generations was
10,000, the crossover fraction was 0.8, and the mutation rate was 10−5. Here, the true global minimum
was treated as the lowest value of the quasi-global minima, which was identified from the ten sets
of randomly generated starting points. Regarding PS, ten sets, of which each set had 100 randomly
generated particles, were chosen to find the global minimum with the use of the following coefficients:
The coefficient of inertia 0.01, the cognitive coefficient 0.1, and the social coefficient 0.01. Again, the true
global minimum was treated as the lowest value of the quasi-global minima identified from the ten
sets. Regarding MSGO, 100 starting points were randomly generated to search for the global minimum
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with the acceptance probability equal to 0.98. The identified design variables predicted using different
methods are listed in Table 2 for comparison. It is noted that the overall performance of the present
method was superior to the other methods. For instance, among the adopted optimization methods,
only PS and MLOM could produce the exact values for the design variables of the Bukin function (I)
with small bounds of the design variables. However, for larger bounds, e.g., the Bukin function (II),
only the present MLOM could produce the exact solution, while the prediction using PS had errors as
large as 5%. Furthermore, it is noted that the total number of starting points generated in the proposed
method was much less than those of the selected global minimization methods. This revealed the fact
that the proposed method was efficient and capable of producing accurate results.

Table 1. Global minimum of function predicted using the proposed multi-level optimization method (MLOM).

Function Level
Variable

x y

Schaffer function
(−100 ≤ x ≤ 100, −100 ≤ y ≤ 100)

Actual 0.00 0.00

1st
Mean (µ) −6.89 × 10−5 1.50 × 10−5

Standard deviation (σ) 3.50 × 10−4 2.65 × 10−5

2nd
Mean (µ) 1.53 × 10−7 1.73 × 10−7

Standard deviation (σ) 6.27 × 10−7 5.73 × 10−7

3rd Identified −7.95 × 10−8 3.29 × 10−7

Bukin function (I)
(−15 ≤ x ≤ −5, −3 ≤ y ≤ 3)

Actual −10.00 1.00

1st
Mean (µ) −8.88 0.83

Standard deviation (σ) 2.13 0.360

2nd
Mean (µ) −9.98 1.00

Standard deviation (σ) 0.19 0.04

3rd Identified −10.0 1.00

Bukin function (II)
(−100 ≤ x ≤ 100, −100 ≤ y ≤ 100)

Actual −10.0 1.00

1st
Mean (µ) −4.27 1.10

Standard deviation (σ) 9.58 1.64

2nd
Mean (µ) −9.98 1.00

Standard deviation (σ) 0.54 0.11

3rd Identified −10.0 1.00

Table 2. Global minimum of function predicted using different optimization methods.

Function Methods
Identified Design Variable

x y

Schaffer function
(−100 ≤ x ≤ 100, −100 ≤ y ≤ 100)

Actual 0.00 0.00
MSGO 9.98 × 10−5 1.42 × 10−5

PS −8.85 × 10−1
−6.33 × 10−1

GA −1.90 × 10−3
−2.09 × 10−2

MLOM (Present) −7.95 × 10−8 3.29 × 10−7

Bukin function (I)
(−15 ≤ x ≤ −5, −3 ≤ y ≤ 3)

Actual −10.00 1.00
MSGO −9.97 0.99

PS −10.00 1.00
GA −8.13 0.66

MLOM (Present) −10.0 1.00

Bukin function (II)
(−100 ≤ x ≤ 100, −100 ≤ y ≤ 100)

Actual −10.00 1.00
MSGO −9.27 0.86

PS −9.76 0.95
GA 0.86 0.01

MLOM (Present) −10.0 1.00
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4. Elastic Constants Identification of Composite Laminate

To demonstrate one of its applications, the proposed MLOM was used to identify the elastic
constants of symmetric composite laminates, in which the composite layers had the same material
properties, but may have had different fiber orientations. Herein, strains on the surface of the composite
laminate were used to determine the four elastic constants (E1, E2, G12, and ν12) of the laminate.

4.1. Strain Analysis of Symmetric Composite Laminate under Axial Load

The symmetric laminate of size a(length) × b(width) × h(thickness) subjected to in-plane axial
stress resultant Nx in the x-direction should be considered, as shown in Figure 3. The relations between
the axial stress resultant and strains expressed in matrix form are [27]

Nx

0
0

 =


Axx Axy 0
Axy Ayy 0

0 0 Ass



εx

εy

γxy

 (11)

where εx, εy, and γxy are axial, lateral, and engineering shear strains, respectively; Axx, Ayy, Axy, and Ass

are in-plane axial, lateral, axial-lateral coupling, and shear stiffness coefficients, respectively. The total
force in the x-direction is defined as Fx = bNx.
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Figure 3. Geometry and loading condition of composite laminate.

The laminate in-plane stiffness coefficients are

Ai j =

∫ h
2

−
h
2

Q
(m)
i j dz(i, j = x, y, s) (12)

where h is laminate thickness and Q
(m)
i j (i, j = x, y, s) are the transformed lamina stiffness coefficients

of the mth layer with fiber angle θm. For an orthotropic lamina, the lamina stiffness coefficients are
expressed as [27]

Q =


Q11 Q12 0
Q12 Q22 0

0 0 Q66

 (13)

with
Q11 = E1

1−ν12ν21
, Q22 = E2

1−ν12ν21
,

Q12 = Q21 = ν21E1
1−ν12ν21

= ν12E2
1−ν12ν21

, Q66 = G12
(14)

where E1 and E2 are Young’s moduli in fiber and transverse directions, respectively; νi j is Poisson’s
ratio for transverse strain in the j-direction when stressed in the i-direction; and G12 is shear modulus
in the 1–2 plane. The relations between Qi j and Qi j can be found in the literature.
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The inversion of Equation (11) gives
εx

εy

γxy

 =


axx axy 0
axy ayy 0
0 0 ass




Nx

0
0

 (15)

where ai j(i, j = x, y, s) are the in-plane compliance coefficients, which are functions of the elastic
constants (E1, E2, G12, and ν12) and the layer fiber angles of the laminate. Hence, from the above
equation, the axial and lateral strains can be obtained, respectively, as

εx = axxNx (16)

and
εy = axyNx (17)

It is noted that the strains (εx and εy) can be determined directly from Equations (16) and (17),
provided that the elastic constants of the composite laminate are available. However, the strains of
a composite laminate can generally be determined experimentally without knowing the values of
the elastic constants. It is a premise that through an optimization approach, the elastic constants of a
laminate may be extracted from the strains of the laminate, even though the number of strains was less
than the number of elastic constants. Herein, as an example, the extraction of the elastic constants
(E1, E2, ν12, and G12) from given strains of a symmetric [0◦/±45◦]s laminate will be achieved via an
optimization approach. Traditionally, the given or measured axial and lateral strains (ε∗x and ε∗y),
together with the theoretically predicted (εx and εy), can be used to construct the objective function to
formulate the optimization based elastic constants identification problem. For instance, the commonly
used least square type objective function was established as the weighted sum of (ε∗x − εx)2 and
(ε∗y − εy)2. Through a detailed numerical study, it has been shown that, if the given or measured strains
are exact, i.e., contain no noise, the use of the above least square type objective function, comprised
of two given strains in the optimization based elastic constants identification, can produce excellent
results. However, for practical consideration, uncertainties involved in the measurement of strains
during testing are inevitable. If there is some noise in the measured strains (ε∗x and ε∗y), the identified
elastic constants might deviate from their true values. Therefore, it was desirable to adopt a strain
constraint to lower the dominance of the measured axial or lateral strain and regulate the variations of
the theoretical axial and lateral strains so that the noise effects could be minimized. Before proceeding
to the elastic constants identification, it is noted that, for a 0◦ or 90◦ layer with given elastic constants,
the theoretically predicted normal strain in 45◦ direction, ε45, could be calculated directly from the
theoretical axial and lateral strains of the layer as

ε45 =
εx + εy

2
(18)

Herein, the given or measured normal strain in 45◦ direction, ε∗45, and the calculated ε45, was used
to establish the strain constraint. The role of the strain constraint was to regulate the motions of the
design variables so that the theoretical normal strain in 45◦ direction, calculated from Equation (18),
was forced to have a good match with the given normal strain in 45◦ direction. Therefore, the given
strains (ε∗x, ε∗y and ε∗45), together with the theoretical strains (εx, εy and ε45), were used in the proposed
MLOM to identify the elastic constants.
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4.2. Formulation of Elastic Constants Identification

The minimization problem of elastic constants identification is expressed as

Minimize e(x) =
(
ε∗x−εx
ε∗x

)2
ξ1 +

(
ε∗y−εy

ε∗y

)2
ξ2 +

(
ε∗45−ε45
ε∗45

)2
ξ3

Subject to xL
i ≤ xi ≤ xU

i , i = 1–4
(19)

where e(x), containing three strain difference terms, is the objective function measuring the differences
between the predicted and given (measured) strains; x = [E1, E2, G12, ν12] the elastic constants with
x1 = E1, x2 = E2, x3 = G12, and x4 = ν12; xL

i and xU
i are, respectively, the lower and upper bounds

of the elastic constants xi; ξi(i =1–3) are weighing factors used to make the strain components have
appropriate contributions to the error function and avoid the occurrence of numerical underflow of the
error function. In view of Equation (18), when ε45 was expressed in terms of εx and εy, the objective
function in Equation (19), comprising the coupling terms of εx and εy, was no longer a least square
type objective function. The proposed MLOM, as described in Section 2, was then used to solve the
above minimization problem.

4.3. Numerical Examples

As an example, the strains of a Graphite/epoxy [0◦/±45◦]s composite laminate were used in
the proposed multi-level optimization method to identify the elastic constants of the constituent
composite material. The actual elastic constants of the composite material were set as E1 = 138.5 GPa,
E2 = 8.1 GPa, G12 = 5.2 GPa, and ν12 = 0.31. When subjected to axial force Fx = 0.5 kN, the actual strains
of the laminate computed from Equations (16)–(18) were εx (µε) = 210.49, εy (µε) = −151.81, and ε45

(µε) = 29.34. Herein, the actual strains were treated as the “given” strains, which were used to identify
the true elastic constants. To cover different kinds of fiber-reinforced composite materials, the upper
and lower bounds of the elastic constants were initially chosen as

0 ≤ E1 ≤ 1000 GPa
0 ≤ E2 ≤ 50 GPa
0 ≤ G12 ≤ 20 GPa
−1.0 ≤ v12 ≤ 0.5

(20)

At the first level of optimization, the values of the weighting factors ξi (i = 1–3) in Equation (19)
could be chosen arbitrarily so long as these values were positive and the weighting factors of the strain
difference terms in Equation (19), containing the axial strain, had larger values than that of the strain
difference term that only contained the lateral strain. Herein, based on engineering judgment, the values
of the weighting factors ξi (i = 1–3) were set to be 106, 104, and 106, respectively. This choice could have
led to more accurate prediction of E1. On the contrary, at the second level of optimization, the values of
the weighting factors ξi (i = 1–3) in Equation (19) were set to be 104, 106, and 104, respectively. At this
level, the larger weight for the lateral strain may have led to more accurate predictions of E2, while
only a small adjustment of E1 might occur. The procedure of the elastic constants identification of the
graphite/epoxy laminate was first described in detail to illustrate the application of the MLOM. At the
first level, the constrained minimization problem of Equation (19) was converted to an unconstrained
minimization one, as stated in Equation (2). The unconstrained minimization problem was then solved
using the MGST, in which ten starting points were randomly generated in the initial feasible range to
determine the quasi-global minima and their associated quasi-optimal design variables. The starting
points and the statistics of the quasi-optimal design variables are listed in Table 3. It is noted that the
means of the quasi-optimal design variables were very close to the actual values, with errors less than
or equal to 3.19%. The contracted feasible region adopted for the next level was determined as [µi ± σi].
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Table 3. Solution of the first-level optimization for graphite/epoxy [0◦/±45◦]s laminate using actual strains.

Level 1
Material Constant

E1 (GPa) E2 (GPa) ν12 G12 (GPa)

No. Actual Actual 8.11 0.31 5.22

1
Starting point 323.83 5.470 0.240 8.163

Lowest local minimum 138.75 10.126 0.298 5.080

2
Starting point 440.60 6.235 0.428 5.819

Lowest local minimum 138.62 8.057 0.298 5.190

3
Starting point 423.37 6.992 0.164 9.102

Lowest local minimum 138.65 8.262 0.296 5.173

4
Starting point 38.41 6.472 0.432 1.908

Lowest local minimum 138.61 8.283 0.300 5.183

5
Starting point 174.31 8.895 0.451 4.871

Lowest local minimum 137.84 9.625 0.366 5.335

6
Starting point 28.28 11.457 0.158 6.655

Lowest local minimum 139.08 9.948 0.270 4.994

7
Starting point 466.51 4.205 0.460 2.226

Lowest local minimum 138.78 7.244 0.275 5.174

8
Starting point 368.32 6.533 0.163 3.714

Lowest local minimum 138.45 6.739 0.309 5.284

9
Starting point 23.15 2.677 0.209 7.166

Lowest local minimum 137.72 7.448 0.384 5.442

10
Starting point 300.78 9.360 0.367 7.618

Lowest local minimum 138.55 7.955 0.304 5.212

Mean (Quasi-optimal design
variable µ)

138.50
(0.00%) *

8.369
(3.19%)

0.310
(0.03%)

5.207
(−0.25%)

Standard deviation σ 0.40 1.11 0.03 0.12
Coefficient of variation 0.29 13.21 11.19 2.29

* Percentage difference =
( Identi f ied−Actual

Actual

)
× 100%.

At the second level where PSOT was applied to solve the optimization problem, five sets, of which
each set contained ten randomly generated starting points, were used to search for the quasi-global
minima. The statistics of the quasi-optimal design variables are listed in Table 4. The comparison
between the previous and current levels shows that the means of the quasi-optimal elastic constants
of the current level were much closer to the actual values, with errors less than or equal to 1.51%.
The contracted feasible region adopted for the next level was also determined as [µi ± σi].

Table 4. Solution of the second-level optimization for graphite/epoxy [0◦/±45◦]s laminate using
actual strains.

Level 2.
Material Constant

E1 (GPa) E2 (GPa) ν12 G12 (GPa)

Actual 138.50 8.11 0.31 5.22

Particle group No.

Identified

1 138.28 8.302 0.331 5.271
2 138.54 7.797 0.304 5.219
3 138.59 8.044 0.301 5.198
4 138.52 8.259 0.309 5.210
5 138.38 8.760 0.323 5.228

Mean (Quasi-optimal design variable µ) 138.46 (−0.03%) * 8.233 (1.51%) 0.314 (1.17%) 5.225 (0.10%)
Standard deviation σ 0.11 0.32 0.01 0.02

Coefficient of variation 0.08 3.88 3.61 0.48

* Percentage difference =
( Identi f ied−Actual

Actual

)
× 100%.
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The iteration between the two levels continued until the standard deviations of the quasi-true
design variables were less than a prescribed value (σζ = 10−3). Finally, the solution of the optimization
problem converges at the third level. The identified elastic constants associated with the global
minimum are listed in Table 5 in comparison to the actual elastic constants. It is noted that the
differences between the actual and identified elastic constants were less than or equal to 0.97%.

Table 5. Solution of the third-level optimization for graphite/epoxy [0◦/±45◦]s laminate using
actual strains.

Level 3
Material Constant

E1 (GPa) E2 (GPa) ν12 G12 (GPa)

Actual 138.50 8.11 0.31 5.22
Identified 138.47 (−0.02%) * 8.185 (0.93%) 0.313 (0.97%) 5.225 (0.09%)

* Percentage difference =
( Identi f ied−Actual

Actual

)
× 100%.

To demonstrate the advantage of the proposed method, the commonly used global minimization
methods were also used to identify the elastic constants of the graphite/epoxy [0◦/±45◦]s composite
laminate. The values of the parameters used in the selected global minimization methods have been
given in Section 2. The elastic constants identified using the selected global minimization methods
are listed in Table 6 in comparison to those identified using the proposed method. It is clear that the
accuracy of the proposed method was much higher than the other methods. Again, it is noted that the
total number of starting points generated in the proposed method was much less than those of the
adopted popular global minimization methods. This revealed the fact that the proposed method was
efficient and capable of producing accurate results.

Table 6. Solutions of different optimization methods for graphite/epoxy [0◦/±45◦]s laminate using
actual strains.

Method
Material Constant

E1 (GPa) E2 (GPa) ν12 G12 (GPa)

Actual 138.5 8.11 0.31 5.22
MSGO 138.29 (−0.15%) * 7.678 (−5.33%) 0.329 (6.03%) 5.291 (1.35%)

PS 140.09 (1.15%) 10.048 (23.90%) 0.180 (−41.98%) 4.677 (−10.39%)
GA 136.81 (−1.22%) 7.232 (−10.82%) 0.467 (50.72%) 5.657 (8.38%)

Present method (3 Levels) 138.47 (−0.02%) 8.185 (0.93%) 0.313 (0.97%) 5.225 (0.09%)

* Percentage difference =
( Identi f ied−Actual

Actual

)
× 100%.

To further demonstrate the capability of the proposed MLOM, the elastic constants of different
composite materials were also extracted from their given strains. The actual elastic constants, together
with the given strains used for elastic constants identification of two composite materials, namely,
carbon/epoxy and glass/epoxy, respectively, are listed in Table 7. The solutions of the first and second
levels of optimization problems are listed in Table 8. Again, it is noted that at the second level, the mean
of the quasi-optimal elastic constants were very close to the actual elastic constants with errors less than
or equal to 0.09% for the carbon/epoxy and 1.5% for the glass/epoxy. At the third level, the identified
elastic constants for the composite materials are listed in Table 9 in comparison to the actual ones.
It is noted that the errors of the identified elastic constants were less than or equal to 0.06% and
0.99% for the carbon/epoxy and glass/epoxy, respectively. The small errors of the identified elastic
constants revealed the capability of the proposed MLOM for elastic constants identification of different
composite materials.
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Table 7. Properties of different composite materials used for elastic constants identification.

Actual Elastic Constant

E1 (GPa) E2 (GPa) ν12 G12 (GPa)

Material type A. Carbon/epoxy 146.50 9.22 0.30 6.84
B. Scotchply® 1002 E-glass/epoxy 38.60 8.27 0.26 4.14

Given Strain

εx (µε) εy (µε) ε45 (µε)

[0◦/±45◦]s Laminate
(Fx = 0.5 kN)

A. Carbon/epoxy 210.6170 −149.9256 28.5322
B. Scotchply® 1002 E-glass/epoxy 579.4597 −269.9758 154.7419

Table 8. Solution of optimization for [0◦/±45◦]s laminate.

Material Type
Material Constant

E1 (GPa) E2 (GPa) ν12 G12 (GPa)

A. Carbon/epoxy

Actual 146.50 9.22 0.30 6.84
Level

1st
Mean (Identified) 146.49 9.507 0.293 6.818

Standard deviation 0.89 0.67 0.07 0.22

2nd
Mean (Identified) 146.500 (0%) 9.228 (0.09%) 0.300 (0%) 6.838 (−0.03%)

Standard deviation 0.18 0.06 0.01 0.05

B. Scotchply® 1002
E-glass/epoxy

Actual 38.60 8.27 0.26 4.14
Level

1st
Mean (Identified) 38.42 7.993 0.271 4.196

Standard deviation 1.37 2.14 0.07 0.26

2nd
Mean (Identified) 38.60 (0%) 8.161 (−1.3%) 0.264 (1.5%) 4.147 (0.17%)

Standard deviation 0.21 0.60 0.02 0.07

* Percentage difference =
( Identi f ied−Actual

Actual

)
× 100%.

Table 9. Solution of third-level optimization for [0◦/±45◦]s laminate.

Material Type Level 3
Material Constant

E1 (GPa) E2 (GPa) ν12 G12 (GPa)

A. Carbon/epoxy Actual 146.5 9.22 0.30 6.84
Mean (Identified) 146.50 (0.00%) * 9.220 (0.00%) 0.300 (−0.06%) 6.839 (−0.01%)

B. Scotchply® 1002
E-glass/epoxy

Actual 38.6 8.27 0.26 4.14
Mean (Identified) 38.59 (−0.01%) 8.197 (−0.88%) 0.263 (0.99%) 4.146 (0.15%)

* Percentage difference =
( Identi f ied−Actual

Actual

)
× 100%.

5. Experimental Study

The proposed method was then applied to the elastic constants of a symmetric graphite/epoxy
[0◦/±45◦]s laminate using three measured strains of the laminate. First, the material constants of the
graphite/epoxy lamina were determined using three types of the standard specimens ([0◦]4, [90◦]8,
and [±45◦]s), in accordance with the ASTM standards of D3039 and D3518 [28]. The average values and
coefficients of variation (indicated in the parentheses) of the material constants are given as follows:

E1 = 138.5 GPa (0.96%)

E2 = 8.1 GPa (1.64%)

G12 = 5.2 GPa (0.38%)

v12 = 0.31(1.85%)

(21)

In view of the small coefficients of variation (less than 2%), the average values in the above
equation were then treated as the “actual” elastic constants of the composite material.
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The dimensions of the symmetric graphite/epoxy [0◦/±45◦]s laminate are shown in Figure 4.
The average thickness of each lamina in the laminate is 0.269 mm. The graphite/epoxy [0◦/±45◦]s

laminates were subjected to uniaxial tensile testing, in which a tri-axial strain gauge produced by TML,
Japan (TML FRA-6-11-1L, gage length 6mm and gauge factor 2.11 ± 1%) were used to measure the
surface axial, lateral, and 45◦ strains (ε∗x, ε∗y, and ε∗45) at the mid-span of the laminate. The uniaxial
tensile test of the laminate was performed using the MTS 810, with test speeds less than 0.01 mm/s.
The load–strain relation of the laminate was constructed to determine the strains for any given load
and the elastic constants of the constituent material. The measured axial, lateral, and 45◦ strains of the
laminates for axial load Fx = 0.5 kN are

εx
∗(µε) = 208.57 (0.91%)

εy
∗(µε) = −149.89 (1.26%)

ε45
∗(µε) = 28.86 (1.64%)

(22)
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For comparison, the “actual” elastic constants were used in Equations (16)–(18) to calculate the
“actual” strains. The absolute percentage differences between the “actual” and measured strains,
as shown in the parentheses, are given in the above equation. It is noted that the deviations of the
measured strains from the “actual” ones are likely due to the existence of uncertainties in material
properties, fabrication of specimens, strain measurement, etc. These uncertainties and their effects
should be studied in detail in the future. The measured strains were then used in the proposed
multi-level optimization method to identify the elastic constants. The identified elastic constants and
the percentage differences between the “actual” and identified elastic constants are given as

E1(GPa) = 140.10(1.15%)

E2(GPa) = 8.093(0.086%)

v12 = 0.302(0.026%)

G12(GPa) = 5.185(0.29%)

(23)

It is noted that, even though the accuracy of the measured strains was affected by uncertainties,
the proposed multi-level method could still produce excellent results with absolute percentage
differences less than or equal to 1.15%. Furthermore, it is worthy to note that, if the constraint term
of (ε∗45 − ε45)

2 is not included in the objective function of Equation (19), the percentage differences
between the “actual” and identified elastic constants might exceed 20%. Therefore, the strain constraint
term contributed by making the elastic constants refrain from having large deviations from the actual
values. The excellent results obtained for the [0◦/±45◦]s laminate might lead to the possibility of having
a new testing procedure for elastic constants identification in the future. However, the uncertainties
involved in laminate fabrication and strain measurement should be characterized and their effects on
the elastic constants analyzed before this new testing procedure can be standardized.

6. Conclusions

An efficient and effective multi-level optimization method, consisting of several levels of optimization,
was presented to solve different types of minimization problems. The proposed optimization method
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included two major parts. Regarding the first part, the initial minimization problem was tackled via the
solutions of a series of level-wise minimization problems, in which the level-wise feasible region of
any level was derived from that of the previous level via a statistical approach. As for the second part,
the multi-start global search technique (MGST) and the particle swarm optimization technique (PSOT)
are used, respectively, to solve two consecutive level-wise minimization problems. The locations
of the global minima of several functions were identified using the proposed method, as well as
several commonly used global minimization algorithms. The total number of starting points generated
in the proposed method was much less than those generated in each of the selected minimization
methods. It has been shown that the proposed method could produce more accurate results than
the selected methods. To demonstrate its applications, the proposed optimization method has been
applied to the elastic constants identification of composite laminates subjected to a uniaxial load.
Three measured strains in 0◦, and 45◦, and 90◦ directions have been used to establish the objective
function. It has been shown that the measured normal strain in the 45◦ direction can work as a
constraint to regulate the variations of the theoretical axial and lateral strains, and in turn make the
design variables move efficiently toward their optimal values. Therefore, more accurate results can
be obtained if the measured 45◦ strain is taken into account in establishing the objective function.
The elastic constants of [0◦/±45◦]s laminates made of different composite materials have been identified
using the 0◦, 45◦, and 90◦ normal strains on the top layer of each laminate. For comparison, the selected
global minimization techniques have also been used to perform the elastic constants identification.
Again, the total number of starting points generated in the proposed method was much less than those
generated in each of the selected global minimization methods. It has been shown that the proposed
method with the use of three levels and a few starting points randomly generated at each level can
produce more accurate results than the selected global minimization techniques. The absolute errors of
the elastic constants identified are less than or equal to 0.97%, 0.06%, and 0.99% for the graphite/epoxy,
carbon/epoxy, and glass/epoxy, respectively. Finally, the tensile test of a graphite/epoxy [0◦/±45◦]s

laminate was performed. The proposed method was applied to identify the elastic constants of the
laminate using three measured strains. In the face of existing uncertainties, excellent results with a
percentage of differences equal to or less than 1.15% have been obtained to reveal the potential of the
proposed method for practical applications.
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