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Featured Application: Predicting the critical properties of RC columns using the developed ANN
model, providing parameters for their numerical simulation based upon a lumped plasticity model.

Abstract: This study explores the possibility of using an ANN-based model for the rapid numerical
simulation and seismic performance prediction of reinforced concrete (RC) columns. The artificial
neural network (ANN) method is implemented to model the relationship between the input features
of RC columns and the critical parameters of the commonly used lumped plasticity (LP) model:
The strength and the yielding, capping and ultimate deformation capacity. Cyclic test data of 1163
column specimens obtained from the PEER and NEEShub database and other sources are collected
and divided into the training set, test set and validation set for the ANN model. The effectiveness
of the proposed ANN model is validated by comparing it with existing explicit formulas and
experimental results. Results indicated that the developed model can effectively predict the strength
and deformation capacities of RC columns. Furthermore, the response of two RC frame structures
under static force and strong ground motion were simulated by the ANN-based, bi-linear and tri-linear
LP model method. The good agreement between the proposed model and test results validated that
the ANN-based method can provide sufficiently accurate model parameters for modeling the seismic
response of RC columns using the LP model.

Keywords: strength; yielding capping and ultimate deformation; RC column; cyclic test database;
artificial neural network; bi-linear and tri-linear lumped plasticity model

1. Introduction

Reinforced concrete (RC) columns are fundamental structural components that are widely used in
civil infrastructures such as buildings and bridges. In seismic-prone regions, the seismic performance
of such structural components significantly affects structural safety in seismic events. However, due to
the nonlinearity of structural materials and the uncertainty of earthquake excitations, there are still
some difficulties exists for researchers and engineers in some fields, e.g., the rapid seismic evaluation
of a regional transport network, including a number of bridges [1]. Therefore, it is still necessary to
develop a rapid and reliable model for the main components of structures, e.g., RC columns and piers.

Researchers and engineers in seismic engineering have conducted many laboratory experiments,
including pseudo-static and shaking table tests, to investigate the mechanical properties of RC
columns. Based on them, several explicit formulas have also been established, founded upon a
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theoretical analysis and regression analysis of experimental data [2,3] for structural design in seismic
engineering. Priestley et al. [4] examined existing design equations related to shear strength, and
observed significant differences in the predicted results. Sezen and Moehle [5] and Elwood and
Moehle [6] also found significant inaccuracies in the predicted deformation capacity of RC columns
obtained from existing methods. The reason for the differences is that RC material exhibits strong
uncertainties and nonlinearity. Moreover, under the combination of constant vertical and lateral
dynamic loads, the seismic performance of RC columns is affected by many other properties of
structural components, such as the shear span ratio [7], longitudinal and transverse reinforcement
ratio [8,9] and the axial compression ratio [10].

Besides, finite element analysis (FEA) is an alternative and useful tool that can be used to analyze
the nonlinear mechanical properties of the RC structure [11,12]. For RC columns, the lumped plasticity
(LP) hinge method and distributed plasticity (DP) hinge method are typical methods to model the
nonlinear characteristics of the structures [13,14]. However, the LP method is relatively coarse, while
the DP method is often time-consuming, and the results significantly depend upon the setup of the
model parameters and boundary conditions [15]. This may lead to large estimation errors during
the seismic performance prediction of RC structures. Lu et al. [16] organized an open competition
to predict the hysteretic response of a 3-storey frame, which was initially tested in the laboratory.
Although detailed information of the structural configuration and material properties was provided
to the competitors, most of the FEA results of 30 research groups were far from the test results, no
matter what types of FEA model they used. This may result from the complicated damage mechanism
of the material and the unclear boundaries and connections in the real RC structures. To overcome
these drawbacks, Ibarra et al. [17] developed a relatively simple LP model including the effective
stiffness, pre and post-peak inelastic deformations, etc. It has been demonstrated that this model can
simulate the seismic performance of RC structures with proper model parameters [18,19]. In practice,
the accurate analysis is not only dependent upon the tools used, but also the experience of the analysts
(mainly from the disaster lessons or the laboratory test results). The experience, which is generally
related to the model parameter determination, may vary greatly among different groups. Therefore,
essential model parameters considering the historical experience are needed for the accurate simulation
of RC columns. In this study, a model-free and data-driven method is deduced for the determination of
the key parameters of the commonly-used LP model. It is expected that more test results can overcome
subjective errors and model uncertainties, improving the LP model.

An artificial neural network (ANN) is a typical machine learning (ML) method, which was inspired
by the architecture and operation of biological nervous systems. Recently, they have been adopted
by researchers in civil engineering, such as investigating energy performances [20]. Kawashima
and Oreta [21] validated the application of ANN models in simulating the compressive stress–strain
relationship, especially with limited data. In addition, other non-parametric models, the conditional
average estimator (CAE) method [22] and support vector machine (SVM) [23], were also employed by
researchers to analyze the mechanical properties or seismic performance of structures. González and
Zapico [24] presented a seismic damage identification method for a steel moment-frame structure based
on modal variables, and Reza et al. [25] conducted a detailed parametric study on the limiting states
of bridge columns using factorial analysis. Compared with current existing formulas based on the
regression algorithm or experiences, the ANN-based model, originating from an advanced humanlike
information processing style, is data-driven. It only relies on a large quantity of training data with
sufficient features of the samples rather than a limited database and certain assumptions, and thus it
can help to reduce some subjective and experimental errors and be more reliable. Nevertheless, their
application in engineering is still limited, and so this study conducted a pioneer study on developing
an ANN-based LP model for the seismic assessment of RC columns. It investigates the possibility of
predicting the important model properties of RC columns using an ANN model and a large quantity
of historical test results.
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Data is fundamental to the application of machine learning technology. The accumulation of
numerous cyclic experiments in RC columns can provide an alternative approach to predict their seismic
performance using a model-free method. In this study, the data collection criteria and experimental
data for training, testing and validating the ANN model of the RC columns are briefly introduced
in the first Section. Then, the ANN architecture, including the input, output and hidden layer, is
described specifically. Subsequently, the ANN model is validated using a test set and some existing
explicit formulas developed by other researchers. Finally, a comparison investigation is conducted on
two RC frame structures between the ANN-based LP method with a quasi-static and a shaking table
test. This well-trained, ANN-based LP method in this paper is also implemented in an efficient Matlab
graphical user interface (GUI), which could be directly used for structural performance evaluation or
response prediction by other researchers or engineers during their investigation.

2. Data Collection

Researchers worldwide have conducted numerous pseudo-static cyclic tests on RC columns to
investigate the hysteretic behavior and seismic performance of such structural components in buildings
and bridges. To provide data for training the ANN model, the cyclic test results of RC columns were
collected from the NEEShub database [26], PEER database [27] and other published studies based
upon the following criteria:

1. The shape of the cross section of the RC columns should be rectangular; others like circular
columns are not included in this study.

2. The RC columns only sustained constant axial loading and unidirectional cyclic lateral force.
Cyclic tests of the RC column under biaxial lateral or variable axial loads are excluded.

3. A complete loading process was applied to the specimens until failure; the load carrying capacity
of the specimen decreased by more than 20% compared to the peak strength.

4. Details of the specimens are available, such as the geometrical size and reinforcement, as well as
experimental results of the hysteretic curves.

5. Normal concrete was used in the manufacture of the specimens, without additives such as
steel fiber.

A total of 1163 cyclic test results of RC columns were collected to build a database for training,
testing and validating the ANN model. Details of the selected specimens, including the data source
and geometrical size, are listed in the Appendix A. It can be observed that the main features of the
selected columns have a relatively wide distribution.

The numerical simulation of RC columns may depend upon many factors, such as the material
properties, geometrical configuration, reinforcement layout and loading protocol. Figure 1 shows a
schematic diagram of a typical cantilever column, illustrating some of these factors, as well as its LP
model. The section width (B) and depth (D) is defined as the section size which is perpendicular and
parallel to the lateral force, respectively. It should be noted that a cantilever and fixed-end columns are
two typical structural components used for civil structures. For simplicity, this study mainly focused
on cantilever columns, which are widely used in bridge piers; the geometrical size and test results
of the fixed-end columns were modified by assuming that the inflection point of the columns occurs
at the half height of the column. As illustrated, the optimal feature subset is selected by the genetic
algorithm (GA) method, then used to train the ANN model. It can help determine the parameters of
the LP model for RC columns.
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Figure 1. Schematic diagram and lumped plasticity model of a typical RC column.

As is known, there are many factors influencing the performance of RC columns, some of which
are dependent. For example, the effective depth (de) can be calculated by B, D and the effective cover
thickness (d′). Although the independent parameters are simple and easily accessible, the derived
parameters may be more effective in some cases. Consequently, the potential influencing features are
collected for feature selection, which are categorized into six groups as listed in Table 1. It can be
observed from the table that a total of 24 features were included, in order to investigate their effects on
RC columns.

Table 1. Features of reinforced concrete (RC) columns.

Category Feature Category Feature

Cross Section

B Width of column section

Long bars

ρl Longitudinal reinforcement ratio
D Depth of column section fyl Yield strength of longitudinal bar
Ac Gross area of column section ful Ultimate strength of longitudinal bar
Ic Moment of inertia of column section dl Diameter of longitudinal bar
de Effective depth of column section Asl Area of a single longitudinal bar
d′ Effective cover thickness Nl Number of longitudinal bars

Span L Effective height of specimen

Trans. bars

fyt Yield strength of transverse steel
λ Span-to-depth ratio fut Ultimate strength of transverse steel

Vertical loading P Applied axial load dst Diameter of transverse reinforcement bar
n Axial compression ratio Ast Area of one transverse reinforcement bar

Concrete
f ′c 28-day concrete compressive strength s Spacing of transverse reinforcement
Ec Elastic modulus of concrete ρsv Transverse reinforcement volumetric ratio

As for the modeling, the LP model of RC columns is usually represented by the bi-linear and
tri-linear model [28]. As shown in Figure 2, the strength and the yielding, capping and ultimate
deformation of the RC columns can be defined according to the method using the hysteretic curves
obtained from cyclic tests. The strength is defined as the peak point when the resistance force reaches
its maximum value. According to statistical results by Haselton et al. [29], the yielding deformation can
be roughly estimated as that corresponding to 85% of the peak strength, and the ultimate deformation
is obtained from the drift when the resistance drops to 20% of the peak strength [6]. It should be
noted that the actual test results of the hysteretic curve cannot always achieve perfect symmetry in
both the positive and negative directions. Therefore, the mean values of the strength and deformation
in the positive and negative directions were adopted for the following analysis. The strength and
deformation capacities of 1163 RC columns were determined according to the above approach, and
used as the outputs of the ANN model.
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Figure 2. Schematic of hysteretic curves and definition of strength and deformation capacities.

Consequently, the model parameters of the LP model (e.g., yielding moment My, initial stiffness
K1, and the coefficient of the post yielding stiffness r) can be determined by the four parameters:
The strength (Fmax), the yielding (δy), capping (δc) and ultimate drift (δu), as shown in Tables 2 and 3.
As can be seen, My = FyL + PδyL and Mu = FmaxL + PδcL are the yielding moment and ultimate
moment, respectively. Consequently, the four variables (Fmax, δu, δc, δy) are used as the outputs of the
ANN model.

Table 2. Definition and determination of the bi-linear lumped plasticity (LP) model.

Parameter Description Calculation

Ke the initial stiffness of the linear segment My/δy
My the yielding moment FyL + PδyL
b the hardening ratio Ksh/Ke, Ksh = (Mc −My)/(δu − δy)

Table 3. Definition and determination of the tri-linear LP model [30].

Parameter Description Calculation

Ke the initial stiffness of the linear segment My/δy

My the yielding moment FyL + PδyL

βl the pre-capping hardening ratio Ksh/Ke, Ksh = (Mc −My)/(δc − δy)

βc the post-capping hardening ratio Kss/Ke, Kss = (Mc −Mu)/(δu − δc)

Mc/My the capping moment to the yielding moment Mc = FmaxL + PδcL, Mu = FmaxL + PδcL

3. ANN Model

3.1. Architecture of the ANN Model

ANN is a humanlike information processing method, which is composed of many highly
interconnected processing elements or neurons. In this study, the developed ANN model that maps
the features of the RC column and the structural capacities can be written as:

y = f (x;θ) (1)

where y is the output feature vector of the ANN, including the strength and the yielding, capping and
ultimate drift of the columns; x is the input feature vector of the column, as listed in Table 1; and θ

represents the learning parameters.
As shown in Figure 3, a typical ANN architecture consists of an input layer, output layer and

one or several hidden layers, and each layer has corresponding neurons [31]. In this study, back
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propagation neural network (BPNN) [32] was adopted to predict the strength and deformation capacity
of the columns. In the training process, the inputs propagate toward the output layer through the
hidden layers, and errors between the predicted and experimental values back propagate from the
output layer to the input layer to adjust the weights and thresholds of the hidden layers. In addition,
the activation function defines how the input of a unit combines with its current activation level to
complete a new activation. In this study, the commonly-used sigmoid activation function is utilized.
Once the optimal connection weights and thresholds are determined, the trained ANN model can be
conveniently employed to evaluate the strength and deformation capacities of RC columns.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 21 
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3.2. Input and Output Layer

As described previously, the strength and the deformation capacities of RC columns are affected
by numerous factors. If all of the features are included in the input layer, the ANN model becomes
very complex, and prone to fail due to overfitting. Therefore, it is reasonable to select an optimal input
feature subset for the ANN model. To achieve optimization, all the input features listed in Table 1,
and the output features are first organized into an n×m dimensional matrix and an n× 4 dimensional
matrix, respectively, as follows:

x =
{
xi j

}
n×m

, y =
{
yik

}
n×4 (2)

where xi j (i = 1, 2, · · · , n) is the jth input feature of the ith RC column in the training set, and yik (k = 1,
2, 3, 4) is the corresponding output feature of the ith RC column. Considering the significant difference
in the value ranges of the features, data obtained from the specimens and the test results of the training
set are first normalized within the range of [0, 1] by:

xi j =
xi j −min(x j)

max(x j) −min(x j)
, yik =

yik −min(yk)

max(yk) −min(yk)
(3)

where xi j is jth normalized input feature corresponding to the ith specimen; x j represents the jth input
feature vector of all the specimens; and yk denotes the kth output feature vector. After normalization, n

input–output pairs (
{

¯
xi,

¯
yi

}
, i = 1, 2, . . . , n) are collected into the training set, where

¯
xi =

{
xi1, xi2, . . . , xim

}
and

¯
yi =

{
yi1, yi2, . . . , yi4

}
are the normalized input and output features of the ith column, respectively.

In this study, a genetic algorithm (GA) was adopted to find the optimal input features of the
column. GA is a metaheuristic inspired by the process of theoretical Darwinian natural selection in
biological systems to generate high-quality solutions of search problems [33]. In this method, each
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feature subset, such as structural configuration and material properties, is represented by an individual
population. In the selection process, individuals with better phenotypic characteristics have greater
probability to survive and reproduce in a population, whereas the less adapted individuals are more
likely to disappear. Thus, the GA obtains the optimal solution after a series of iterative computations.

Figure 4 shows the chromosome design, fitness function and system architecture for the GA-based
optimal feature selection of the columns, which operates in binary spaces (called chromosomes) and
manipulates a population of potential solutions for the optimal input subset. A chromosome (genotype
of the input features) is represented by binary coding as follows:

g1, g2, . . . , g j, . . . , gm , g j =

{
1, if the j−th input feature is selected
0, if the j−th input feature is not selected

(4)

where g1, g2, . . . , gm represent the 24 input features that will be selected. The initial chromosome
population is randomly generated first, using binary coding. For example, chromosome 100100 means
that the first and the fourth input features were selected.
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During the selection process, the fitness function is used to evaluate the quality of possible input
subsets. There are several measurements can be used to evaluate the accuracy and survival probability
of the chromosomes [34]. For convenience, the general fitness function is adopted in this study for the
optimal input sets:

fitness =
1

4∑
k=1

n∑
i=1

(
yik − ŷik

)2
(5)

where yik and ŷik are the kth experimental result and predicted value of the ith specimen, respectively.
For the selection of the optimal input features, an ANN model with one hidden layer containing 20
neurons is used, as the optimal ANN architecture is still not obtained in this stage.

Fitter chromosomes from the current population have a higher probability to be selected to
generate offspring population using genetic operators, namely crossover and mutation. The population
size, number of generations, crossover rate and mutation rate of the GA were selected as 500, 25, 0.8,
and 0.3, respectively, using the approach proposed by Oliveira et al. [35]. This evaluation process will
be performed iteratively until the termination criterion (10−3) is satisfied. After that, the most fitted
features can be determined as the inputs for ANN training.

The optimal input feature subset with 10 nodes, including B, D, f ′c , fyl, λ, fyt, s, ρl, ρsv and n were
selected from the 24 features listed in Table 1 using GA. Laboratory test results reported by [36] also
demonstrate that the selected optimal features are the most important parameters that affect the seismic
performance of these RC columns. However, other parameters, like the effective cover thickness (d′)
and depth (de), may be also important. The reason for omitting them is that they are either similar in
most specimens, or can be easily calculated. For example, the d′ of most of the specimens is in the
range of 0.02 m to 0.03 m, while the de can be determined based on B and d′.
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4. Results and Discussion

4.1. Training of the ANN Model

Before training the ANN model, all of the collected structural and material parameters of the 1163
specimens and the corresponding test results on the strength and drift capacities were normalized as
the input and output vectors using the above approach. Then, 863 specimens in the database were
randomly selected as the training set (ntrain = 863). While the remaining specimens were used as the
test set (ntest = 150) and validation set (nvalidation = 150), respectively.

The number of input and output nodes in the ANN architecture is obviously 10 and 4, respectively.
The following parameters of the BPNN were used in training the model: (1) Error tolerance = 10−3;
(2) learning parameter = 0.15; (3) maximum number of iterations = 104; (4) momentum parameter = 0.05;
(5) noise = 0.01. The mean absolute error (E) and goodness of fit (R2) were adopted to evaluate the
accuracy of the ANN model, as follows:

Ek =
1
N

N∑
i=1

∣∣∣∣∣∣∣ yik − ŷik

yik

∣∣∣∣∣∣∣, (k= 1, 2, . . . , 4) (6)

R2
k = 1−

N∑
i=1

(yik − ŷik)
2

N∑
i=1

(yik)
2

, (k= 1, 2, . . . , 4) (7)

where N is the number of specimens in the training set or test and validation set.
It should be noted that there is no specific rule or heuristics [37] to determine the number of

hidden layers and the corresponding number of nodes. In general, an ANN model with too many
neurons tends to fail due to an overfitting of the training data, whereas those with few neurons may
not be able to capture the complex underlying relationship. Therefore, several trials were conducted
for ANN models with different nodes and a single hidden layer to obtain an optimal ANN architecture
for the strength and deformation capacity prediction of RC columns. For an optimal ANN architecture,
the mean absolute error and goodness of fit of the ANN model should satisfy the following criteria:
(1) Well-distributed around 0 (smaller Ek) and (2) as close as possible (larger R2

k). The mean value

(E = Ek, R2 = R
2
k) of the four properties was used.

Figure 5 shows the test results of the trained ANN models with 10–50 hidden neurons. It can be
observed that the mean absolute error and goodness of fit of the three properties are within the range
of [0.126, 0.142] and [0.870, 0.882], respectively. As can be seen, the N-10-21-4 ANN architecture has the
smallest E and largest R2, and thus was determined as the optimal ANN architecture.
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4.2. Validation

Experimental data in the training set, test set and validation set were used to validate the ANN
model. Figure 6 shows a comparison of the predicted strength capacities by the ANN model and
the experiments. It can be observed that the predicted values of the strength are in good agreement
with the experimental values of the columns. For the normalized strength, the mean absolute error
and goodness of fit are 0.0533 and 0.9304, respectively, for the training set, and 0.0133 and 0.9431,
respectively, for the test and validation set. The results indicate that the ANN model can be effectively
used to predict the strength of the RC columns under seismic excitations.
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Different types of explicit formulas have been proposed by researchers or adopted in design
codes for calculating the strength of RC columns. In general, concrete and reinforcement contribute to
the shear capacity of RC columns with shear failure mode. Therefore, the explicit formula has two
distinct parts.

V = Vc + Vs (8)

where V = Fmax is the shear strength for shear-failed columns, while Vc and Vs are the contributions
of concrete and steel reinforcement, respectively. In this study, three types of explicit formulas for
predicting the shear strength of RC columns were adopted to validate the ANN model as summarized
in Table 4.

Table 4. Explicit formulas for estimating the shear capacity of RC columns.

Reference Concrete Contribution (Vc) Steel Contribution (Vs)

Sezen and Moehle [5]
FEMA 356 [3]

Vc = kµ

 0.5
√

f ′c
λ

√
1 + P

0.5
√

f ′c Ac

0.8Ac Vs = kµ
Ast fytD′

s

ACI 318-05 [38] Vc =
1
6

(
1 + P

13.8Ac

)√
f ′c Ac Vs =

Ah fyhD′
s

FEMA 273 [39] Vc = 0.29λ
(
k + P

13.8Ac

)√
f ′c Ac Vs =

Ast fytD
s

Note: kµ is the ductility-related strength degradation factor, and D′ is the distance from the extreme compression
fiber to the centroid of the tension reinforcement. The meanings of other parameters in this table are the same as
those in Table 1.

For flexural-dominated specimens, the lateral loading capacity is strongly dependent on the
flexural strength (Mc) and the distance between the critical section of the plastic hinge and point of
contra-flexure length (L), as follows:

Fmax = (Mc − P·∆c)/L =
(
My·Mc/My − P·∆c

)
/L (9)
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where ∆c is the capping displacement corresponding to the maximum lateral strength (Fmax).
Fardis et al. [40] proposed a semi-empirical strength and deformation expression with good average
agreement with test results. It has been widely used in the seismic performance assessment in
engineering [29]

Mc/My = (1.25)(0.89)n(0.91)0.01 f ′c (10)

My = BD3φy

Ec
k2

y

2

[
0.5(1 + δ′) −

ky

3

]
+

Es

2

[(
1− ky

)
ρ+

(
ky − δ

′
)
ρ′ +

ρv

6
(1− δ′)

]
(1− δ′)

 (11)

where φy is the yield curvature; δ′ is the ratio of the distance of the compression reinforcement center
from the extreme compression fibers to the span depth (D); ky is the normalized compression zone
depth; Es is the reinforcement elastic modulus; ρ, ρ′ and ρv are the reinforcement ratios of tension,
compression and web reinforcement, respectively.

Figure 7 shows a comparison of the experimental results, predicted strength of the ANN model
and calculated results from the explicit formula. In Figure 7a, the test results of the shear-failed
specimens were obtained using the formula by [5], while the flexural failure specimens were selected
from the database of this study. As shown in Figure 7a, the mean absolute error of the predicted
shear strength of the ANN model is 0.107, which is smaller than those obtained from the three explicit
formulas, 0.235, 0.207 and 0.217. In Figure 7b, it can also be observed that the mean absolute error
of the ANN model is 0.087. However, the statistical result of the mean absolute error obtained from
the design code is 0.101. It is illustrated that the results indicate that the ANN model yields a more
accurate prediction of the structural strength of the columns.

Figure 8 also shows a comparison of the test results of the ultimate drift of the column, and
predicted results from the ANN model. It can be observed that the ANN model can also achieve a
reasonable prediction of the ultimate drift. However, it is evident that the mean absolute error of
the ultimate drift is larger than that of the strength prediction, particularly for specimens with large
ultimate deformation capacity.

The mean absolute error and goodness of fit are found to be 0.1761 and 0.8114, respectively, for the
training set, and 0.1783 and 0.8216 for the test and validation set, respectively. This is because the
ultimate deformation of the column is more strongly affected by the nonlinearity of the structures.
Another reason for there being less accuracy is that the ultimate deformation is more difficult to measure.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 21 

For flexural-dominated specimens, the lateral loading capacity is strongly dependent on the 
flexural strength ( cM ) and the distance between the critical section of the plastic hinge and point of 
contra-flexure length ( L ), as follows: 

( ) ( )max / / /c c y c y cF M P L M M M P L= − ⋅ Δ = ⋅ − ⋅ Δ
 (9) 

where cΔ  is the capping displacement corresponding to the maximum lateral strength ( maxF ). 
Fardis et al. [40] proposed a semi-empirical strength and deformation expression with good average 
agreement with test results. It has been widely used in the seismic performance assessment in 
engineering [29] 

( ) ( ) ( )
'0.01/ 1.25 0.89 0.91 cn f

c yM M =
 

(10) 

( ) ( ) ( ) ( ) ( )
2

3 ' ' ' ' '0.5 1 1 1 1
2 3 2 6
y y s v

y y c y y

k k E
M BD E k k

ρ
φ δ ρ δ ρ δ δ= + − + − + − + − −
    
       

 

(11) 

where yφ  is the yield curvature; 'δ  is the ratio of the distance of the compression reinforcement 

center from the extreme compression fibers to the span depth ( D ); yk  is the normalized 

compression zone depth; sE  is the reinforcement elastic modulus; ρ , 'ρ  and vρ  are the 
reinforcement ratios of tension, compression and web reinforcement, respectively. 

Figure 7 shows a comparison of the experimental results, predicted strength of the ANN model 
and calculated results from the explicit formula. In Figure 7a, the test results of the shear-failed 
specimens were obtained using the formula by [5], while the flexural failure specimens were selected 
from the database of this study. As shown in Figure 7a, the mean absolute error of the predicted shear 
strength of the ANN model is 0.107, which is smaller than those obtained from the three explicit 
formulas, 0.235, 0.207 and 0.217. In Figure 7b, it can also be observed that the mean absolute error of 
the ANN model is 0.087. However, the statistical result of the mean absolute error obtained from the 
design code is 0.101. It is illustrated that the results indicate that the ANN model yields a more 
accurate prediction of the structural strength of the columns. 

  
(a) Shear-failed specimens (V ) (b) Flexural-dominated specimens ( /uM L ) 

Figure 7. Comparison of the predicted results of the strength from the ANN model and existing 
explicit formulas. 

Figure 8 also shows a comparison of the test results of the ultimate drift of the column, and 
predicted results from the ANN model. It can be observed that the ANN model can also achieve a 
reasonable prediction of the ultimate drift. However, it is evident that the mean absolute error of the 

Figure 7. Comparison of the predicted results of the strength from the ANN model and existing
explicit formulas.



Appl. Sci. 2019, 9, 4263 11 of 19

Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 21 

ultimate drift is larger than that of the strength prediction, particularly for specimens with large 
ultimate deformation capacity.  

The mean absolute error and goodness of fit are found to be 0.1761 and 0.8114, respectively, for 
the training set, and 0.1783 and 0.8216 for the test and validation set, respectively. This is because the 
ultimate deformation of the column is more strongly affected by the nonlinearity of the structures. 
Another reason for there being less accuracy is that the ultimate deformation is more difficult to 
measure. 

  
(a) Training set (b) Test and validation set 

Figure 8. Comparison of experimental results of the ultimate drift and predicted results from the ANN 
model. 

To assess the ultimate deformation of lightly reinforced columns, Elwood et al. [6] proposed an 
explicit formula given as follows: 

( )max

'

3 1
4 1% MPa

100 40 40
u

t

c c

F n

L A f
ρ

Δ
= + − − ≥

 
(12) 

where the effects of the transverse reinforcement ratio ( tρ ), axial load ratio ( n ) and strength ( maxF ) 
are taken into account. Furthermore, Lehman et al. [41] also developed an explicit method to evaluate 
the ultimate drift of flexural-dominated columns as follows: 

y sp fu

L L L L
Δ Δ ΔΔ

= + +
 

(13) 

where yΔ , spΔ  and fΔ  are the yield, slip and flexural displacement, respectively. 

The above explicit formulas for calculating the ultimate drift were also used to validate the 
accuracy and effectiveness of the ANN model. Figure 9 shows a comparison of results obtained from 
the formula methods and test results from the collected test database, which are divided into two 
parts, namely the shear-failed specimens and the flexural-dominated specimens. It can be observed 
that the ANN model also yields better prediction of the ultimate drift than the two explicit formulas. 
The mean absolute errors obtained from the ANN model and the Elwood’s method are 0.165 and 
0.266, respectively, for the shear-failure columns, whereas those obtained from the ANN model and 
the Lehman’s method are 0.188 and 0.316, respectively, for the flexural-failure columns. 

  

Figure 8. Comparison of experimental results of the ultimate drift and predicted results from the
ANN model.

To assess the ultimate deformation of lightly reinforced columns, Elwood et al. [6] proposed an
explicit formula given as follows:

∆u

L
=

3
100

+ 4ρt −
1

40
Fmax

Ac
√

f ′c
−

n
40
≥ 1%(MPa) (12)

where the effects of the transverse reinforcement ratio (ρt), axial load ratio (n) and strength (Fmax) are
taken into account. Furthermore, Lehman et al. [41] also developed an explicit method to evaluate the
ultimate drift of flexural-dominated columns as follows:

∆u

L
=

∆y

L
+

∆sp

L
+

∆ f

L
(13)

where ∆y, ∆sp and ∆ f are the yield, slip and flexural displacement, respectively.
The above explicit formulas for calculating the ultimate drift were also used to validate the

accuracy and effectiveness of the ANN model. Figure 9 shows a comparison of results obtained from
the formula methods and test results from the collected test database, which are divided into two
parts, namely the shear-failed specimens and the flexural-dominated specimens. It can be observed
that the ANN model also yields better prediction of the ultimate drift than the two explicit formulas.
The mean absolute errors obtained from the ANN model and the Elwood’s method are 0.165 and
0.266, respectively, for the shear-failure columns, whereas those obtained from the ANN model and
the Lehman’s method are 0.188 and 0.316, respectively, for the flexural-failure columns.Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 21 
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Since there are currently no explicit formula for the estimation of capping drift corresponding
to the maximum strength, Figure 10 only shows the comparison of the experimental results of the
capping drift of the column and the predicted results from the ANN model, with the mean absolute
error of 0.0794 and 0.1071, goodness of fit of 0.8001 and 0.8345, for the training set and the test and
validation set, respectively. Nevertheless, it can still be seen that the ANN-based model for the capping
drift estimation is reasonable and relatively accurate.
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Similarly, Figure 11 shows a comparison of the yielding drift of column between experimental
results and predicted results from the ANN model. The mean absolute error for the training set
and the test-validation set is 0.1081 and 0.0752, and the corresponding goodness of fit is 0.8548 and
0.8638, respectively. Generally, the yielding drift of RC columns always appears earlier with low
nonlinearity than the ultimate drift. Therefore, the proposed ANN-based model can get a better
prediction on the yielding drifts than the ultimate drift due to the nonlinearity difference between these
two physical parameters.Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 21 
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For the estimation of the yielding drift, Fardis et al. [40] proposed a statistical formula based on
the results of 963 tests, which has been widely used in engineering [29].

δy = φy
L
3
+ 0.0025 + αsl

0.25εydl fyl

(d− d′)
√

f ′c
(14)

where φy is the yielding curvature of the section, αsl is the slip coefficient (equals 1 if slippage of
longitudinal steel is possible, or 0 if it is not), and εy is the yield strain of longitudinal steel.

Figure 12 presents the comparison results of the yielding drift estimation of RC columns from the
test set between the proposed ANN model and Fardis’ method. It shows that the ANN model performs
better than the empirical formula, with the mean absolute error of 0.2327 and 0.4572, respectively.
Therefore, the developed ANN-based model can provide a more reliable and accurate prediction of the
critical parameters for the LP model.
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4.3. Evaluation of the ANN-Based LP Model

4.3.1. Comparison with the Pseudo-Static Test

The boundary conditions of the RC column during pseudo-static tests are generally close to its
real situation. Therefore, it is reasonable to validate the ANN-based bi-linear and tri-linear LP model
through a quasi-stable test on a frame. This test was conducted by [42], and the simulation is carried out
using the Open System for Earthquake Engineering Simulation (OpenSEES, [28]) platform, as shown
in Figure 13a. Each column was simulated by one elastic element and two zero-length elements at the
two ends, as shown in Table 5. As illustrated in Figure 13b, the ANN-based LP model can provide
an acceptable prediction result, especially for the envelope curve. It also shows that the ANN-based
tri-linear model performs better than the bi-linear one during the whole hysteresis curve prediction
process, especially after the capping point.

Table 5. ANN-based method for the LP model of the RC column sample [42].

Model Parameters

ANN model Fmax = 27.50 kN, δu = 4.53%, δc = 1.85%, δy = 1.17%

Bi-linear model Ke = 1119 kN·m/rad, My = 13.09 kN·m, b = 0.061

Tri-linear model Ke = 1119 kN·m/rad, My = 13.09 kN·m, βl = 0.18, βc = −0.128, Mc/My = 1.17
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4.3.2. Comparison with Shake Table Test

For further validation, a time history response comparison was performed between the proposed
ANN-based method and a shaking table test of a single-story RC frame [43]. As shown in Figure 14,
the frame consists of two identical columns and a rigid link beam. Each column is modeled by one elastic
element and two flexural springs at the two ends. Based on their properties, the ANN model was used
to predict their strength and deformation capacities, as presented in Table 6. Therefore, the parameters
for bilinear model (My, Ke, b) and tri-linear model parameters (Ke, My, βl, βc, Mc/My) of their LP models
were calculated, based on which the FE model was developed on the OpenSEES platform.

During the test, the structure was subjected to a scaled ground motion with PGA = 1.28 g (recorded
by TCU076NS in the 1999 Chi-Chi earthquake), as shown in Figure 15a. After performing the dynamic
time history analysis, the drift response of the specimen was obtained and compared with the test result,
as is shown in Figure 15b. It is observed that the ANN-based LP models can provide an acceptable
estimation of the drift response before the collapse of the frame structure, especially for the tri-linear
one. The corresponding maximum error of the drift response before the time of 22.6 s between the
ANN-based tri-linear model and the test is very small. However, due to the limitation of the LP model
itself, the collapse phenomenon of the specimen could not have been directly represented during the
simulation. In spite of that, the proposed ANN-based model-free and data-driven method is still an
effective and reliable candidate for the researchers and engineers to determine the key parameters of
RC columns during finite element analysis.Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 21 
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Table 6. ANN-based method for the LP model of RC column sample S2 [43].

Model Parameters

ANN model Fmax = 36.62 kN, δu = 4.53%, δc = 1.85%, δy = 0.99%

Bi-linear model Ke = 2720 kN·m/rad, My = 26.92 kN·m, b = 0.0494

Tri-linear model Ke = 2720 kN·m/rad, My = 26.92 kN·m, βl = 0.203, βc = −0.087, Mc/My = 1.17
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The developed ANN-based model for the LP parameters of RC columns has been already
implemented in an efficient Matlab GUI, anyone has access to it in the supplementary materials.

5. Conclusions

This study explored the possibility of using an ANN-based method to rapidly determine the
seismic performance of RC columns, as well as the development of the LP model for them. An ANN
model was established and validated based on the large database of 1163 cyclic tests of RC columns to
predict the strength and the yielding, capping and ultimate deformation capacities, which are critical
for the commonly-used LP model. The following conclusions are drawn:

1. On the basis of a large historical experimental database and advanced humanlike information
processing algorithm, the proposed model-free method in this study can rapidly get more
accurate input parameters for any bilinear and tri-linear LP model than current explicit formulas.
The accuracy of the proposed method can also have been improved with the increment of the
sample quantity of the database.

2. The validation results through both the collected experimental data and several existing functions
indicate that the ANN-based method can be effectively used to predict the most important
characteristics of RC columns, which are also critical for the further modeling of structures.
In addition, another advantage of the proposed model-free method is that the quantity of the input
features could be easily changed according to the requirement of an arbitrary multi-linear model.

3. The ANN-based LP model can help reduce the subjective and experimental errors. The prediction
results of the RC frame structures using the well-trained ANN-based LP model show a good
agreement with both the quasi-static and shaking table test results, especially for the pre-collapse
stage. Thus, the model-free method based on the machine learning theory will be an innovative
and promising approach for a fast seismic performance evaluation of the buildings and bridges
in the future.

Thus, the model-free method based on the machine learning theory (e.g., ANN method) can
be used as a promising surrogate for the rapid seismic performance evaluation of the buildings and
bridges in the future.
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Supplementary Materials: The well-trained ANN-based model for the LP parameters of RC columns has been
already implemented in an efficient Matlab GUI, which is available for the users, including both of the researchers
and engineers to quickly evaluate the seismic performance of RC columns as well as RC structures. Anyone who
is interested in the ANN-based LP model of RC column in this study may contact the author or download the
program from the following address: https://www.dropbox.com/s/8aq3qreiochn26o/ANNLPGUI.zip?dl=0.
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Appendix A

Table A1. Details of specimens included in the database.

References Number of
Specimens Width (mm) Shear Span (mm) Concrete Strength

(MPa) Axial Load Ratio

Berry and Eberhard [44] 132 150~550 160~2200 16~160 0.0~0.8

Browning et al. [26] 168 80~800 80~2500 13~116 0.0~0.9

Yun [45] 6 510 1778 62.1~64.1 0.20~0.34

Ho and Johnny [46] 20 325 1515 56.5~111.1 0.11~0.55

Ongsupankul et al. [47] 4 400 1550 29.61~32.36 0.07~0.08

Woodward and Jirsa [48] 5 300 455 31~41 0.0~0.21

Bayrak [49] 24 250~350 1473 70.8~112.1 0.31~0.53

Mo and Wang [50] 9 400 1400 24.9~27.5 0.1~0.21

Paultre et al. [51] 8 305 2150 78.7~110 0.35~0.53

Xiao and Yun [52] 6 510 1778 62.1, 64.1 0.2~0.34

Lam et al. [53] 9 160~267 400~480 42, 47 0.4~0.65

Hwang and Yun [54] 8 200 300 68.3~70.3 0.3

Moretti and Tassios [7] 8 250 250~750 35~49 0.3,0.6

Ahn and Shin [55] 20 240 500 32~70 0.3~0.5

Woods et al. [56] 7 203 625 69 0.16

Marefat et al. [57] 7 150~200 750 20~28 0.16~0.31

Xiao et al. [58] 6 200 850 60, 90 0.38~0.54

Bae [59] 5 610, 440 2630 29.6~43.4 0.2, 0.5

Cao [60] 10 250, 350 600, 850 22.6~32.5 0.2~0.5

Ou et al. [61] 8 600 900 92.5~121 0.1, 0.2

Abdelsamie et al. [62] 7 250 700, 1050 26.6~151.4 0

Martirossyan and Xiao [63] 6 254 508 76, 86 0.1, 0.2

Li et al. [64] 8 300 250~500 23.4~27.5 0.09~0.29

Nakamura et al. [65] 6 450 450, 700 25, 28 0.16~0.18

Popa et al. [66] 7 300 450 18~29 0.2~0.4

Jin et al. [67] 8 150 495~660 34~73 0.09, 0.13

Bechtoula et al. [68] 10 325~520 813~1300 80, 130 0.3

El-Attar et al. [69] 7 150 870 141 0~0.35

Personal communications 626 150~900 150~3500 20~180 0~0.9
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