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Featured Application: The current work might be appropriate for fast detection and identification
of unknown signals whose time of occurrence cannot be predicted, which can arise from diverse
engineering problems such as fault detection and diagnosis of dynamic systems, maneuver
detection and tracking of moving objects, etc.

Abstract: In this paper, a finite memory structure (FMS) filtering with two kinds of measurement
windows is proposed using the chi-square test statistic to cover nominal systems as well as temporarily
uncertain systems. First, the simple matrix form for the FMS filter is developed from the conditional
density of the current state given finite past measurements. Then, one of the two FMS filters, the
primary FMS filter or the secondary FMS filter, with different measurement windows is operated
selectively according to the presence or absence of uncertainty, to obtain a valid estimate. The
primary FMS filter is selected for the nominal system and the secondary FMS filter is selected for the
temporarily uncertain system, respectively. A declaration rule is defined to indicate the presence or
absence of uncertainty, operate the suitable one from two filters, and then obtain the valid filtered
estimate. A test variable for the declaration rule is developed using a chi-square test statistic from
the estimation error and compared to a precomputed threshold. In order to verify the proposed
selective FMS filtering and compare with the existing FMS filter and the infinite memory structure
(IMS) filter, computer simulations are performed for a selection of dynamic systems including a
F404 gas turbine aircraft engine and an electric motor. Simulation results confirm that the proposed
selective FMS filtering works well for nominal systems as well as temporarily uncertain systems. In
addition, the proposed selective FMS filtering is shown to be remarkably better than the IMS filtering
for the temporarily uncertain system.

Keywords: chi-square test statistic; declaration rule; estimation filtering; temporary uncertainty;
test variable

1. Introduction

Feature selection is known as one of core concepts in the field of machine learning based fault
diagnosis [1–3]. There are several feature selection approaches available such as information gain,
mutual information, and the chi-square test [4–6]. Among them, the chi-square, also written as χ2, test
statistic can be also used for abnormal signal detection [7,8]. The chi-square test statistic is developed
from the difference between two variables such as the original state and its filtered estimate, and then
compared with a precomputed threshold to detect abnormal signals.

Meanwhile, in contrast to the recursive infinite memory structure (IMS) filter like the traditionally
used Kalman filter [9–12], the finite memory structure (FMS) filter has been known to have inherent
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good properties such as bounded-input, bounded-output (BIBO) stability and and more robustness
against temporary uncertainties due to its processing manner of finite measurements on the most
recent window [13–16]. Thus, the FMS filter has been applied successfully for various engineering
problems [17–23]. As shown in [13–16], the FMS filter is known to have better noise suppression as
the measurement window length grows. In other words, the noise suppression of the FMS filter is
closely related to the measurement window length. However, even if the FMS filter can show greater
noise suppression as the window length increases, the tracking speed of the state estimate for the
actual state variable worsens in proportion to the window length, which can degrade the estimation
performance of the FMS filter. This implies the FMS filter requires a compromise between the noise
suppression and the tracking speed of the state estimate. According to this observation, the estimation
error of the FMS filter with a short measurement window length is smaller than that of the FMS filter
with a long measurement window length, while uncertainty exists. In addition, the convergence of
the estimation error for the FMS filter with a short window length is much faster than that of the FMS
filter with a long window length when temporary uncertainty is disappearing. This means that the
FMS filter with a short window length is superior in terms of the tracking ability. Thus, if the FMS
filter with a short window length is applied to temporarily uncertain systems, it can outperform the
FMS filter with a long window length, although the FMS filter with a short window length is designed
without considering the robustness.

This paper proposes an FMS filtering with two kinds of measurement windows using the
chi-square test statistic to cover the nominal system as well as the temporarily uncertain system.
The simple matrix form for the FMS filter is developed from the conditional density of the current
state given finite past measurements. Then, one of the two FMS filters, the primary FMS filter and
the secondary FMS filter, with different measurement windows is operated selectively to obtain the
valid estimate according to presence or absence of uncertainty. The primary FMS filter is selected for
the nominal system and the secondary FMS filter is selected for the temporarily uncertain system,
respectively. A declaration rule is defined to indicate the presence or absence of uncertainty, operate
the suitable one from two filters, and then obtain the valid filtered estimate. A test variable for the
declaration rule is developed using a chi-square test statistic from the estimation error and compared
with a precomputed threshold. Finally, computer simulations are performed for a two kinds of dynamic
systems such as a F404 gas turbine aircraft engine and electric motor to verify the proposed selective
FMS filtering with two kinds of measurement windows and compare with existing FMS filtering and
IMS filtering. Through computer simulation works, it is confirmed that the proposed selective FMS
filtering works well for the nominal system as well as the temporarily uncertain system. It is also
shown that the proposed selective FMS filtering can be remarkably better than the IMS filtering for the
temporarily uncertain system.

This paper is organized as follows. In Section 2, the FMS filter is introduced. In Section 3, the
selective FMS filtering with two kinds of measurement windows is proposed. In Section 4, computer
simulations are performed. Finally, conclusions are presented in Section 5.

2. Finite Memory Structure Filter from the Conditional Density of the Current State Given
Finite Measurements

As shown in [9–23], the state-space approach has been a general method for modeling, analyzing
and designing a wide range of control and estimation problems in diverse dynamic systems, and
has been especially suitable for digital computation techniques. Therefore, in this paper, a general
discrete-time state space model with noises is considered as follows:

xi+1 = Axi + Gwi, (1)

zi = Cxi + vi, (2)
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where xi ∈ <n is the unknown state vector of the state variables and zi ∈ <q is the sensor measurement
vector of the output variables. The state vector xi consists of n state variables and describes a dynamic
system by a set of first-order difference equations with the state transition matrix A. A description of
the dynamic system in terms of a set of state variables does not necessarily include all of the variables
of direct engineering interest. Therefore, the sensor measurement vector zi is defined to be any system
variable of interest using the output matrix C. Thus, the state transition matrix A is the property of
the dynamic system and is determined by the system structure and elements. The output matrix C
is determined by the particular choice of output variables. For example, in the electric motor system
that will be covered in computer simulations, the state vector xi consists of two state variables such as
armature current and rotational speed. The state transition matrix A contains physical elements such
as armature resistance, armature inductance, motor inertial coefficient, etc. The sensor measurement
vector zi is defined with the output matrix C to be the rotational speed that measured by corresponding
sensor. The state vector xi0 at the initial time i0 of system is a random variable with a mean x̄i0 and a
covariance Pi0 . A dynamic system can often contains noises such as the system noise wi ∈ <p and the
measurement noise vi ∈ <q. These noises are random variables with zero-mean white Gaussian and
are mutually uncorrelated. In addition, these noises are also uncorrelated with the initial state vector
xi0 . The covariances of noises wi and vi are denoted by Q and R, respectively and they are assumed
to be positive definite matrices. Since these noises can cause system performance degradation, the
system output, i.e., the rotational speed in the electric motor system, should be corrected using the
state estimation filtering.

To overcome shortcomings of the IMS filter like the traditionally used Kalman filter, the FMS
filter has been developed by combining the Kalman filter with the moving window strategy [13–16].
The window of finite measurements moves forward with each sampling time when a new measurement
is available from sensors. In other words, the FMS filter utilizes only the finite number of measurements
on the most recent filtering window while discarding past measurements outside the filtering window.

The FMS filter, denoted by x̂i at the current time i, is developed using the finite number of
measurements, denoted by ZM. From the discrete-time state space model (1) and (2), the finite
measurements ZM on the most recent window [i−M, i] can be expressed by the following regression
form in terms of the state xi at the current time i:

ZM = ΓMxi + ΛMWM + VM, (3)

where ZM, WM, VM and matrices ΓM, ΛM are defined as follows:

ZM
4
=


zi−M

zi−M+1
zi−M+2

...
zi−1

 , WM
4
=


wi−M

wi−M+1
wi−M+2

...
wi−1

 , VM
4
=


vi−M

vi−M+1
vi−M+2

...
vi−1

 , (4)

ΓM
4
=


CA−M

CA−M+1

CA−M+2

...
CA−1

 , ΛM
4
=


CA−1G CA−2G · · · CA−MG

0 CA−1G · · · CA−M+1G
0 0 · · · CA−M+2G
...

...
...

...
0 0 · · · CA−1G

 , (5)

where notations CA∗ and CA∗G are shorthand for matrix multiplications C · A∗ and C · A∗ · G,
respectively. The noise term ΛMWM + VM in (3) is zero-mean white Gaussian as follows:

ΛMWM + VM ∼ N
(
ZM; 0, ΠM

)
, (6)
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where N
(
ZM; 0, ΠM

)
denotes the Gaussian probability density function (pdf) evaluated at ZM with

zero-mean and covariance matrix

ΠM
4
= ΛM

[
diag(

M︷ ︸︸ ︷
Q Q Q · · · Q)

]
ΛM

T +
[
diag(

M︷ ︸︸ ︷
R R R · · · R)

]
, (7)

where diag(Q Q Q · · · Q) and diag(R R R · · · R) denote block-diagonal matrices with M elements
of Q and R, respectively.

As shown in Bayesian filtering approaches [15,16], the FMS filter can be interested in the pdf
that is conditional on a finite past measurements ZM on the most recent window [i−M, i]. The most
recent window [i−M, i] becomes the averaging window of M points. Existing FMS filters in [15,16]
have an iterative form, while this paper develops an alternative FMS filter with a simple matrix
form. To develop an alternative FMS filter, the conditional density of current state xi given finite
measurements ZM is derived.

Proposition 1. From the linearity described in (3), the conditional density of current state xi given finite
measurements ZM has the following expression:

p
(

xi|ZM) = N
(
xi; x̂i, ΣM

)
, (8)

where N
(

xi; x̂i, ΣM
)

denotes the Gaussian pdf evaluated at xi with mean x̂i and covariance matrix ΣM
as follows:

x̂i =
(
ΓT

MΠ−1
M ΓM

)−1ΓT
MΠ−1

M ZM, ΣM =
(
ΓT

MΠ−1
M ΓM

)−1. (9)

Proof. On the most recent window [i−M, i], ZM (3) can be expressed by

ΓMxi = ZM −
(
ΛMWM + VM

)
(10)

with the noise term (6). Then, multiplying both sides of (10) by(
ΓT

MΠ−1
M ΓM

)−1ΓT
i Π−1

M

leads to

xi =
(
ΓT

MΠ−1
M ΓM

)−1ΓT
MΠ−1

M

[
ZM −

(
ΛMWM + VM

)]
=

(
ΓT

MΠ−1
M ΓM

)−1ΓT
MΠ−1

M ZM −
(
ΓT

MΠ−1
M ΓM

)−1ΓT
MΠ−1

M
(
ΛMWM + VM

)
. (11)

Hence, for given finite measurements ZM, the Equation (11) clearly means that the current state xi is a
multi-variate Gaussian with its mean

x̂i =
(
ΓT

MΠ−1
M ΓM

)−1ΓT
MΠ−1

M ZM,

and covariance

ΣM =
[(

ΓT
MΠ−1

M ΓM
)−1ΓT

MΠ−1
M

]
Πi

[
Π−1

M ΓM
(
ΓT

MΠ−1
M ΓM

)−1
]

=
(
ΓT

MΠ−1
M ΓM

)−1(ΓT
MΠ−1

M ΓM
)(

ΓT
MΠ−1

M ΓM
)−1

=
(
ΓT

MΠ−1
M ΓM

)−1.
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Therefore, the conditional density of current state xi given finite measurements ZM has the following
expression:

p
(

xi|ZM
)
= N

(
xi; x̂i, ΣM

)
.

This completes the proof.

Therefore, from the conditional density (8) of current state xi, the FMS filter with the following
simple matrix form

x̂i =
(
ΓT

MΠ−1
M ΓM

)−1ΓT
MΠ−1

M ZM (12)

provides the state estimate x̂i conditional on finite measurements ZM.
As shown in [13], by applying the best linear unbiased estimation approach, the batch unbiased

finite impulse response (FIR) filter with the matrix form was developed with the unbiased constraint
when the covariance ΠM of the noise term ΛMWM + VM (6) has an identity matrix. On the other hand,
by applying the Bayesian approach in this paper, the simple matrix form (12) for the FMS filter is
derived in an alternative way using mean x̂i and covariance value ΣM of Gaussian pdf evaluated at xi.
There is a remarkable observation that the simple matrix form (12) for the FMS filter developed by
applying the Bayesian approach is equivalent to the existing batch unbiased FIR filter if the covariance
ΠM of the noise term ΛMWM + VM is assumed as the identity matrix.

The simple matrix form (12) for the FMS filter can have several good intrinsic properties such as
unbiasedness, deadbeat, and robustness according to [13–16]. Thus, the simple matrix form (12) for
the FMS filter might be very useful for diverse filtering problems such as high accuracy measurement
processing [24] and multilayer node event processing [25].

Note that the inverse of the state transition matrix A is required to implement the simple matrix
form (12) for the FMS filter, which seems to limit practical implementations. However, even though
most dynamic systems are modeled in continuous time, these continuous time dynamic systems
are generally discretized because they are operated in a digital system environment for practical
implementations. When a continuous-time state space model ẋ(t) = Acx(t) is discretized with the
sampling time T, the corresponding sampled-data system is given by xi+1 = Adxi with Ad = eAcT .
Therefore, the assumption for invertibility of state transition matrix A in the discrete-time state space
model is not too restrictive for practical implementations. Actually, this assumption has been accepted
in the IMS filter such as the information form of Kalman filter [10] as well as the FMS filter such as the
batch unbiased FIR filter [13].

3. Selective FMS Filtering with Two Kinds of Measurement Windows

3.1. Temporary Model Uncertainty and Window Length

Even if many kinds of dynamic systems can be accurate on a long time scale, they may experience
unpredictable situations, such as jumps in frequency, phase, and velocity. These are called temporary
model uncertainties since these effects usually occur over a short time interval [13]. Unknown faults,
unknown inputs, and modeling errors in dynamic systems can be temporary uncertainties. The FMS
filter should be robust to minimize the effects of these temporary uncertainties.

To deal with temporary uncertainties, how to get a proper measurement window length M for
the FMS filter might be important issue. The window length affects differently the performance of the
FMS filter according to presence or absence of temporary uncertainties. The FMS filter is well known
to have better noise suppression as the window length grows. In other words, the noise suppression of
the FMS filter is closely related to the window length. However, even if the FMS filter can show greater
noise suppression as the window length increases, the tracking speed of state estimate for actual state
variable worsens in proportion to the window length, which can degrade the estimation performance
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of the FMS filter. This means that the FMS filter requires a compromise between the noise suppression
and the tracking speed of the state estimate.

3.2. Detecting Uncertainty and Selecting Valid Estimate Using Chi-Square Test Statistic

According to the above observation, the estimation error of the FMS filter with a short window
length is smaller than that of the FMS filter with a long window length while uncertainty exists. In
addition, the convergence of the estimation error for the FMS filter with a short window length is
much faster than that of the FMS filter with a long window length when temporary uncertainty is
disappearing. This means that the FMS filter with a short window length is superior in terms of
the tracking ability. Thus, although the FMS filter with a short window length is designed without
considering the robustness, the FMS filter with a short window length can outperform the FMS filter
with a long window length when applied to temporarily uncertain systems. Meanwhile, the FMS
filter with a long window length can be better than the FMS filter with a short window length for
the nominal system where temporary uncertainty completely disappears or there is no temporary
uncertainty.

In this section, the FMS filtering estimation is proposed to cover the nominal system as well as
the temporarily uncertain system by applying two kinds of FMS filters selectively. Two kinds of FMS
filters are defined by the primary FMS filter with long window length Mp and the secondary FMS filter
with short window length Ms. That is, the window length Mp is larger than the window length Ms.

Using the simple matrix form (12) for the FMS filter, the primary FMS filter is denoted by x̂p
i and

has the window length Mp as follows:

x̂p
i =

(
ΓT

Mp
Π−1

Mp
ΓMp

)−1ΓT
Mp

Π−1
Mp

ZMp , (13)

and the secondary FMS filter is denoted by x̂s
i and has the window length Ms as follows:

x̂s
i =

(
ΓT

Ms
Π−1

Ms
ΓMs

)−1ΓT
Ms

Π−1
Ms

ZMs , (14)

where ΓMp , ΠMp , ZMp , ΓMs , ΠMs and ZMs can be obtained from (5) and (7). Because {A, C} is
observable for Mp ≥ n and Ms ≥ n, matrices ΓMs and ΓMp are of full rank. Since matrices ΠMp

and ΠMs are positive definite, their inversion exists. Thus, matrices ΓT
Mp

Π−1
Mp

ΓMp and ΓT
Ms

Π−1
Ms

ΓMs

are nonsingular and thus their inversion also exists. Matrices
(
ΓT

Mp
Π−1

Mp
ΓMp

)−1ΓT
Mp

Π−1
Mp

in (13)

and
(
ΓT

Ms
Π−1

Ms
ΓMs

)−1ΓT
Ms

Π−1
Ms

in (14) need only one computation on the interval [0, Mp] and [0, Ms],
respectively, once. And then, they are time-invariant for all moving windows. Thus, two FMS filters
x̂p

i (13) and x̂s
i (14) are time-invariant.

One of the two FMS filtered estimates is selected as the valid estimate according to presence or
absence of uncertainty. The primary FMS filter x̂p

i is selected as the valid estimate x̂i for the nominal
system and the secondary FMS filter x̂s

i is selected as the valid estimate x̂i for the temporarily uncertain
system as follows:

x̂i =

{
x̂p

i in case of nominal system,

x̂s
i in case of temporarily uncertain system.

In order to indicate presence or absence of uncertainty, operate the suitable one from two filters, and
then obtain the valid filtered estimate, a declaration rule is defined. The declaration rule determines
two declaration cases of uncertainty presence and absence. The uncertainty presence indicates that the
uncertainty occurs from the nominal system. On the other hand, the uncertainty absence indicates that
the uncertainty is gone. A test variable ti required for the uncertainty presence and absence declaration
is formulated by the estimation error of the primary FMS filter x̂p

i as follows:

ti = (xi − x̂p
i )

TΣ−1
Mp

(xi − x̂p
i ). (15)
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The matrix Σ−1
Mp

is the covariance of xi − x̂p
i and obtained from (9). Since the estimation error xi − x̂p

i is
in Gaussian distribution, the test variable (15) is in the chi-squared distribution with one degree of
freedom. The chi-square, also written as χ2, test statistic can be known as one of the feature selection
methods [4–6]. As shown in (15), a chi-square test statistic is developed from the difference between
a state and its filtered estimate and then compared with a precomputed threshold for uncertainty
presence and absence declaration.

The test variable ti increases from the chi-squared distribution in proportion to the power of
the uncertainty if an uncertainty appears. On the other hand, the test variable ti decreases from the
chi-squared distribution in proportion to the power of the uncertainty if an uncertainty disappears.
Hence, comparing the test variable ti to a threshold value γ can declare the presence or absence
of uncertainty.

A threshold value is precomputed to compare with the test variable. The threshold value is
set relatively to the sensitivity of the estimation error xi − x̂p

i . That is, a too low threshold value
causes an excessive false alarm rate, on the other hand, a too high one brings about insensitive
uncertainty presence declaration. Hence, a threshold value can be precomputed from the chi-squared
distribution function with the consideration of rational probability false alarm (PFA) because the test
variable (15) forms a chi-squared distribution. The relationship between the threshold value and the
PFA is represented by the following one degree of freedom chi-squared distribution function:

PFA = 1− Pχ2(γ∗) = 1− 1
2.5066

∫ γ∗

0
ε−1/2e−ε/2dε,

where γ∗ stands for the threshold value.
Thus, when ti > γ∗, the secondary FMS filter x̂s

i is selected as the valid estimate x̂i, which indicates
that the uncertainty occurs. And then, when ti < γ∗, the primary FMS filter x̂p

i is selected as the valid
estimate x̂i, which indicates that the uncertainty disappears as follows:

x̂i =

{
x̂p

i if ti ≤ γ∗ (uncertainty absence),

x̂s
i if ti > γ∗ (uncertainty presence).

(16)

The overall operation flow of the proposed selective FMS filtering is shown in Figure 1.

Figure 1. Operation flow for the proposed selective finite memory structure (FMS) filtering. False
alarm (PFA).
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4. Extensive Computer Simulations

To verify the applicability of the proposed selective FMS filtering with two kinds of measurement
windows and to compare it with the standard FMS filter with one measurement window as well as the
Kalman filter, extensive computer simulations using the well-known commercial software Matlab are
performed for a couple of discrete-time dynamic systems such as a F404 gas turbine aircraft engine
and electric motor.

4.1. F404 Gas Turbine Aircraft Engine and Electric Motor Systems

The F404 gas turbine aircraft engine is known as a reliable and high performance engine [21,26].
The discrete-time nominal F404 gas turbine aircraft engine model without model uncertainty is given
as follows:

A =

 0.9305 0 0.1107
0.0077 0.9802 −0.0173
0.0142 0 0.8953

 , G =

 1
1
1

 , C =

[
1 0 0
0 1 0

]
. (17)

Covariances for system and measurement noises are taken as Q = 0.52 and R = I2×2, respectively.
Two kinds of measurement window lengths are taken as Mp = 20 and Ms = 10, respectively.

An electric motor is an electrical machine that converts electrical energy into mechanical energy.
In particular, the electric motor powered by direct current source is the most widely and successfully
adopted in motor control systems due to the intrinsic good properties such as efficient cost, high
performance, etc. [20,27]. The discrete-time nominal direct current electric motor model without model
uncertainty is given as follows:

A =

[
0.8178 −0.0011
0.0563 0.3678

]
, G =

[
0.0006 0

0 0.0057

]
, C =

[
1 0

]
, (18)

where the electric motor is assumed to be operated without any payload. The electric motor encounters
the input voltage to drive the motor as an external source which is treated as a control input and
emulated by the unit step for simulations. Covariances for system and measurement noises are taken
as Q = 0.012 I2×2 and R = 0.012, respectively. Two kinds of measurement window lengths are taken as
Mp = 20 and Ms = 10, respectively.

Both discrete-time state space models (17) and (18) are obtained from the Matlab function c2d

which discretizes the continuous-time dynamic system model with sampling time 0.1 s. Simulations of
20 runs are performed using different system and measurement noises to make the comparison clearer.
Each single simulation run lasts 600 samples.

4.2. Model Uncertainties

For simulations, a model uncertainty is considered as a temporary uncertainty. That is, considering
temporary uncertainties, the actual state space model for the F404 gas turbine aircraft engine system
and the electric motor system becomes

Ā = A + ∆A, C̄ = C + ∆C, (19)
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where ∆A and ∆C for the F404 gas turbine aircraft engine system are emulated by

∆A =

 δi 0 0
0 δi 0
0 0 δi

 , ∆C =

[
0.1δi 0 0

0 0.1δi 0

]
,

δi =

{
0.05 if 200 ≤ i ≤ 250,

0 otherwise,
(20)

and for the electric motor system are emulated by

∆A =

[
δi 0
0 δi

]
, ∆C =

[
0.1δi 0

]
,

δi =

{
0.05 if 200 ≤ i ≤ 350,

0 otherwise.
(21)

Hence, although two FMS filters x̂p
i (13) and x̂s

i (14) are designed for the nominal state space
models (17) and (18) with A and C, they are applied actually for the temporarily uncertain system (19)
with model uncertainties (20) and (21), respectively.

4.3. Discussion of Simulation Results

For both systems, the threshold value is set to γ = 7.88 corresponding to PFA=0.0005 in the
proposed selective FMS filtering. Figures 2 and 3 show test variables for uncertainty presence and
absence declaration.

For the F404 gas turbine aircraft engine system, Figure 4 shows estimation errors for the second
state indicating turbine temperature for three filters, the primary FMS filter with Mp = 20, the
secondary FMS filter with Ms = 10, and the IMS filter. For the electric motor system, Figure 5 shows
estimation errors for the second state indicating rotational speed for three filters, the primary FMS
filter with Mp = 20, the secondary FMS filter with Ms = 10, and the IMS filter.

50 100 150 200 250 300 350 400 450 500 550 600
0

50

100

150

200

250

300
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400
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500

γ = 7.88 corresponding to PFA = 0.0005

 

 

Test variable
Threshold value

Figure 2. Test variable for the F404 gas turbine aircraft engine system.
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Figure 3. Test variable for the electric motor system.

According to the declaration rule (16) using the test variable (15) and the threshold value
γ = 7.88 corresponding to PFA = 0.0005, the proposed selective FMS filtering with two kinds of
measurement windows provides the state estimate as shown in Figures 6–8 and Figures 9–11 which
show comparisons with three other filters. In addition, time averaged values of root mean square
(RMS) estimation errors are presented in Table 1 for 20 simulations. As shown in simulation results,
the proposed selective FMS filtering with two kinds of measurement windows can be better than the
primary FMS filter and the IMS filter in terms of error magnitude and error convergence on the interval
where modeling uncertainty exists. In addition, the proposed selective FMS filtering can be better than
the secondary FMS filter when there is no temporary model uncertainty or after temporary model
uncertainty is gone. These observations on computer simulations show that the proposed selective
FMS filtering can work well in temporarily uncertain systems as well as in certain systems.
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Figure 4. Estimation errors of primary FMS, secondary FMS and infinite memory structure (IMS) filters
for the F404 gas turbine aircraft engine system.
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Figure 5. Estimation errors of the primary FMS, secondary FMS and IMS filters for the electric
motor system.
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Figure 6. Estimation errors of the proposed selective FMS and primary FMS filters for the F404 gas
turbine aircraft engine system.

Table 1. Comparison of mean of RMS estimation errors.

IMS (Kalman) Primary FMS Secondary FMS Selective FMS

F404 Gas Turbine Aircraft Engine 0.0876 0.0309 0.0307 0.0263
Electric Motor 0.0025 0.0023 0.0016 0.0015
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Figure 7. Estimation errors of the proposed selective FMS and secondary FMS filters for the F404 gas
turbine aircraft engine system.
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Figure 8. Estimation errors of the proposed selective FMS and IMS filters for the F404 gas turbine
aircraft engine system.
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Figure 9. Estimation errors of the proposed selective FMS and primary FMS filters for the electric
motor system.
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Figure 10. Estimation errors of the proposed selective FMS and secondary FMS filters for the electric
motor system.
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Figure 11. Estimation errors of the proposed selective FMS and IMS filters for the electric motor system.

5. Conclusions

This paper has proposed selective FMS filtering estimation with two kinds of measurement
windows using the chi-square test statistic in order to cover the nominal system as well as the
temporarily uncertain system. The simple matrix form for the FMS filter has been developed from
the conditional density of the current state given finite past measurements. Then, one of the two FMS
filters, the primary FMS filter and the secondary FMS filter, with different measurement windows
has been operated selectively to obtain the valid estimate according to the presence or absence of
uncertainty. The primary FMS filter has been selected for the nominal system and the secondary FMS
filter has been selected for the temporarily uncertain system, respectively. A declaration rule has
been defined to indicate the presence or absence of uncertainty, operate the suitable one from two
filters, and then obtain the valid filtered estimate. The test variables for the declaration rule have been
defined using the chi-squared distribution with one degree of freedom. Finally, extensive computer
simulations have been performed for an aircraft engine system as well as an electric motor system to
verify the proposed selective FMS filtering with two kinds of measurement windows and compare
with existing FMS filtering and IMS filtering. Through simulation results, it has been confirmed that
the proposed selective FMS filtering estimation works well for both nominal systems and temporarily
uncertain systems. It has been also shown that the proposed selective FMS filter can be remarkably
better than the IMS filter for the temporarily uncertain system.

In fact, the research work for the FMS filter is relatively inactive in the case where the system
and measurement noises are nonzero-mean Gaussian. Thus, an alternative selective FMS filtering for
nonzero-mean noises can be researched as future work.
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