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Abstract: Monin–Obukhov similarity theory (MOST) overestimates the mean vertical velocity
gradient in some atmospheric stable conditions, i.e., Richardson number R f < 0.25. To obtain a
given hub-height inflow velocity for a certain roughness length, this overestimated velocity gradient
underpredicts the friction wind speed and the turbulence intensity, potentially influencing wake
modeling of a wind turbine. This work investigates the side effects of the breakdown of MOST
on wake modeling under stable conditions and makes some modifications to the flow similarity
functions to eliminate these side effects. Based on a field measurement in a wind farm, we first
show that MOST predicts a larger velocity gradient for the atmospheric stability parameter ζ > 0.1
and proposes new flow similarity functions without constraining R f to limit the overestimated
velocity gradient. Next, different turbulence models based on MOST and a modified one based on the
new similarity functions are investigated through numerical simulations. These turbulence models
are combined with the actuator disk model (AD) and Reynolds-averaged Navier–Stokes equations
(RANS) to model wind turbine wakes under stable conditions. As compared to measurements,
numerical results show that turbulence models based on MOST result in a larger wake deficit and a
slower wake recovery rate with a root-mean-squared error (RSME) of wake deficit in the range of
0.07 to 0.20. This overestimated wake effect is improved by applying the new similarity functions,
and the RSME of wake deficit is reduced by 0.05 on average.

Keywords: wind turbine; wake; MOST; turbulence models; similarity functions; stable conditions;
wind gradient

1. Introduction

As a measure of turbulence exchanges in the atmospheric surface layer, atmospheric stability can
significantly affect the wind turbine wake deficit and its recovery rate. In general, turbulence exchanges
between the wake and atmosphere are depressed under stable conditions. High wake deficits and slow
wake recovery, thus, are usually observed in the stable stratification boundary layer [1,2]. As wakes
play critical roles in wind farm energy production and the fatigue loads of wind turbines, there is an
increasing interest in studying the effects of atmospheric stability on wakes and developing wake
models for non-neutral conditions.

The impact of atmospheric stability on wakes is widely observed in wind tunnel measurements
of small-scale models of wind turbines [3–5] and full-scale field experiments [1,2,6–8]. According to
the wind tunnel measurements in Chamorror et al. [3], the stronger inlet velocity gradient in the stable
case leads to a slightly stronger turbulence intensity and extends the region of enhanced turbulence
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intensity from a distance of approximately 4 to 5.5 rotor diameters to 3 and 6 rotor diameters downwind
of the turbine location. In Zhang et al. [4], a 15% smaller velocity deficit at the wake center, a more
rapid momentum recovery due to an enhanced radial momentum transport, and 20% higher peak
turbulence intensity were observed in the unstable case, as compared to the wake of the same wind
turbine under neutral conditions. According to the field experiments of wakes using LiDARs or masts,
Magnusson et al. [6], Iungo et al. [7], and Han et al. [2] also found that the velocity deficit decreases
more slowly under stable conditions and more quickly under unstable conditions. Those observations
suggest that atmospheric stability should be considered for improved wake models and predictions of
wind power harvesting.

Besides field measurements and wind tunnel experiments of wind turbine wakes under
non-neutral conditions, numerical models based on the computational fluid dynamics (CFD) have
also been used to investigate the effect of atmospheric stability on the wind turbine wakes [1,9–14].
High-fidelity large eddy simulations (LES) with the actuator line model [9,10] or the actuator disk
model [1,11] are commonly used to study the structure and dynamics of wind turbine wakes in varying
stability cases. This is mainly because the LES approaches allow capturing the near wake structure
and resolving the interactions of tip vortices with large-scale eddies of the ambient flow and wake
meandering. However, the high-fidelity approaches are computationally expensive for wind energy
engineering applications. There are some efforts towards developing turbulence models for wind
turbine wakes under non-neutral conditions in reynolds-averaged navier–Stokes (RANS) to reduce
computational costs.

A widely used turbulence model for the thermal stratified boundary layer was developed by
Alinot and Masson [15], where a coefficient of the buoyant terms in the transport equation of the
turbulence kinetic energy dissipation is calibrated with atmospheric stability. However, van der
Laan et al. [16] showed that this model cannot keep the flow homogeneity in a large domain under
unstable conditions and thus developed a turbulence model consistent with monin–obukhov similarity
theory (MOST). In [13], an additional buoyancy production based on the Richardson number, Ri,
was added to the turbulent kinetic energy equation to model wind turbine wakes under stable
conditions. El-Askary et al. [14] further applied this model with an additionally dissipation source
term to investigate the wake behavior at different atmospheric stability conditions. Note that these
turbulence models are based on MOST and could fail in modeling wind turbine wakes when MOST
breaks down under stable conditions for the flux Richardson number R f > 0.25. According to the
literature [17,18], the classical similarity functions that are widely used in MOST to determine the
wind profile are only valid for R f < 0.25 and overestimate the velocity gradient for R f > 0.25. For a
given aerodynamic roughness z0 and a hub-height inflow velocity, this overestimated velocity gradient
results in a smaller friction wind speed u∗, and consequently a lower turbulence intensity, and could
influence wake modeling of wind turbines.

To the best of our knowledge, the side effects of the breakdown of MOST on wake modeling
under stable conditions have not been well investigated. The present paper aims to investigate these
side effects through numerical simulations and to make a modification on MOST to eliminate these
side effects. This modification proposes a new set of similarity functions based on field measurements
to limit the velocity gradient in very stable conditions and introduce the new similarity functions into
the turbulence model proposed by van der Laan et al. [16]. The remainder of this paper is organized as
follows. MOST is briefly described in Section 2. Models for wind turbine wakes under stable conditions
are introduced in Section 3, which cover two actuator disk models based on the thrust coefficient
and Blade Element Theory (BEM) calculations, and three turbulence models for stable conditions
based on MOST. Section 3 also proposes a modified turbulence model that can be consistent with
arbitrary similarity functions, e.g., the new similarity functions. The breakdown of MOST under stable
conditions is experimentally investigated and new similarity functions are proposed and validated
in Section 4. All test models are studied through numerical simulations: the simulation details are
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described in Section 5, and the results of the simulations are discussed in Section 6 and then concluded
in Section 7.

2. Monin–Obukhov Similarity Theory

According to MOST [19], any dimensionless characteristics of the turbulence depends only on the
dimensionless stability parameter ζ = z/L, where z is the height above the surface and the Obukhov
length L that is defined by

L ≡ − u3
∗

κ
g
Θ w′θ′

(1)

in which κ = 0.4, g is the gravity acceleration, Θ is the time-averaged potential temperature, θ′ is the
fluctuation of the potential temperature, and u∗ =

√
−u′w′ is the friction speed, where u′ and w′ are

the fluctuations of the longitudinal and vertical velocity components.
The flow similarity functions of the gradient of velocity, the gradient of potential temperature,

the turbulence kinetic energy, and its dissipation can thus be defined as

φm(ζ) ≡
κz
u∗

∂U
∂z

(2)

φh(ζ) ≡
κz
θ∗

∂Θ
∂z

(3)

φk(ζ) ≡
√

Cµ

u2∗
k (4)

φε(ζ) ≡
κz
u3∗

ε (5)

where U is the mean streamwise speed, θ∗ = −w′θ′/u∗ is the scaling temperature, Cµ = 0.033, k is
the turbulence kinetic energy (TKE), and ε is the TKE dissipation. According to the eddy viscosity
hypothesis by Boussinesq [20], we have

− ρu′w′ = µt
∂U
∂z

(6)

where ρ is the air density and the eddy viscosity is modeled in the k− ε model as [21]

µt = ρCµ
k2

ε
(7)

Combining the definitions of φm, φk, and φε with Equations (6) and (7) leads to

φk(ζ) =
√
(φε(ζ)/φm(ζ) (8)

Based on measurements of flows over flat terrain in the atmospheric surface layer, the classical
similarity functions commonly used in literature are given as [22,23]

φm,cls(ζ) =

{
(1− γmζ)−1/4 −2 < ζ < 0

1 + βmζ 0 < ζ < 1
(9)

φh,cls(ζ) =

{
χ(1− γhζ)−1/2 −2 < ζ < 0

χ + βhζ 0 < ζ < 1
(10)

φε,cls(ζ) =

{
1− ζ ζ < 0

φm,cls − ζ ζ > 0
(11)
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where γm = γh = 16, βm = βh = 5 [23], and χ will be determined based on field measurements in
Section 4. The classical similarity functions φm and φh are, however, only valid for the flux Richardson
number R f below 0.25 [17]. We thus proposed new functions, noted as φm,exp and φh,exp, in the full
range of R f based on a field experiment in a wind farm.

3. Models for Wind Turbine Wakes under Stable Conditions

In the present work, the numerical simulation of wind turbine wakes under atmospheric
stable conditions is based on RANS equations and the buoyancy effect due to atmospheric thermal
stratifications is also taken into account. The following continuity, momentum, and energy equations
are solved in wake simulations [15,24],

∂

∂xi
(ρUi) = 0 (12)

∂

∂t
(ρUi) +

∂

∂xj
(ρUiUj) = −

∂p
∂xi

+
∂

∂xj

[
(µ + µt)

(
∂Ui
∂xj

+
∂Uj

∂xi

)]
+ Su,i (13)

∂

∂t
(ρΘ) +

∂

∂xi
(ρUiΘ) =

∂

∂xi

[( µ

Pr
+ αt

) ∂Θ
∂xi

]
(14)

where ρ is the air density, Ui is the velocity component in the xi direction, p is the air pressure, µ is the
laminar viscosity, µt is the turbulent viscosity, Su,i is the momentum term source imposed by the wind
turbine rotor in the xi direction, Θ is the potential temperature, Pr = 0.9 is the laminar Prandtl number,
and αt ≡ µt/Prt is the turbulent heat conductivity, where Prt is the turbulent Prandtl number.

3.1. Modeling of Wind Turbine

In this work, we introduce two kinds of actuator disk models: one is based on the thrust coefficient
and another is based on BEM calculations to distribute forces through the disk. The second model,
which provides more detailed information of the distributed forces caused by the rotor, is expected to
capture near wake structure better than the first one. All simulations carried out in this work use the
AD model based on BEM calculations in advance if the geometry information of the blades is available.

3.1.1. Actuator Disk Model Based on Thrust Coefficient (-CT)

In the origin actuator disk model, the momentum source term in the xi direction due to the thrust
is uniformly distributed through the rotor:

Su,i = −
T

Vdisk

Uref, i

Uref
= −

ρCTUrefUref, i

2∆l
(15)

where T is the thrust, Vdisk is the disk volume, CT is the thrust coefficient, Uref is the upstream reference
velocity at hub height, Uref, i is the component velocity Uref of in xi direction, ∆l is the disk depth, and
the negative sign represents the drag effects of thrust on the flow.

For the upstream flow disturbed by a complex terrain or wind turbine wakes, Uref is unknown
and difficult to evaluate from the local flow directly. According to the one-dimensional momentum
theory and ignoring the velocity gradient, the reference velocity is a function of the rotor-averaged
velocity Udisk:

Udisk = (1− aB)Uref (16)

in which the induced factor aB [25] is related to the thrust coefficient CT by

aB =

 1
2 (1−

√
1− CT), CT ≤ 8

9
CT−4a2

c
4(1−2ac)

, CT > 8
9

(17)
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where ac = 1/3.
In simulations, the disk-averaged velocity Udisk is calculated by averaging the local velocity in the

disk region, then is applied to estimate the upstream reference velocity Uref based on Equations (16)
and (17) and the momentum source Su,i based on Equation (15), respectively.

3.1.2. Actuator Disk Model Based on Blade Element Method

In the BEM-based actuator disk model, the rotor plane consists of N actuator lines and each of the
actuator lines is split into M element sections (Figure 1). The element section collects the local velocity
and the rotor speed Ω to calculate the element force and applies this force in the neighbor cells of the
element section. The reference velocity is firstly assessed from the disk-averaged velocity and is then
applied to evaluate the rotor speed.

j

0

N-1

j+1j-1

Actuator disk plane

Force 
distribution

Airfoil element

Figure 1. Schemtaics of the Blade Element Theory (BEM)-based actuator disk model.

By transforming the local velocity at the blade element into polar velocity components (ur, uθ ,
and un), the force of the blade element is

−→
∆F =

B∆θ

4π
ρu2

relc(CL
−→eL + CD

−→eD)∆r (18)

where B is the number of the blades, c is the chord length, and ∆r is the length of the element section.
The drag coefficient of the element section, CD, and its lift coefficient, CL, which are functions of the
attack angle α, are estimated from XFOIL [26] and then corrected by three-dimensional rotational
effects of the blades based on Du et al. [27]. According to Figure 1, α = φ − (β + γ), where φ =

arctan [un/(Ωr + uθ)] is the flow angle, β is the blade installation angle, and γ is the pitch angle.
The element force is distributed across neighbor cells. The force added to a cell is calculated by

−−−→
∆Fcell =

N·M
∑

i

1
s3π3/2 exp

(
−

s2
i

s2

)
−→
∆FiFtipFhub∆Vcell (19)

where si the distance of the i-th element to the cell and s is the cut-off length scale that takes a value
between 2 and 3 cell sizes [28]. Ftip and Fhub are the Prandtl tip loss and hub loss functions [29]:

Ftip =
2
π

arccos
[

exp
(

B(R− r)
2r sin φ

)]
(20)

Fhub =
2
π

arccos
[

exp
(

B(r− Rhub)

2r sin φ

)]
(21)

where R is the rotor radius, Rhub is the hub radius, and r is the radial distance of the element to the
rotor center.
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3.2. Turbulence Modeling

In this paper, we apply the k− ε turbulence model to close Equations (12)–(14):

∂

∂t
(ρk) +

∂

∂xi
(ρUik) =

∂

∂xj

[(
µ +

µt

σk

)
∂k
∂xj

]
+ P + B − ρε− Sk,ABL (22)

∂

∂t
(ρε) +

∂

∂xi
(ρUiε) =

∂

∂xj

[(
µ +

µt

σε

)
∂ε

∂xj

]
+ (Cε1P − ρCε2ε + Cε3B)

ε

k
+ Sε,wake (23)

where k is the turbulence kinetic energy (TKE), ε is the TKE dissipation, Cµ = 0.033, σk = 1.0, σε = 1.3,
and Cε2 = 1.92. P and B are the TKE source production due to shear and buoyancy, respectively:

P ≡ −ρu′iu
′
j
∂Uj

∂xi
= µt

(
∂Ui
∂xj

+
∂Uj

∂xi

)
∂Uj

∂xi
(24)

B ≡ gi
Θ0

u′iθ
′ = − gi

Θ0

µt

Prt

∂Θ
∂xi

(25)

where u′i is the fluctuation of the velocity component in xi direction. Sε,wake is a source term of TKE
dissipation applied in the neighbor region of the turbine to correct the fast wake recovery of the
standard k− ε model [30]:

Sε,wake = ρC4ε
P2

ρk
(26)

where C4ε = 0.37.
In this work, the methods of Alinot and Masson [15], the recently proposed model from

M.P. van der Laan et al. [16], and the indirect model that cannot solve the energy equation applied in
W.A. El-Askary et al. [14] are investigated, and the models are hereafter referred to as the AM, Laan,
and El-Askary models, respectively. In the Laan model and its modified model (the proposed model),
the TKE source term Sε,ABL and the coefficient Cε3 are functions of atmospheric stability and modeled
to keep flow homogeneity under stable conditions. However, Sε,ABL is absent in the AM model and the
El-Askary model, and Cε3 is set to −2.9 in the AM model [15] and set to 1 in the El-Askary model [14].

In the El-Askary model, the energy Equation (14) is not solved, and the TKE production due to
buoyancy B is modeled as

B = −µt

(
∂u
∂z

)2 Ri
φm

(27)

where
Ri = ζ

0.74 + 4.7ζ

(1 + 4.7ζ)2 , ζ > 0 (28)

The Laan model is derived from homogeneous steady flows over flat terrain where the kinematic
viscosity µ can be ignored, and the k− ε model can be rewritten into normalized form by κz/u3

∗

φt,k + φm − φε −
φh

Prtφm
ζ − φSk = 0 (29)

φt,ε +

(
Cε1φm − Cε2φε − Cε3

φh
Prtφm

ζ

)
ε

k
= 0 (30)

in which φt,k ≡ κz
ρu3∗

∂
∂z

(
µt
σk

∂k
∂z

)
and φt,ε ≡ κz

ρu3∗
∂
∂z

(
µt
σε

∂ε
∂z

)
are the normalized turbulent transport of k and

ε, φSk ≡
κz
u3∗

Sk,ABL, respectively.
Under neutral conditions where ζ → 0 and φm, φk, φε → 1, Equation (30) reduces to

C1/2
µ σε (Cε2 − Cε1) = κ2 (31)
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which yields Cε1 = 1.24.
Under stable conditions, we have

Sk,ABL =

{
φm − φε −

φh
Prtφm

ζ +
C−1/2

µ κ2

σk

ζ2

φm

[
φ
′′
k −

φ
′
kφ
′
m

φm
+

φ
′
k

ζ

]}
u3
∗

κz
(32)

φh
Prtφm

Cε3 =
Cε1φm − Cε2φε

ζ
+

C−1/2
µ κ2

σε

φk
φm

[
ζφ
′′
ε

φε
− ζφ

′
εφ
′
m

φεφm
− φ

′
ε

φε
+

φ
′
m

φm
+

1
ζ

]
(33)

where φ′ = ∂φ/∂ζ and φ′′ = ∂2φ/∂ζ2 for φ ∈ {φk, φm, φε}. Equations (32) and (33) allow turbulence
closure that is consistent with either the classical similarity functions in MOST (the Laan model)
or any other similarity functions based on field measurements (the proposed model in this paper).
One can prove that the above equations equal to those proposed by van der Laan et al. [16] if the
classical similarity functions are applied. Note that the turbulent Prandtl number is set to 1 in the
origin AM model and the Laan model, and the energy Equation (14) is also not solved in the Laan
model. This work, however, applies Prt ≡ φh/φm according to the definition of the turbulent Prandtl
number [31] and solves the energy Equation (14) in the Laan model. There are negligible differences in
wake modeling when considering these differences in implementations of the models. Details of the
turbulence models investigated in this paper are summarized in Table 1.

Table 1. Summary of turbulence models investigated for stable conditions, where “−” represents that
the corresponding term is absence in the model, “

√
” represents that the energy equation is solved, and

“classical” denotes standards for the classical similarity functions.

Turbulence Model Energy Equation (14) B Sk,ABL C3ε Similarity Functions

AM
√

Equation (25) − −2.9 classical
El-Askary − Equation (27) − 1 classical

Laan
√

Equation (25) Equation (32) Equation (33) classical
Proposed

√
Equation (25) Equation (32) Equation (33) φm,exp, φh,exp, φε,cls

4. Breakdown and Modifications of MOST under Stable Conditions

This section shows the breakdown of MOST in predicting the velocity gradient under stable
conditions and proposes a set of new similarity functions to eliminate this side effect. All these works
are based on a field experiment over complex terrain in a wind farm. The influence of complex terrain
on estimating similarity functions is investigated and assessed for predicting wind profiles.

4.1. Experimental Data

The field experiment used to investigate the similarity functions was carried out in the Jingbian
wind farm in northwest of China [2]. In the experimental campaign, two masts, numbered M1 and
M3, are installed near a wind turbine (No. 14) to capture the wake profiles (Figure 2). As the inflow
from north is dominated by a small and constant terrain slope while the inflow from east and south
are dominated by a significant terrain complexity, we applied measurements from the mast M1 to
estimate similarity functions. On the mast M1, three Thies First Class Advanced cup anemometers
were installed at 30 m, 50 m, and 70 m above the ground level (AGL) (Figure 3). Wind direction (WD)
was measured at 30 m and 60 m AGL, and air temperature was measured at 30 m and 70 m AGL,
respectively. Two Metek 3D sonic anemometers were installed on M1 to provide three-dimensional
velocity components and sonic temperature at 30 m and 70 m AGL in a frequency of 35 Hz. A NRG
logger was used to record the 10-min statistical values from the cup anemometers, wind vanes, and
thermometers. The measured data are resampled to 10 min in ~190 days.
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East

North

WindWD

Figure 2. Complex terrain around M1, where Wind direction (WD) stands for the wind direction and
D = 93 m is the diameter of wind turbine 14.

Logger Moxa

Wind cup anemometer Thermometer

Sonic anemometer Wind vane

Instrument symbol description

30 m

50 m

60 m

70 m

Figure 3. Sketch (left) and physical appearance (right) of measurement setup for M1.

All the anemometers are calibrated in wind tunnels to compensate flow distortion effects.
The classification of cup anemometers after calibrations is class A 1.5–1.8 [32], suggesting an uncertainty
within ±2.3% for the wind speed above 3 m/s according to IEC 61400-12-1 [33]. In [34], a total
uncertainty of 3.6% for the wind speed can be assessed as the root sum of squared uncertainties, due
to the sensor accuracy (2.3%), the sensor calibration (2%) [35], and the mounting of anemometers
on the mast (2%) [36]. For the sonic anemometers, the 10-min averaged wind speeds recorded by
cup anemometers and sonic anemometers at the same heights agree well with slopes close to 1 and
correlation coefficients above 0.993 (Figure 4).
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5 10 15 20
Usonic (m/s)

2

4

6

8

10

12

14

16

18

20
U

cu
p (

m
/s

)
30 m AGL
Ucup = 0.9877Usonic 0.1152
rxy = 0.9938

5 10 15 20
Usonic (m/s)

70 m AGL
Ucup = 0.993Usonic 0.02309
rxy = 0.9948

Figure 4. Comparison of the wind speeds from sonic anemometers (Usonic) and cup anemometers
(Ucup) for the wind direction in 0◦ ± 10◦: measurements in symbols and fit curves in solid lines. rxy is
the Pearson correlation coefficient.

Note that the field experiment was carried out in a wind farm in complex terrain. Wind turbine
wakes and complex terrain could influence estimating similarity functions. As the wake structure is
nonlinear and aligned with wind direction, Han et al. selected the dataset in wind direction sectors
with high wind speed correlation to eliminate wake effects for the same measurement campaign [2].
Based on their work, we choose three wind direction intervals, (1) the north section: WD = 0◦ ± 10◦;
(2) the east section: WD = 60◦ ± 5◦; and (3) the west section: WD = 250◦ ± 40◦, to study similarity
functions where WD stands for the wind direction, and the intervals are kept narrow, if possible, to
ensure data quality with more than 400 points of data. According to Figure 2, the inflow wind in the
east and west sections are dominated by complex terrain while the inflow from the north section is
dominated by a small slope terrain (slope ≈ 2.4◦). Therefore, the three wind direction intervals are
also applied to study the influence of terrain on the estimation of similarity functions.

4.2. Data Processing

The heat flux w′θ′, the Obukhov length L, and the friction speed u∗ are evaluated based
on measurements of the sonic anemometers [2]. In reference to Högström [37], we enforce the
criteria (1) u∗ ≥ 0.1 m/s for the φm−analysis and (2) |HS| ≥ 10 W·m−2 and u∗ ≥ 0.1 m/s for the
φh−analysis, where HS = ρcpw′θ′ is the flux of sensible heat and cp = 1004 J·(K·kg)−1 is the constant
pressure specific heat of air. The local gradients could be derived using the profile-fitting methods of
Nieuwstadt [38] or Högström [37] with more than four levels available to fit profiles of velocity and
temperature. However, wind speeds and temperatures are only measured at three and two levels,
respectively. To avoid overfitting profiles, the velocity and temperature gradients are approximated at
the geometric mean height of levels z1 = 30 m and z2 = 70 m by the finite difference form [39,40]

∂Φ
∂z
≈ Φ(z2)−Φ(z1)√

z1z2 ln(z2/z1)
(34)

where Φ ∈ {U, Θ}. It is easy to prove that this expression is rigorous for logarithmic profiles and has
an error within ±3% for log-linear profiles predicted by MOST.
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4.3. Limitations and Breakdown of MOST

In this section, we show that the classical φm consistent with MOST is not valid for R f > 0.25,
based on the measured data of the sonic anemometer at 30 m a.g.l for WD = 0◦ ± 10◦. The flux
Richardson number R f is defined as

R f ≡ −
g
Θ w′θ′

u2∗
∂U
∂z

(35)

Combining the definitions of L and R f , we have

φm(ζ) = ζ/R f (36)

which indicates that R f = 0.25 is a straight line in the plane ζ − φm. Figure 5 shows that the line
R f = 0.25 split the measured data into two groups: for R f < 0.25, the measured data have good
agreements with the data predicted by MOST under unstable conditions and show a linear prediction
of φm, with βm = 0.35 under stable conditions; for R f > 0.25, the measured data are significantly
lower than those predicted by MOST. For wind energy applications, measured data are usually mixed,
and engineers commonly focus on wind turbine wakes under stable conditions without considering
the limitation of R f . In this situation, MOST could overestimate the velocity gradient and potentially
influence wake modeling of a wind turbine.

3 2 1 0 1 2 3
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m = 1 + 3.5
Measurements (Rf < 0.25)
Measurements (Rf > 0.25)
Measurements:MEAN±SD(Rf < 0.25)

Figure 5. Plots of φm as functions of ζ at 30 m above the ground level (AGL) for WD = 0◦ ± 10◦.

4.4. Assessment of Similarity Functions for Predicting Wind Profiles

Plots of the dimensionless velocity gradients versus the stability parameter in three wind direction
intervals are presented in Figure 6. For the three wind direction intervals, the upslope inflows towards
the mast are accelerated more at low levels than at high levels [41], and the dimensionless velocity
gradient is decreased consequently. For the east and west sections in complex terrain, the fitted φm

based on field measurements is 30% lower than that of the north section, with a small slope terrain
for 0 < ζ < 0.1. Similarly, a decrease of 30% in φm (= 0.7 + 1.5ζ) was also observed in a stable
boundary layer over the complex terrain of the Loess Plateau, China [42]. The fitted φm are also
compared with the classical similarity function φm,cls = 1 + βmζ and the SHEBA profile function
φm,SHEBA = 1 + 6.5ζ(1 + ζ)1/3/(1.3 + ζ) [43]. As shown in Figure 6, all the fitted φm and the SHEBA
profile function can limit the velocity gradient under strongly stable conditions: φm ∝ ζ1/4 (fitted) and
φm ∝ ζ1/3 (SHEBA) for ζ → ∞. For the north section where the inflows are dominated by a small
slope, φm,cls and φm,SHEBA agree well with measurements for ζ < 0.1 and overestimate the velocity



Appl. Sci. 2019, 9, 4256 11 of 24

gradient for ζ > 0.1. Affected by complex terrain, the fitted φm estimated for the east and west sections
are much lower than φm,cls and φm,SHEBA.

100

101

m

North Section: m = (1 + 40 )1/4, n=544

Fitted line MOST SHEBA

100

101

m

East Section: m = 0.7(1 + 40 )1/4, n=682

10 2 10 1 100 101

100

101

m

West Section: m = 0.7(1 + 40 )1/4, n=431

Figure 6. Plots of φm of different models as functions of ζ: dots (measured data) and circles
(bin-averaged measured data). n is the number of the measured data.

The fitted similarity functions are evaluated for predicting wind profiles based on the Boulder
Atmospheric Observatory (BAO) dataset [44]. Among the seven runs presented in Sorbjan et al. [44],
only runs 3, 5, and 7 are studied, due to the criteria |HS| ≥ 10 W·m−2. The wind profiles predicted by
varying similarity functions are presented in Figure 7 and estimated in numerical integration by

U(z) =
∫ z

z0

u∗
κz

φm

( z
L

)
dz (37)

where the aerodynamic rounghess z0 is ~0.01 m for the BAO dataset [44]. According to Figure 7,
the fitted φm of the north section performs better in predicting wind profiles for runs 3, 5, and 6,
whereas φm,cls and φm,SHEBA overestimate the velocity gradient significantly. The wind speed is
overestimated on average by 4.6 m/s, 3 m/s, and 0.5 m/s for φm,cls, φm,SHEBA and the fitted φm of the
north section, respectively. Influenced by complex terrain, the fitted φm of the east and west sections
underpredicts the velocity of 1.2 m/s averagely. As φm(0) < 1 of the east and west sections disagrees
with the logarithmic law of wind profiles in flat terrain under neutral conditions [45,46], we apply the
similarity functions estimated from the dataset of the north section in the wake simulations.
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Figure 7. Velocity profiles estimated based on different similarity functions φm(ζ) (the upper part) and
boxplots of errors of velocity predictions (the lower part). Uexp is the measured velocity in runs 3, 5,
and 6, whereas Upredict is the value predicted at the corresponding height.

4.5. The Proposed Similarity Functions

In the full range of R f , the corresponding proposed similarity functions based on the dataset of
the north section under stable conditions are as follows,

φm,exp(ζ) = (1 + 40ζ)1/4 (38)

φh,exp(ζ) = χ (1 + 5ζ)1/4 (39)

where χ = 0.9. The dimensionless temperature gradient is observed significantly lower than the
classical value for ζ > 0.1 (Figure 8). Grachev et al. [31,43] also observed a similar phenomenon and
then proposed a corresponding function: φh,SHEBA = 1 + 5ζ(1 + ζ)/(1 + 3ζ + ζ2).

10 2 10 1 100 10110 1

100

101

102

h

MOST
SHEBA
Fitted line

Figure 8. Same as Figure 6 but for φh of the north section.
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5. Simulation Details

5.1. Test Cases

In this work, under stable conditions, we investigate the wakes of a 500 kW NTK500/41 wind
turbine at the Risø Campus test site of DTU in Denmark [1] and three 180 kW Danwin turbines on
the island of Gotland in the Baltic Sea [6]. The two test cases cover wake measured data 1D to 9D
downstream of the turbines where D is the rotor diameter. Details of test cases are listed in Table 2.

Table 2. Details of measurements in the two test cases.

Wind Turbine D (m) H (m) Measurements Wake Range

NTK500/41 41 36 LiDAR scanning 1D to 5D
Danwin 23 35 Mast measurements 4.2D, 6.1D, and 9.6D

The first case is based on LiDAR measurements of the wakes of a NTK500/41 turbine. In this
campaign, a pulsed LiDAR, which was mounted on a platform at the rear of the nacelle, pointed
its laser downstream the turbine up to 5D downstream the turbine. A constant downhill slope of
about 0.3% was observed downstream the turbine. Inlet meteorological properties, such as wind
speed, wind direction, air temperature, and atmospheric pressure, were measured from a 57-m-tall
meteorological mast located upstream the turbine. The NTK500/41 turbine is a stall-regulated
500 kW wind turbine equipped with LM 19.1 m blades and its rotor speed is fixed at 27.1 rpm.
Its blades consist of two kinds of airfoils: FFA-W3-XX1 (from 16 to 50% span) and NACA 63-XXX
(from 60 to 100% span) [47]. Chord length and twist angle over the blades were presented in
Johansen et al. [48]. The power curve and the thrust coefficient curve based on BEM calculations
are shown in Figure 9. The power curve from BEM calculations is shown to have good agreement
with the RANS computations in the full turbulence model [48] below 15 m/s and measurements [48]
below 10 m/s (Figure 9). The measured thrust coefficient from strain gauges measurements [49] is
also shown to have good agreements with the BEM computations above 6 m/s. In this case, we set
z0 = 0.095 m, L = 29 m, and the hub-height reference wind speed Uhub = 6.76 m/s, as presented in
Machefaux et al. [1], and apply CT = 0.83 based on the BEM computations.
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Figure 9. Performance curves of the NTK500/41 turbine.

The second case is based on wake measurements of three Danwin wind turbines using two 54 m
meteorological masts, M1 and M2. In the campaign, the masts were equipped with wind sensors at
8 levels from 10 m to 53.3 m. Inlet conditions including temperature profiles were measured on mast
M1, whereas wake profiles of the three turbines were measured on mast M2. The distances from the
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three turbines to mast M2 are 4.2D, 6.1D, and 9.6D, respectively. In this case, we set the roughness
length, the Obukhov length, the reference wind speed and the thrust coefficient to be 0.0005 m, 35 m,
8 m/s and 0.82, respectively [6,50]. The detail information of test cases is shown in Table 3 where

TI=
√

2
3 khub/Uhub is the ambient turbulence intensity at hub height and khub is the corresponding

hub-height turbulence kinetic intensity [16]. The measured ambient turbulence intensity in the first
case is ~10%.

Table 3. Test cases and corresponding parameters under stable conditions.

Model Case 1 Case 2

u∗ (m/s) TI u∗ (m/s) TI

AM, Laan, El-Askary 0.223 6.0% 0.198 4.5%
Proposed 0.297 10.2% 0.228 6.5%

5.2. Computational Domain and Meshing

The computational domain has a length of 20D, a width of 10D, and a height of 10D (Figure 10).
The background mesh, whose refinement level is 0, consists of 100× 60× 60 in length, width, and
height. The vertical grids are clustered near the ground and the first cell height above the ground is set
to 7.38 z0 to produce appropriate kinetic energy [51]. The mesh around the wind turbine and in the
wake region is refined as shown in Figure 10. The mesh is refined around the disk region to ensure
about 80 cells through the rotor diameter [52]. The complete mesh is composed of ~1.6 million cells.

Refinement level: 0 1 2 3

Front view

Symmetry Symmetry

Top

Wall

10D

10 m

4D

AD

Side view

OutletInlet

Top

Wall

5D 15D

10D

5D10D

0.5D

1Dz

y

z

x

Figure 10. Compuational domain and meshing settings.

5.3. Boundary Conditions

The boundary conditions consistent with similarity functions are applied to modeling the
atmospheric boundary stratification. Wind profile at inlet is estimated by Equation (37). The inlet
profiles of potential temperature, TKE, and its dissipation are given by

Θ(z) = Θ0 +
∫ z

z0

θ∗
κz

φh

( z
L

)
dz (40)

ε =
u3
∗

κz
φε

( z
L

)
(41)

k =
u2
∗√
Cµ

φk

( z
L

)
(42)

The vertical profiles of potential temperature are estimated in numerical integration. At the
outlet, zero gradients of U, Θ, ε, k are applied. For the top boundary, the upstream flow properties are
maintained constant. The left and right sides of the computational domain are set to be symmetry.

The near-wall treatment of Temel et al. [53] is implemented in the near ground region to calculate
turbulent dissipation rate and the TKE production Gk,p due to shear (Pp) and buoyancy (Bp):
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εp =
u3
∗k

κzp
φε,p (43)

Gk,p ≡ Pp + Bp =
τ2

w
ρκu∗k(zp + z0)

− θ∗|g|
Θ0(zp + z0)

(44)

where the subscript p denotes the first cell center above the ground, the equivalent friction wind speed
is u∗k = C0.25

µ φ−0.5
k,p k0.5

p , and the wall shear stress is τw = µt,p(dU/dz). The eddy viscosity µt,p and the
turbulent heat conductivity are imposed at the first cell center above the ground as [54]

µt,p =
u∗k zp∫ zp

z0
1
κz φm

( z
L
)

dz
− µ (45)

αt,p = µt,pφm,p/φh,p − µ/Pr (46)

where the laminar viscosity µ is not ignored to keep consistent with Equations (13) and (14).

5.4. Implementations of Wake Models

In this paper, wake models are implemented in a CFD framework Open-Source Field
Operation And Manipulation (OpenFOAM) [55] for developing customized numerical solvers and
pre-/postprocessing utilities for fluid flow problems using the finite-volume method. It allows
developing user-defined boundary conditions, turbulence models, and solvers, or adding source
terms in a convenient way by extending or modifying existing models. As shown in Figure 11, we
implement all the test turbulence models (the proposed, Laan, El-Askary, and AM) and develop a
large time-step transient solver using the PIMPLE (merged PISO-SIMPLE) algorithm to simulate
wakes of wind turbines under stable conditions. At the beginning of simulations; this solver first
initializes the flow field based on boundary conditions. During this period, similarity functions and
their derivatives are also evaluated and then used in turbulence models to estimate Sk,ABL and Cε3

if required. This solver then solves the continuity, momentum and energy equations based on the
eddy viscosity µ provided by the turbulence models before in iterations the finish of the simulation.
During the iteration, source terms Su and Sε,wake are modeled based on local flow information via
user-specified finite volume options (fvOptions). In simulations, we apply a second-order backward
difference scheme for temporal discretization and a second-order central difference scheme for spatial
discretization of other derivative terms.

 Turbulence Models

1. Estimating S
k,ABL 

and C
3e  if required

2. Solving Equations of k (22) and e (23)
3. Estimating  m

t

Solver using PIMPLE
1. Initializing flow field
2. Calculating f, f’ and f’’
3. Iteratively solving:
         Continuity Equation (12)
         Momentum Equation (13)
         Energy Equation (14)

fvOptions

 Estimating  S
u,i   

and Se,wake

Boundary Conditions
Inlet: Equations (38) and (41)-(43)
Wall: Equations (44)-(47)
Other conditions

Input: turbulence model
Proposed, Laan, El-Askary, AM

Input: Wind Turbine Information
AD-CT: Thrust coefficient curve
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Figure 11. Implementations of wake models in OpenFOAM where φ′ = ∂φ/∂ζ, φ′′ = ∂2φ/∂ζ2 for
φ ∈ {φk, φm, φε}.
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6. Results of Wake Simulations

6.1. Case 1: Wakes of a NTK500/41 Wind Turbine

In Machefaux et al. [1], the wakes of a NTK500/41 wind turbine was studied experimentally and
numerically using two LES methods: a classical method based on the ELLIPSYS3D flow solver [56] and
an extended approach that explicitly introduces thermal and Coriolis effects as external force terms into
the solver. As the wind profile predicted by MOST was observed to be much more severely sheared
as compared with measurement, the classical approach applied a power law for the inlet velocity
profile. The extended LES approach additionally carried out a transient precursor computation to
simulate the time-varying vertical structure of the whole ABL, and it used the results of the precursor
simulations to impose the mean potential temperature and velocity profiles at the inlet for wake
modeling. The precursor simulations are shown to have effects on limiting the overestimated velocity
gradient predicted by MOST [1]. Numerical simulations have shown that there are no major differences
in wake deficit predictions between the classical approach and the extended model for stable and
unstable cases. Therefore, we only compare the wake deficit predicted by the extended approach with
the test models in RANS in this work.

Figure 12 shows contours of wake deficits, ∆U/U0, predicted by different models at hub height
under stable conditions, where ∆U is the velocity deficit in the wake and U0 is the inlet velocity.
Simulations using the LES technology show a faster recovery wake than that in the proposed model,
whereas the Laan model predicts a significant slower recovery wake with a larger deficit. One possible
explanation for the stronger wake effects predicted by the Laan model is that they are due to the lower
turbulence intensity predicted by the classical similarity functions. For a given reference wind speed
Uhub and a fixed roughness length z0, a higher velocity gradient in the Laan model results in a smaller
friction speed u∗ and a lower turbulence intensity Ihub than the proposed model, and thus it weakens
the wake recovery. The ambient turbulence intensities for the LES approach of 9.7% and the proposed
model of 10.2% are close to the measured value of 10% while the value for the Laan model is reduced
by 40% as compared to the measured data.
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Figure 12. Normalized velocity distribution at hub height under the stable condition, where large eddy
simulation (LES) data are modified from Machefaux et al. [1], where (xc, yc, zc) is the center point of the
disk, ∆U is the velocity deficit in the wake, and U0 is the inlet velocity.

As compared with measurements, the proposed model shows better performance than other
approaches based on MOST combined with RANS for the longitudinal distance of 1–5D and the LES
approach for the longitudinal distance below 3D (Figures 13 and 14). The AM, El-Askary, and Laan
models overestimate the wake deficits in both vertical and lateral directions for longitudinal distances
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above 2D. All the test models in RANS fail to predict wake deficits at 4–5D downstream of the rotor.
This disagreement is probably due to a combination of terrain effects and experimental uncertainties
using LiDAR. According to the Space Shuttle Topography Mission (STRM)-based terrain data, the test
site terrain has a downhill slope characterized by a height difference of 5.5 m from the rotor location
to the most downstream cross section. As the wake has been observed to follow terrain under stable
conditions [1,8], the wind speed for the longitudinal distance above 5D at the hub height is actually
the value of 5.5 m above the wake center, which results in the overestimation of wake by various
turbulence models in RANS.
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Figure 13. Lateral wake deficit of a NTK500/41 wind turbine at hub height under the stable condition;
∆U is the velocity deficit in the wake and U0 is the inlet velocity.

For the vertical profiles of wake deficits, Figure 14 shows that the proposed model overestimates
wake deficits below the hub height at 5D. A double-bell near-wake shape, due to a lower energy
extraction around the blade root [1], is clearly observed under stable conditions at 1D and is captured
by the actuator models based on BEM calculations. There are no major differences between the vertical
wake profiles predicted by the proposed models based on either the thrust coefficient (Proposed-CT)
or BEM calculations (Proposed) above 2D. As the LES model applies slip wall conditions at the bottom
of the computational domain and does not consider the roughness effect of the ground, large negative
wake deficits are observed near the ground [1].

0.5 0.0 0.5
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d 
ve

rti
ca

l p
os

iti
on

 (z
z c

)/D

1D

Measurements
LES

AM
Laan

El-Askary
Proposed-CT

Proposed

0.5 0.0 0.5

2D

0.5 0.0 0.5
Wake deficit U/U0

3D

0.5 0.0 0.5

4D

0.5 0.0 0.5

5D

Figure 14. Same as Figure 13 but for vertical wake deficit profiles.
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6.2. Case 2: Wakes of Danwin 180 kW Wind Turbines

The numerical results of the turbulence models based on MOST and the proposed model based on
the new similarity functions are compared with the experimental data reported by Magnusson et al. [6]
in Figures 15–17. A comparison is made at distances 4.2, 6.1, and 9.6D downstream of the turbine. As
the detailed rotor geometry of the Danwin 180 kW wind turbine is not available, the actuator disk
model based on the thrust coefficient is applied.
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Figure 15. Same as Figure 13 but for Danwin 180 kW wind turbines. All turbulence models are
combined with actuator disk model (AD) based on thrust coefficient.
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Figure 16. Same as Figure 15 but for vertical wake deficit profiles.

Figures 15 and 16 demonstrate the change of the wake deficit with the distance downstream
of the turbine in both lateral and vertical directions. From this figure, it can be depicted that there
is no discernible difference between AM, El-Askary, and Laan models at all downstream positions.
As compared to measurements, these models that are based on MOST, predict larger wake deficits, and
the wake deficit can be overestimated by 0.25 at 6.1D downstream of the rotor. Introducing the new
similarity functions into the Laan model improves the wake prediction at 6.1D and 9.6D downstream,
as compared with the models based on MOST. Note that the measured wake center or the position
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of the maximum wake deficit, shifts ~0.2D in both vertical and lateral directions at 6.1D and 9.6D
downstream of the rotor. This shift of the wake center was also observed in full-scale turbine wakes
with scanning-LiDAR measurements from the Crop Wind Energy eXperiment (CWEX) in Iowa [57].
The stretching of the wake structures can be attributed to the strong wind veer associated with stable
conditions [6,57]. As wind veer is a direct result of Coriolis effects caused by the Earth’s rotation and
the Coriolis force is not modeled in this work, all the test models fail to capture this stretching of the
wake structures.

Figure 17 shows the distribution of the normalized added turbulence σ2
u/σ2

u0 − 1 in the lateral
direction at hub height, where σu and σu0 is the standard derivations of wind speed in wakes and
in the atmosphere, respectively. A dual-peak pattern (lateral distance y− yc = ±0.5D) is detected
experimentally at 4D downstream of the rotor, as a result of rotor tip vortices and high shear production
of turbulent kinetic energy caused by strong velocity gradients at the wake boundary [3,4]. All test
models capture this dual-peak pattern with lower values: the measured peaks reduce by 3 in the
simulations using models based on MOST and reduce by 5 in the simulations using the proposed
model. This underestimation of the added turbulence may be due to representing the turbine rotor
with actuator disk instead of the actual rotor geometry. Note that the dual-peak pattern predicted
by the models based on MOST can be observed at distance downstream of the rotor up to 9.6D,
which becomes indistinctly at 6.1D and 9.6D downstream of the rotor for both measurements and the
simulations using the proposed model. As compared to measurements, the models based on MOST
also overestimate the normalized added turbulence which is improved by the proposed model at 6.1D
and 9.6D downstream of the rotor.
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Figure 17. Lateral added turbulence in wakes of Danwin 180 kW wind turbines at hub height under
the stable condition; σu and σu0 represent the standard derivations of wind speed in wakes and in the
atmosphere, respectively. All turbulence models are combined with AD based on thrust coefficient.

6.3. Model Assessment

In this section, we adopt the root-mean-square error (RSME) to analyze the accuracy of the CFD
predictions using various turbulence models [58]:

RSME =

√
∑n

1 (yCFD − yEXP)2

n
(47)
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where n is the number of measurement points in the evaluation, yEXP is the experimental data, and
yCFD is the simulated values from CFD. Note that measurement points out of the wake range are not
applied to calculate the RSME, and the wake width is set 2D due to wake simulations.

The RMSE analysis of the wake deficit is presented in Figures 18 and 19. Over a range of 0.04 to
0.2, the lower the RSME value, the better the behavior of the numerical model. According to Figure 18,
it can be depicted that the proposed model, either based on BEM in Case 1 or based on the thrust
coefficient in Case 2, has the best performance with the lowest RMSE values, except for 4–5D in Case
1. The AM, El-Askary, and Laan models have similar performance in the wake prediction, but the
El-Askary model has lower RMSE values among the various turbulence models based on MOST.
As compared to AM and Laan model, the El-Askary model could reduce the RSME of the lateral
wake deficit by 0.03 in Case 1 and 0.01 in Case 2. However, this improvement is smaller than that
of the proposed model: introducing the new similarity functions into the Laan model could reduce
the RSME of the lateral wake deficit by 0.05 averagely (Figure 18). The LES approach presented in
Machefaux et al. [1] predicts a decreased RSME of the lateral wake deficit with the distance downstream
of the rotor. Note that all test models, except for the LES approach, have poor performance in predicting
wake structure at 5D downstream of the rotor. This could be a result of the downslope terrain or
uncertainties due to LiDAR measurements [1].

Using BEM to distribute force through the rotor significantly improves near wake prediction at
1–3D downstream of the rotor in Case 1: the RSME of vertical wake deficit predicted by the proposed
model using BEM approach is lower, 0.02–0.05, than the proposed model using the CT approach.
However, it should be noted that the proposed model using CT approach has a similar performance in
the wake prediction with that using BEM approach at 4D–5D downstream of the rotor. This suggests
that the distribution of the momentum source through the rotor only affects near wake structures up
to 3D and that one can expect similar accuracy of wake prediction for far wake regardless of which
method to distribute the force through the rotor.

The RMSE analysis of the added turbulence is presented in Figure 20. The RMSE of the added
turbulence is observed to decrease with the distance downstream the rotor. Turbulence intensities are
significantly underpredicted at 4.2D, where the RMSE of the added turbulence is ~4. More than 4.2D
the RMSE of the added turbulence predicted by the proposed model is lower by 30% than those of
models based on MOST. This indicates that introducing the new similarity functions into the Laan
model can eliminate the side effects of the breakdown of MOST on wake modeling.
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Figure 18. RSME of the wake deficit at hub height under the stable condition: “-CT” represents models
using AD based on the thrust coefficient.
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Figure 20. RSME of the lateral added turbulence in wakes of Danwin 180 kW wind turbines under
the stable condition at hub height; σu and σu0 represent the standard derivations of wind speed in
wakes and in the atmosphere, respectively. All turbulence models are combined with AD based on
thrust coefficient.

7. Conclusions

In this paper, the breakdown of MOST is investigated experimentally, and its side effects on wake
modeling through numerical simulations are also investigated. New similarity functions based on
a field measurement in a wind farm are proposed and applied in a turbulence model to eliminate
the side effects of the breakdown of MOST on wake modeling. Wake simulations of two types of
turbines under different stability conditions are carried out and compared with measurements from a
LiDAR and cup anemometers. The main findings are as follows. (1) Field measurements show that
MOST overestimates velocity gradient for ζ > 0.1 in the full range of R f . The proposed similarity
functions can limit the velocity gradient as the stability increases. (2) Due to the breakdown of MOST
for ζ > 0.1, the test models based on MOST overestimate wake effects in both wake deficits and the
added turbulence under stable conditions. (3) The new similarity functions constrain velocity gradient
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for ζ > 0.1 as compared with MOST, and introducing the new similarity functions into the Laan model
improves the wake prediction under stable conditions. (4) By distributing the blade force through the
rotor, momentum effects of the rotor to the atmospheric boundary layer are simulated in a more detail
way than the uniformly distributed blade force applied based on the thrust coefficient. This enables
the proposed model to capture the double-bell near-wake shape.

Author Contributions: Data curation, X.H.; Formal analysis, X.H.; Methodology, X.H.; Project administration,
D.L.; Software, X.H. and L.L.; Supervision, D.L.; Validation, X.H. and F.X.; Writing—original draft, X.H.;
Writing—review & editing, C.X. and W.S.

Funding: This research was funded by the Joint Funds of the National Natural Science Foundation of China,
grant number U1865101; Jiangsu provincial science and Technology Department, grant number BZ2018007;
the Ministry of Science and Technology of China, grant number 2014DFG62530; and the Danish Energy Agency,
grant number 64013-0405.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this paper:

AD Actuator Disk
AGL Above Ground Level
AL Actuator Line
BEM Blade Element Theory
CFD Computational Fluid Dynamics
LES Large Eddy Simulation
LiDAR Light Detection and Ranging
MOST Monin–Obukhov Similarity Theory
OpenFOAM Open-Source Field Operation And Manipulation
RANS Reynolds-averaged Navier–Stokes Equations
TKE Turbulence Kinetic Energy
WD Wind Direction
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