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Abstract: Charge trapping and de-trapping properties can affect space charge accumulation and
electric field distortion behavior in polymers. Dielectric materials may contain different types of traps
with different energy distributions, and it is of interest to investigate the charge trapping/de-trapping
dynamic processes in dielectric materials containing multiple discrete trap centers. In the present
work, we analyze the charge trapping/de-trapping dynamics in materials with two discrete traps in
two cases where charges are injected continuously or only for a very short period. The time dependent
trapped charge densities are obtained by the integration of parts in the case of continuous charge
injection. In the case of instantaneous charge injection, we simplify the charge trapping/de-trapping
equations and obtain the analytical solutions of trapped charge densities, quasi-free charge density,
and effective carrier mobility. The analytical solutions are in good agreement with the numerical
results. Then, the space charge dynamics in dielectric materials with two discrete trapping centers are
studied by the bipolar charge transport (BCT) model, consisting of charge injection, charge migration,
charge trapping, de-trapping, and recombination processes. The BCT outputs show the time evolution
of spatial distributions of space charge densities. Moreover, we also achieve the charge densities at
the same position in the sample as a function of time by the BCT model. It is found that the DC poling
duration can affect the energy distribution of accumulated space charges. In addition, it is found that
the coupling dynamic processes will establish a dynamic equilibrium rather than a thermodynamic
equilibrium in the dielectric materials.

Keywords: bipolar charge transport; charge trapping/de-trapping dynamics; space charge;
dielectric material

1. Introduction

The charge trapping/de-trapping properties determine the formation and accumulation of space
charges in dielectric materials [1–4]. When a dielectric material is subjected to a high electric field,
free charges can be injected into the bulk of the material from electrodes [5] or can be generated by
ionization [6], and they can be captured by trapping centers, which form space charges. The space
charges will accumulate in the bulk when the trapping rate is higher than the de-trapping rate. Such
space charges can distort the electric field distribution in the material [7]. Once the local electric field
exceeds a threshold value, electric breakdown would occur in the material due to energy released
during charge de-trapping [8], multiplication of charge carriers like avalanche [9], or by a strong
influence of electromechanical force [10].
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Charge trapping/de-trapping dynamics should be influenced by the trap energy of dielectric
materials. Trapping centers in polymer dielectric materials can be produced by physical and chemical
defects [1]. It is usually assumed that the charges in localized states produced mainly by physical
defects (or shallow traps) of polymer dielectric materials are in thermodynamic equilibrium in the
time window of experiments such as space charge distribution measurements and transient space
charge limited current (SCLC) measurements [1]. In other words, the maximum time constant of
charge trapping/de-trapping dynamics in shallow traps is much smaller than the response time of
experimental equipment. We can just consider the charge migration in the shallow traps and can
neglect their charge trapping/de-trapping dynamics. Nevertheless, chemical impurities can form deep
traps in polymers [1]. It will take a very long time for charge trapping/de-trapping dynamics in deep
traps to reach an equilibrium state, which is often confirmed by space charge measurements [11,12].
Therefore, the charge trapping/de-trapping dynamics of deep traps should be considered during the
analysis of transient electrical properties of dielectric materials, such as transient SCLC, space charge
accumulation and dissipation, and transient electroluminescence.

The charge trapping/de-trapping dynamics can be affected by the energy distribution of deep
traps in dielectric materials. For single discrete traps, the charge trapping/de-trapping dynamic
responses can be obtained analytically by solving the first order charge trapping/de-trapping equation.
The space charge responses and external currents or surface potentials have been widely studied
theoretically and experimentally in various conditions, such as high electric field [13], electron beam
irradiation [14], and corona charging [15]. In the case of multiple discrete traps, Chen et al. developed
a charge trapping/de-trapping theory based on two discrete traps [16]. The theory has been used to fit
experimental results on space charge build-up and decay in additive-free low-density polyethylene
(LDPE) [16,17]. From the fitting of space charge decay curves, the de-trapping probability and trapped
charge densities were evaluated. Then, the trap energies and trap densities can be obtained. The trap
energies are consistent with those obtained by other experimental techniques such as thermally
stimulated current (TSC) [18] and surface potential decay (SPD) [15,19,20], whereas the trap densities
are several orders smaller than those calculated by other methods [15,18,21]. One possible reason is
that the charge trapping/de-trapping kinetics of two discrete trapping centers cannot be analyzed
separately. Moreover, an exponential function was adopted to approximate the energy distribution of
traps calculated by the density-functional theory [22]. Then, they assumed that the trap centers are filled
with free charges from the bottom to the top. However, the simulation result shows that the trapped
charge densities do not increase with time, which is different from the space charge experimental
results. This means that the charges in deep traps are not in thermodynamic equilibrium [11,12].
Consequently, we should consider the charge trapping/de-trapping dynamics of deep trapping centers
in dielectric materials.

It is of interest to investigate the charge trapping/de-trapping dynamics in polymers with multiple
discrete traps. In Section 2, the charge trapping/de-trapping dynamic responses in dielectric materials
with multiple discrete traps are investigated analytically. Then, we will study the space charge
formation and accumulation properties by a bipolar charge transport (BCT) model. The details of the
BCT model are described in Section 3, which consists of processes of injection, migration, trapping,
de-trapping and recombination of charges. The simulation results obtained using the BCT model are
demonstrated in Section 4. In Section 5, we conclude the main findings of the present work. From
dielectric materials with multiple discrete traps, charge transfer between shallow traps and deep
traps can influence the space charge accumulation and dissipation properties. Charging the dielectric
materials for a longer time, more charges could be captured by deep traps so that the space charges
decay much slower. The charges trapped in deep trapped can distort the local electric field and may
result in ageing of the dielectric materials.
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2. Dynamic Responses of Charge Trapping and De-trapping

2.1. Charge Trapping/De-trapping Dynamics

Free charges in extended states or quasi-free charges in localized states produced by injection,
irradiation, or ionization can be captured by traps in dielectric materials with a trapping probability.
The charge trapping properties were investigated theoretically and experimentally by considering
the relationship between the Langevin recombination model and the Shockley-Read-Hall (SRH)
recombination model. It was found that the probability of trapping of charge carriers PT in deep
trap centers is proportional to the mobility carriers µ0 and the trap density of the material NT, and is
inversely proportional to the permittivity [23,24]. Namely, PT can be given by,

PT = µ0eNT/ε0εr (1)

where µ0 is the shallow-trap-controlled carrier mobility in m2 V−1 s−1, e is the elementary charge in C,
ε0 is the permittivity of vacuum in Fm−1, and εr is the relative permittivity of dielectric materials. For
LDPE, εr equals to 2.3.

The charge trapping probability given by Equation (1) is proportional to the carrier mobility,
which is consistent with the comments of Toomer et al. [15]. It was pointed out that the charge trapping
probability would be related to the thermal velocity of carriers in the case of extended state conduction,
nevertheless, this would depend on the drift velocity in the case of charge hopping in localized states.
When the shallow-trap-controlled carrier mobility is set as 10−13–10−14 m2 V−1 s−1, the charge trapping
probability estimated by Equation (1) will be 4.91 × 10−1–4.91 × 10−2 s−1, which are in good agreement
with the previous findings [15,25–27].

The trapped charges can be released to the transport states after having been trapped in trap
centers for a period. The thermally-assisted de-trapping probability is given as [26],

PD(ET) = υATE exp(−ET/kBT) (2)

where υATE = kBT/hp, is the attempt-to-escape frequency in s−1 [22,28]. Here, hp is the Planck constant
in Js.

The charge trapping and de-trapping dynamics in insulators with multiple trap levels can be
described by the first-order charge trapping and de-trapping dynamic equation. It is assumed that
charge trapping events into various trap levels are incompatible and charge de-trapping events from
various traps are mutually independent, as shown in Figure 1. In the present work, we just consider
the charge trapping/de-trapping dynamics at two discrete trap levels, namely, trap level 1 and trap
level 2. The energies and densities of deep trap level 1 and deep trap level 2 are ET1 and ET2, QT1 and
QT2, respectively.

dq f ree

dt
= −q f ree

n∑
i = 1

PTi

(
1−

qtrapi

QTi

)
+

n∑
i = 1

PDiqtrapi (3)

dqtrapi

dt
= q f reePTi

(
1−

qtrapi

QTi

)
− PDiqtrapi, i = 1, 2, . . . , n (4)

where qfree and qtrap are the densities of free and trapped charges in Cm−3, while QT equals to eNT and
n is the number of deep trap levels, where n = 2 in the present work; furthermore, t is the time.
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Figure 1. Schematic dynamics of charge trapping/de-trapping events in dielectric materials 
containing two discrete levels of traps for (a) continuous charge injection and (b) instantaneous 
charge injection. Here EC is the conduction band, ET1 and ET2 the energies of traps, EF the Fermi level, 
PT1 and PT2 the trapping probabilities for free charges, and PD1 and PD2 the de-trapping probabilities 
of trapped charges. 
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Figure 1. Schematic dynamics of charge trapping/de-trapping events in dielectric materials containing
two discrete levels of traps for (a) continuous charge injection and (b) instantaneous charge injection.
Here EC is the conduction band, ET1 and ET2 the energies of traps, EF the Fermi level, PT1 and
PT2 the trapping probabilities for free charges, and PD1 and PD2 the de-trapping probabilities of
trapped charges.

We will analyze the charge trapping and de-trapping dynamic responses in the following two
cases. Namely, in the first case, free charges are assumed to be injected continuously to compensate
for the depletion of free charges in the bulk caused by trapping. In other words, the free charges
are injected to keep the total number of free charges in the bulk at a constant value. In contrast,
a certain number of free charges are injected instantaneously only for a short period in the second
case. In present work, T is set as 300 K. The assigned values of carrier mobility, trap energies, and trap
densities are listed in Table 1 [17].

Table 1. The assigned parameter values used in the charge trapping/de-trapping dynamic analysis.

Parameter Value

Charge carrier mobility, µ0, (m2 V−1 s−1) 1.0 × 10−13

Energy of trap level 1, ET1, (eV) 0.88
Energy of trap level 2, ET2, (eV) 1.01

Charge density of trap level 1, QT1, (cm−3) 100
Charge density of trap level 1, QT2, (cm−3) 20

2.2. Continuous Charge Injection

First, we consider the first case where the free charges are injected continuously. As mentioned
above, we assumed that the free charges injected continuously to keep the total number of free
charges in the bulk unchanged. In this condition, we can derive the following first-order charge
trapping/de-trapping equation to obtain the time-dependent trapped charge density, qtrapi(t).

dqtrapi(t)

dt
= q f ree0PTi

(
1−

qtrapi

QTi

)
− PDiqtrapi, (i = 1, 2) (5)

Equation (5) can be rearranged by moving dt to the right and the term including qtrapi to the left
part of the equation. Integrating the left and right parts of the rearranged equation, we can obtain the
following equation,(q f ree0PTi

QTi
+ PDi

)
qtrapi(t) − q f ree0PTi = C exp

[
−

(q f ree0PTi

QTi
+ PDi

)
t
]
, (i = 1, 2) (6)

where C is an undetermined coefficient.
It is assumed that there are no charges in the traps at the beginning of the charge

trapping/de-trapping process. The undetermined coefficient C in Equation (6) can be estimated
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by this initial condition qtrapi(0) = 0. Consequently, the trapped charge density as a function of time
qtrapi(t) can be derived as,

qtrapi(t) =
q f ree0PTiQTi

q f ree0PTi + PDiQTi
×

[
1− exp

[
−

(q f ree0PTi

QTi
+ PTi

)
t
]]

, (i = 1, 2) (7)

Equation (6) shows that the trapped charge density, qtrapi(t), increases monotonically with an
increase in time until it approaches its maximum value, which is equal to qfree0PTiQTi/(qfree0PTi+PDiQTi).
The largest increasing rate of qtrapi(t) is qfree0PTi that appears at t = 0. Then, the increasing rate decreases
gradually with time.

2.3. Instantaneous Charge Injection

When a certain fixed number of free charges qtotal is assumed instantaneously, it is difficult to
obtain the analytical solutions for the charge trapping/de-trapping Equations (3) and (4). Nevertheless,
when trapped charge densities, qtrapi(t), are always much smaller than the densities of trap centers in a
dielectric material, qtrapi(t)/QTi can be approximated by zero, and the ordinary differential equations can
be solved analytically. The first order charge trapping/de-trapping equations in the dielectric materials
containing two discrete trap levels can be simplified as the following equations.

dqtrap1

dt
= −(PT1 + PD1)qtrap1 − PT1qtrap2 + PT1qtotal (8)

dqtrap2

dt
= −PT2qtrap1 − (PT2 + PD2)qtrap2 + PT2qtotal (9)

Given PTi, PDi, and qtotal, Equations (8) and (9) are linear system of differential equations with
constant coefficients. The undetermined function qtrap2(t) and the first-order derivative dqtrap2(t)/dt can
be expressed as functions of qtrap1(t), dqtrap1(t)/dt, and d2qtrap1(t)/dt2 by Equation (8). We can eliminate
qtrap2(t) and dqtrap2(t)/dt in Equation (9) to obtain the linear differential equation of second order with
constant coefficients of qtrap1(t). Similarly, we can find the second order linear differential equation
with constant coefficients of qtrap2(t).

d2qtrap1

dt2 + (PT1 + PD1 + PT2 + PD2)
dqtrap1

dt
+ (PT1PD2 + PT2PD1 + PD1PD2)qtrap1 − PT1PD2qtotal = 0

(10)

d2qtrap2

dt2 + (PT1 + PD1 + PT2 + PD2)
dqtrap2

dt
+ (PT1PD2 + PT2PD1 + PD1PD2)qtrap2 − PT2PD1qtotal = 0

(11)
The second order linear differential Equations (10) and (11) have the same characteristic equation.

r2 + (PT1 + PD1 + PT2 + PD2)r + PT1PD2 + PT2PD1 + PD1PD2 = 0 (12)

Solving the characteristic Equation (12), we can obtain two unequal real roots, namely λ1 and
λ2. Then, we can solve the second order linear inhomogeneous differential Equations (10) and (11).
The time dependent trapped charge densities qtrap1(t) and qtrap2(t) are given by,

qtrap1(t) = C11 exp(λ1t) + C12 exp(λ2t) + PT1PD2qtotal/(PT1PD2 + PT2PD1 + PD1PD2) (13)

qtrap2(t) = C21 exp(λ1t) + C22 exp(λ2t) + PT2PD1qtotal/(PT1PD2 + PT2PD1 + PD1PD2) (14)
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where C11, C12, C21, and C22 are coefficients dependent on the initial conditions. The analytical solutions
of coefficients C11, C12, C21, and C22 are shown in Appendix A.

Substituting Equations (13) and (14) into qfree(t) = qtotal − qtrap1(t) − qtrap2(t), we can calculate the
time dependent free charge density.

q f ree(t) = PD1PD2qtotal/(PT1PD2 + PT2PD1 + PD1PD2) − (C11 + C21) exp(λ1t) − (C12 + C22) exp(λ2t) (15)

In the case of constant total charge density, the time dependent effective carrier mobility, µeff(t),
has a similar function as qfree(t).

µe f f (t) = µ0PD1PD2/(PT1PD2 + PT2PD1 + PD1PD2)

−µ0[(C11 + C21)exp(λ1t) − (C12 + C22) exp(λ2t)]/qtotal
(16)

When the approximation, qtrapi(t)/QTi ≈ 0, is not valid for i = 1 or 2, alternatively, we can solve the
charge trapping/de-trapping equations numerically by an unconditionally stable nonstandard finite
differential (NSFD) method [29]. First, the charge trapping term and the charge de-trapping term
in the charge trapping/de-trapping Equation (3) is split into two parts. Secondly, we just solve the
charge trapping term in the differential equation of free charge density, and the de-trapping terms in
the differential equations of trapped charge densities by the NSFD method.

dq f ree(t)

dt
= −q f ree(t)

n∑
i = 1

PTi

(
1−

qtrapi(t)

QTi

)
(17)

dqtrapi(t)

dt
= −PDiqtrapi(t), (i = 1, 2) (18)

It is assumed that ∆t is the time step size, and [tk = k∆t]k≥0 is a sequence of equally-spaced time
points. Then, the differential equations can be transformed into difference equations. Adopting the
NSFD scheme, we can obtain the numerical form of Equations (17) and (18) as follows:

q f ree(tk+1) = q f ree(tk) exp

− n∑
i = 1

PTi
(
1− qtrapi(tk)/QTi

)
∆t

 (19)

qtrapi(tk+1) = qtrapi(tk) exp(−PDi∆t), i = 1, 2 (20)

The numerical forms are unconditionally stable regardless of ∆t, which is superior to the finite
different method (FDM). According to Chapwanya et al. [29], the Lambert W function is used in Equations
(19) and (20) (the NSFD scheme) to increase the accuracy of numerical solutions. Thirdly, the charge
de-trapping term in the differential equation of free charge density and the charge trapping terms in the
differential equation of trapped charge densities can be computed explicitly using the trapped charge
densities and free charge densities at tk+1 obtained by the NSFD scheme. Then, we can obtain numerical
solutions of free charge density qfree(tk+1) and trapped charge densities qtrapi(tk+1) at tk+1.

Figure 2a,b shows the analytical and numerical results of free charge density and trapped charge
densities as a function of time with the total charge densities of 2 cm−3 and 10 cm−3, respectively.
When the total charge density is relatively low (e.g., 2 cm−3), the approximations, qtrapi(t)/QTi ≈ 0, are
valid, and the analytical results are in good agreement with the numerical results. Nevertheless, when
the total charge density is relatively high (e.g., 10 cm−3), the approximations, qtrapi(t)/QTi ≈ 0, are not
always valid. Therefore, a small difference occurs between the analytical results and the numerical
results in the time range from 103 to 104 s. However, the shape of the curves is nearly the same.
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Figure 2. Time-dependent free charge density and trapped charge densities in the dielectric material
containing two discrete trap levels in the case of instantaneous charge injection. The total charge
densities are 2 cm−3 (a) and 10 cm−3 (b). Solid lines are numerical results, and dots are analytical results.

The free charge density decays exponentially with time both in Figure 2a,b. The trapped charge
density in trap level 2, qtrap2(t), increases with time during the charge trapping/de-trapping process.
Whereas, the trapped charge density in trap level 1, qtrap1(t), increases firstly and then decreases with
time. Since the trapping probability of trap center is proportional to the trap density, the trapping
probability of trap level 1 will be five times larger than that of trap level 2. Consequently, more free
charges are captured by trap level 1 at the beginning. In addition, the time needed to reach steady state
for charges in trap level 2 is prolonged in the presence of trap level 1.

2.4. Steady State Characteristics in the Case of Instantaneous Charge Injection

When the charge trapping/de-trapping dynamics reach steady-state tst, namely dqtrapi(t)/dt = 0,
the exact relationship between trapped charge densities and free charge density can be obtained from
the charge trapping/de-trapping differential equations.

qtrapi(tst) =
PTiq f ree(tst)qeNTi

PTiq f ree(tst) + PDiqeNTi
(21)

Using the above equation, we can calculate trapped charge densities in each trap center as
a function of free charge density at steady state, as shown in Figure 3a. For small free charge
densities, the relations between the trapped charge densities and the free charge densities are linear,
qtrapi(tst)∝qfree(tst). For high free charge densities, the traps will be fully filled. Moreover, the deeper
traps will be fully filled first, then the shallower traps.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 17 
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Figure 3. Trapped charge densities (a) and total charge density and effective carrier mobility (b) as a
function of free charge density at steady state in dielectric materials containing two discrete trap levels.

The quantitative relationship among qfree(tst), qtrap1(tst), and qtrap2(tst) can be derived from Equations
(13)–(15) for small free charge densities. The relationship is,
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q f ree(tst)/qtrap1(tst)/qtrap2(tst) = PD1PD2/PT1PD2/PT2PD1 (22)

Substituting the charge trapping probability and charge de-trapping probability equations into
Equation (22), we can obtain the relationships between qfree(tst) and qtrapi(tst), and between qtrap1(tst)
and qtrap2(tst).

q f ree(tst)

qtrapi(tst)
=

ε0εrυATE
qeNTiµ0

exp
(
−

ETi
kBT

)
(23)

qtrap1(tst)

qtrap2(tst)
=

NT1

NT2
exp

(
−

ET2 − ET1

kBT

)
(24)

Equations (23) and (24) show that the trapped charge densities increase exponentially with the
increasing trap energy at a given qfree(tst). Accordingly, at steady state deeper traps will be fully filled
first, as demonstrated in Figure 3b. However, ratios of qtrap1(tst) to qtrap2(tst) at transient sates are
different from the results of Equation (24). As indicated in Figure 2, qtrap1(tst) could be much larger than
qtrap2(tst) at transient states. The exact relationship between qtrap1(tst) and qtrap2(tst) is demonstrated in
Appendix B.

Figure 3b demonstrates the dependences of total charge density, qtotal(tst), and effective carrier
mobility, µeff(tst), on free charge density. The total charge density increases with increasing free charge
density. The two convex inflection points in qtotal(tst)–qfree(tst) curve imply the fully filling of trap level
1 and trap level 2. The effective carrier mobility is a constant for small free charge densities. Then,
the effective carrier mobility rises as the free charge density increases.

3. Bipolar Charge Transport Model

In dielectric materials subjected to voltages, the injected charges will not only be captured by
trapping centers, but also migrate in the shallow traps [1]. We will utilize the bipolar charge transport
(BCT) model to investigate the space charge dynamics in the dielectric materials with two discrete
traps. We consider a system consisting of a dielectric material with the thickness of L clamped by two
electrodes. A one-dimensional coordinate, x, is set up for the sample. X = 0 corresponds to the interface
between the material and cathode, and x = L corresponds to the interface between the material and
anode. The schematic of the BCT model of dielectric materials subjected to electric fields is shown in
Figure 4.
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3.1. Charge Injection

We can use Schottky thermionic emission with an effective injection barrier to model the charge
injection process from the electrode to the insulation material. Since concentrating on the space charge
evolution and charge trapping/de-trapping dynamics in the bulk of the material containing two discrete
trap levels in the present work, we describe the charge injection processes for electrons and holes by
Schottky thermionic emission with effective injection barriers [22,30].

jine(0, t) = AT2 exp
(
−

Eine
kBT

)
exp

(
ESch(0, t)

kBT
− 1

)
(25)

jine(L, t) = AT2 exp
(
−

Einh
kBT

)
exp

(
ESch(0, t)

kBT
− 1

)
(26)

where jine(0,t) and jinh(L,t) are the thermionic injection currents at cathode-insulator interface and
anode-insulator interface in Am−2, respectively. A is the Richardson constant; Eine and Einh are
the contact potential barrier at the cathode-insulator interface and anode-insulator interface in eV,
respectively. ESch is the Schottky potential barrier lower, Esch = (qeF/4πε0εr)1/2. F is the electric field in
the dielectric material in Vm−1.

3.2. Self-Consitent Equations

The charges in dielectric materials are governed by a set of self-consistent equations [22,30,31].
(a) Charge advection-reaction equations,

∂q f ree(x, t)

∂t
+
∂ jc(x, t)
∂x

= S f ree(x, t) (27)

∂qtrapi(x, t)

∂t
= Strapi(x, t), (i = 1, 2) (28)

(b) Charge transport equation,

jc(x, t) = q f ree(x, t)µ0F(x, t) (29)

(c) Poisson’s equation,

∂2φ(x, t)
∂x2 = −

q f ree(x, t) +
2∑

i = 1
qtrapi(x, t)

ε0εr
(30)

(d) The spatial integration of electric field,

Vappl =

∫ L

0
F(x, t)dx (31)

where qfree and qtrap are the free and trapped charge densities in the dielectric in cm−3, respectively; jc is
the conducting current density in the material in Am−2; D it the diffusion coefficient of free charges
which is equal to µ0kBT/qe; φ is the potential in the material in V; and Vappl is the applied voltage on the
sample in V. The summation of free and trapped charge densities is named as net charge density, qnet.
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3.3. Charge Reaction Dynamics

The following four equations represent the first order charge dynamics in dielectric materials having
two discrete trap levels, including charge trapping/de-trapping and recombination processes [22,30].

Seµ = −Reµ,hµq f ree(e)q f ree(h) −
n∑

i = 1
Reµ,htq f ree(e)qtrap(h)i − q f ree(e)

n∑
i = 1

PT(e)i(1− qtrap(e)i/qeNT(e)i) +
n∑

i = 1
PD(e)iqtrap(e)i (32)

Seti = q f ree(e)PT(e)i

(
1− qtrap(e)i/qeNT(e)i

)
− PD(e)iqtrap(e)i −Ret,hµqtrap(e)iq f ree(h), i = 1, 2 (33)

Seµ = −Reµ,hµq f ree(e)q f ree(h) −
n∑

i = 1
Ret,hµqtrap(e)iq f ree(h) − q f ree(h)

n∑
i = 1

PT(h)i(1− qtrap(h)i/qeNT(h)i) +
n∑

i = 1
PD(h)iqtrap(h)i (34)

Seti = q f ree(h)PT(h)i

(
1− qtrap(h)i/qeNT(h)i

)
− PD(h)iqtrap(h)i −Reµ,htq f ree(e)iqtrap(h), i = 1, 2 (35)

where Seµ, Set, Shµ, and Sht are the charge sources of mobile and trapped electrons and holes, respectively;
and n = 2. Reµ, hµ is the recombination rate between free electrons and free holes in cm−3 s−1. Reµ,ht and
Ret,hµ are the recombination rate between free electrons and trapped holes and the recombination rate
between trapped electrons and free holes in Cm−3s−1, respectively.

In the Langevin recombination model, the recombination rate between free electrons and free
holes is determined by the carrier motilities of electrons and holes [30,32], Reµ,hµ = (µe0 + µh0)/ε0εr.
The recombination rate between free electrons and trapped holes is determined by the carrier motility
of free electrons; and the recombination rate between trapped electrons and free holes is determined by
the carrier motility of free holes [30,32], namely, Reµ,ht = µe0/ε0εr and Ret,hµ = µh0/ε0εr.

3.4. Numerical Techniques

The charge advection-reaction equation is split into two parts, namely, the charge advection
equation and the charge reaction equation, by the Strang splitting method. The charge reaction
equations for free charges and trapped charges are resolved by the NSFD scheme [29]. The charge
advection equation is solved by the weighted essentially non-oscillatory method (WENO), which can
provide highly stable and accurate numerical charge distribution results [33].

Poisson’s equation is solved by the Boundary Element Method (BEM) with Dirichlet boundary
condition [34]. The BEM method is discretized spatially in integral forms by utilizing functional
analysis. The advantages of BEM method are that they can simultaneously calculate the potentials
and electric fields in the dielectric material and can obtain the electric field at every point of the
discretization grid, particularly on the interfaces between electrodes and dielectric material.

4. Results and Discussion

An additive-free LDPE film with a thickness of 150 µm was used in the BCT simulations. The film
was discretized into 300 elements, respectively. The computation time interval ∆t was set as 0.01 s,
which satisfied the Courant-Friedrich-Levy (CFL) law [35]. The charge injection barriers for electrons
and holes are set as 1.1 eV and 1.3 eV, respectively. Symmetrical values for parameters of carrier
mobilities, densities and energies of trap levels 1 and 2 are used in the BCT simulations, which are given
in Table 1. It is assumed there are no charges inside the dielectric material at initial states. Charges are
injected into the material via Schottky thermionic emissions and flow out the material with Ohm’s law.

4.1. Space Charge Accumulation Characteristics

Free charge and trapped charge densities are dependent on time and position. The BCT model
outputs of free charge density and net charge density distributions in the material at various times
show that the accumulated negative charges are much larger than the accumulated positive charges in
the bulk of LDPE. Since the contact potential barrier between the cathode and the dielectric material
is lower than that between the anode and the material, the emission rate of electrons is much higher
than the emission rate of holes according to the Schottky thermionic emission equation. For example,
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the injection current densities of electrons and holes are about 7.36 × 10−3 Am−2 and 3.21 × 10−6 Am−2,
respectively, at the voltage of 6.0 kV at the beginning of voltage application. Accordingly, the injected
negative charges are much larger than the injected positive charges.

When the space charges are only caused by charge injections from contact electrodes, homogenous
space charges will be accumulated in the dielectric material. The injected electrons drift in the bulk of
the material towards the anode and are captured by trapping level 1 and trapping level 2 gradually. If
the trapping rates are larger than the de-trapping rates, most of the injected electrons are trapped in
the trapping centers. The trapped electrons can distort the electric fields in the vicinity of the cathode,
reducing the Schottky thermionic emission current. This will lead to the saturation of accumulated
space charges in the dielectric material.

Figure 5a indicates the average net charge density as a function of time in the dielectric material
subjected to various voltages. The average net charge density equals to the integration of net charge
density over position x divided by the length of the dielectric material. The average net charge densities
increase very fast at the beginning of the application of voltage. Then, the increasing rates of the
average net charge densities decline gradually with time. In addition, the time needed for the space
charge accumulation to reach steady-state decreases with increasing the applied voltage. Figure 5b
shows the external current densities as a function of elapsed time after the application of voltages. Since
no free charges are assumed inside the dielectric material before the application of voltage, the current
density is very small at the beginning after applying voltage to the sample due to low density of free
charges. With increasing the elapsed time of voltage application, more and more charges are injected
into the dielectric material, so the current density increases with time until the front of injected charges
reaches the opposite electrode. The peaks correspond to the transit time of free charges, which is 4.8 s
at 6.0 kV, 4 s at 7.5 kV, and 3.4 s at 9.0 kV. After the injected charges reach the opposite electrode charge
trapping process will dominate the charge transport in the dielectric material and the current density
decrease monotonically with time. Stepwise reductions can be observed in the time-dependent current
density, which are caused by charge trapping-de-trapping dynamics between the extended states and
two deep traps.
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4.2. Time Dependent Free and Trapped Charge Densities at the Same Position

Figure 6a–c demonstrates the free and trapped charge densities as a function of time at the
same position x = 2∆x in the dielectric material subjected to the voltage of 6.0 kV, 7.5 kV, and 9.0 kV,
respectively. The quasi-free charges in shallow traps injected from electrodes will be captured by trap
level 1 and trap level 2 simultaneously. Since the trapping probability of trap level 1 is larger than
that of trap level 2, the increasing rate of trap level 1 is larger than that in trap level 2. Accordingly,
significantly more charges are accumulated in trap level 1. In the meantime, the quasi-free charge
density decreases with time. In addition, the charge migration and the decrease of charge injection
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also cause the reduction of quasi-free charges. The reduction of quasi-free charge density transfers
the charge trapping/de-trapping dynamics in the case of constant quasi-free charge density to that in
the case of constant total charge density. This leads to the decrease of charge density in trap level 1.
The charges in trap level 1 will be transferred to trap level 2 via the transport states gradually. Finally,
the charges in the material will reach thermodynamic equilibrium. At thermodynamic equilibrium,
the charge densities in trap level 1 are larger than that in trap level 2 both in Figure 6.
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The simulation results of charge trapping/de-trapping dynamics in dielectric materials having
two discrete trap levels imply that the poling duration of applied DC voltage can influence the energy
distribution properties of accumulated space charges. For short poling duration, more quasi-free
charges may be captured by the trap level 1 (relatively shallower trap centers). Whereas, the trapped
charges in trap level 1 will transfer to trap level 2 (relatively deeper trap centers) via the transport states
for a long poling duration. The differences in the energy distribution of accumulated space charges will
lead to the differences in space charge decay properties as shown in Figure 7. In the simulation model,
we apply a voltage to the sample for some time (tc) and then the sample is short-circuited to simulate
the space charge decay properties. When the charging time tc is 1 × 102 s, a large portion of charges are
trapped in trap level 1, so the decay rate of charges after the sample is short-circuited is much higher
than that with longer charging time. The same trends in the decay rate of charges were observed
under the application of different voltages. After trap level 2 is fully filled, the decay rate of charges at
a relatively longer time becomes the same. The charge decay properties of LDPE were investigated
experimentally to demonstrate the charge trapping/de-trapping results obtained theoretically and
numerically. LDPE samples with a thickness of 100 µm were charged by corona discharging for 120 s,
300 s, and 600 s at room temperature and at the humidity of 40%. The samples were charged to around
−5 kV and their surface potentials were then measured by a high-voltage electrostatic voltmeter (P0865,
Trek, Lockport, NY, USA) with a non-contact probe (3453ST, Trek, Lockport, NY, USA). Figure 8a shows
how the surface potential decay properties change with charging time. As the charging time increases,
the decay rate of surface potential decreases, because more charges are transferred into deep traps.
From the surface potential decay curves, we calculated the charge densities and trap energies of LDPE.
There are two discrete traps with the trap energies of 0.93 eV and 1.0 eV in the sample as shown in
Figure 8b. The charge density de-trapped from shallow traps with the energy of 0.93 eV decreases with
charge time, while that from deep traps increases. It indicates that during the charging process there is
charge transfer from shallow traps to deep traps, so the charge decay becomes more difficult when the
sample is charged for a longer time.
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The charge time-dependent space charge decay behavior was also observed in XLPE [11,12] and
LDPE [16,17] by PEA techniques. Tzimas et al. studied the space charge decay properties of virgin
XLPE subjected to an electric field of 5 × 107 Vm−1 for 2 h and 26 h at ambient temperature. The space
charge distributions in the samples were measured and recorded by the PEA system. Then, the space
charge density at the same position near the electrodes was extracted from the position distributions
of space charges and plotted as a function of decay time. It was found that the space charge decay
properties of the samples poled for various times are different. The space charges decayed slower
for long poling duration. The experimental space charge decay results indicated that the charge
trapping/de-trapping dynamic process of each trap center is coupled with the dynamic process of other
trap centers. As shown by our analytical and numerical results in Section 2 and the BCT simulation
results, the initial conditions for space charge decay processes are different for various poling durations.

4.3. Discussion

The coupling charge trapping/de-trapping dynamic processes increase the time needed for
the relative deeper trap centers to reach steady states. This will prolong the periods for the energy
distributions of charges to reach the thermodynamic equilibrium. Consequently, the coupling dynamics
will increase the response times of transient polarization/depolarization currents, and space charge
accumulation/decay processes. Therefore, the experimental results in a relatively narrow time window
cannot fully interpret the charge transport behavior of polymeric dielectric materials. Montanari et al.
measured the transient current densities of LDPE, XLPE, and HDPE samples at 20 ◦C. It was found that
the transient current densities decayed for a very long time, and the steady states were not reached even
after applying an electric field of 6 × 107 Vm−1 for about 24 h [36]. Accordingly, the conductivities of the
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dielectric materials calculated from the experimental results at short poling durations would be larger
than that calculated from the experimental results at long poling durations. In addition, the energy
distribution of traps of XLPE evaluated from the space charge accumulation/decay experimental results
at various poling durations are different.

The coupling dynamic processes will establish a dynamic equilibrium rather than a thermodynamic
equilibrium in the dielectric materials [11]. It means that the traps in dielectric materials are not filled
from the deepest levels upwards [22]. The traps are filled simultaneously. When the material is not in
thermodynamic equilibrium, we cannot use Fermi-Dirac function (or Boltzmann function) to calculate
the trapped charges density in each trap centers. Consequently, we cannot easily estimate the effective
carrier mobility at transient states in the dielectric materials containing multiple discrete trap levels,
the exponential energy distribution of traps, and Gaussian energy distribution of traps, etc. This means
that we need to establish a novel charge transport and trapping model for dielectric materials with
different types of the energy distribution of trap centers.

5. Conclusions

The space charge dynamics in LDPE with two discrete trapping centers were studied analytically
and numerically. We simplified the charge trapping/de-trapping equations and obtained the analytical
solutions of trapped charge densities, quasi-free charge density, and effective carrier mobility. Then,
we utilized the BCT model consisting of charge injection from electrodes, charge migration in shallow
traps, charge trapping, de-trapping, and recombination processes to simulate the distributions of
space charges and electric fields in the material. The charge dynamic equations, charge advection
equation, and Poisson’s equation in the BCT model were numerically solved by the NSFD, finite
difference WENO, and BEM methods, respectively. The outputs of the BCT model showed the spatial
distributions of free charge densities, trapped charge densities, and net charge densities. Charge
densities at the same position in the sample as a function of time were achieved by the BCT simulations.
The simulation results showed that the DC poling duration could affect the energy distribution of
accumulated space charges. The charges in the relative shallower trapping centers would transfer to
the relative deeper trapping centers for long poling durations. It was found that coupling dynamic
processes would increase the time needed for the relative deeper trap centers to reach steady states.
Therefore, experimental results for long poling duration are required to analyze the charge trapping
and de-trapping properties of polymeric dielectric materials.
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Appendix A

Coefficients C11, C12, C21, and C22

The initial conditions for charge trapping-de-trapping equation is assumed to be as follows:

qtrap1(t)
∣∣∣
t = 0 = 0,

dqtrap1(t)

dt

∣∣∣∣∣∣
t = 0

= PT1qtotal (A1)

qtrap2(t)
∣∣∣
t = 0 = 0,

dqtrap2(t)
dt

∣∣∣∣∣∣
t = 0

= PT2qtotal (A2)
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Using the initial conditions for trapped charge densities and their first order derivatives, we can
obtain the coefficients C11, C12, C21, and C22.

C11 =
1

λ1 − λ2

[
PT1qtotal +

PT1PD2qtotalλ2

PT1PD2 + PT2PD1 + PD1PD2

]
(A3)

C12 =
−1

λ1 − λ2

[
PT1qtotal +

PT1PD2qtotalλ1

PT1PD2 + PT2PD1 + PD1PD2

]
(A4)

C21 =
1

λ1 − λ2

[
PT2qtotal +

PT2PD1qtotalλ2

PT1PD2 + PT2PD1 + PD1PD2

]
(A5)

C21 =
−1

λ1 − λ2

[
PT2qtotal +

PT2PD1qtotalλ1

PT1PD2 + PT2PD1 + PD1PD2

]
(A6)

Appendix B

Relationship between qtrap1(tst) and qtrap2(tst) in the Case of Instantaneous Charge Injection

Substituting Equations (1) and (2) into Equation (21), we can obtain the exact relationship between
qtrap1(tst) and qtrap2(tst).

qtrap1(tst)

qtrap2(tst)
=

NT1

NT2

qtotalµ0 + ε0εrυATE exp(−ET1/kBT)
qtotalµ0 + ε0εrυATE exp(−ET2/kBT)

(A7)

When qtotalµ0 << ε0εrυATEexp(−ETi/kBT), Equation (A7) approximate Equation (24).
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