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Featured Application: Enriching the practical applications of direct demand models with
geographically weighted regression (GWR) and examining the influencing factors of transit
ridership can provide multiple potential implications for travel demand modelers, transit
operators, and urban planners. The results of the GWR model indicate that transit travel
demand (ridership) can be estimated by identifying the significant variables from a local
perspective, which can help to establish an efficient transit system combined with sustainable
urban development.

Abstract: Ridership analysis at the local level has a pivotal role in sustainable urban construction and
transportation planning. In practice, urban rail transit (URT) ridership is affected by complex factors
that vary across the urban area. The aim of this study is to model and explore the factors that impact
metro station ridership in Shenzhen, China from a local perspective. The direct demand model,
which uses ordinary least squares (OLS) estimation, is the most widely used method of ridership
modeling. However, OLS estimation assumes parametric stability. This study investigates the use
of a direct demand model on the basis of geographically weighted regression (GWR) to model the
local relationships between metro station ridership and potential influencing factors. Real-world
Shenzhen Metro smart card data are used to test and verify the applicability and performance of the
model. The results show that GWR performs better than OLS estimation in terms of both model
fitting and spatial interpretation. The GWR model demonstrates a high level of interpretability
regarding the spatial distribution and variation of each coefficient, and thus can provide insights for
decision-makers into URT ridership and its complex factors from a local perspective.

Keywords: geographically weighted regression (GWR); metro ridership; influencing factors;
spatial autocorrelation

1. Introduction

The dramatic increase in urbanization in the last few decades has made urban rail transit (URT) a
central pillar of public transport, due to its efficiency and transport capacity. Identifying the dynamic
mechanisms of urban transit is critical to both infrastructure planning and transportation operation,
and thus urban indicators such as URT station ridership must be investigated systematically and
comprehensively. URT ridership is a key factor used to determine a station’s occupation in terms of
space and the supporting facilities required. URT ridership is known to be affected by the interaction
of specific urban elements (such as land use and socio-economics). Thus, understanding the impact
of these elements is essential to accurately estimate travel demand and effectively plan and design
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urban systems, including planning infrastructure and deploying services and resources. URT ridership
modeling can help estimate ridership and explore the influencing factors. The complex factors assumed
to affect metro ridership include land use, socio-economics, intermodal transport accessibility, and
network structures.

Ridership modeling has long been applied in the field of transportation planning. Numerous
models have been developed to explore the relationships between transit ridership and influencing
factors. The four-step model (generation, distribution, mode choice, and assignment) was first
developed in the 1950s and has since been dominant in traffic analysis. However, the four-step model
has various practical shortcomings, such as its low level of accuracy, imprecise data, insensitivity to
land use, institutional obstacles, and high cost [1]. The model is more applicable to transit ridership
estimation in traffic zones (large regions) than in stations (small detailed regions) [2]. The direct
demand model has recently attracted attention as an alternative to the four-step model. This estimates
ridership via regression models and treats it as a function of its influencing factors in the pedestrian
catchment area (PCA) and can thus identify influencing factors that can help to increase the volume
of transit ridership [1,3–6]. In the model, the PCA is the geographical area from which the station
draws its passengers. The shape and size of the PCA are determined by the accessibility of one station
and the distance from other stations to it. Buffers can be used to generate circular catchment areas
with a given distance, and Thiessen polygons are typically used to define an area around each station,
where every location is nearer to this station than to all the others. The main advantages of the direct
demand model in ridership modeling are simple usage, easy interpretation, quick response, and low
expenses. Ordinary least squares (OLS) multivariate regression is a commonly used direct demand
model, and assumes that the parameters are stable [1,5,7–16]. The advantages of spatial models are
considered in direct demand models, and thus provide a better spatial interpretation by implementing
geographically weighted regression (GWR), which can measure the nonstationarity and heterogeneity
of spatial parameters.

In addition, as real transportation systems are dynamic, the traffic demand of the transport
network differs by the time of day and the day of week. The time-varying patterns of travel demand are
accompanied by time-varying ridership, which is influenced by several factors. If the time dependence
of travel demands is not considered, inaccurate estimations of ridership and incorrect analyses of
the influencing factors may result. Thus, the specific factors influencing transit ridership at station
level at different time periods should be identified so follow-up dynamic ridership forecasting can be
accurately conducted, thus providing a theoretical foundation for real-time traffic management.

In summary, the current direct demand models have various shortcomings while the GWR
model has various advantages in the modeling of latent spatially varying relations. Thus, a direct
demand model based on the GWR model is used to model the factors affecting transit ridership during
different periods (evening rush hours, nonrush hours, average weekday ridership, average weekend
ridership, and average daily ridership per week). Feature selection is conducted via the backward
stepwise method before the GWR process. The applicability and effectiveness of the framework are
demonstrated using the Shenzhen Metro network as a case study. Ridership data for 118 Shenzhen
Metro stations were collected using the Automated Fare Collection (AFC) system in 2013. Four types
of potential factors are considered: land use, socio-economics, the accessibility of intermodal transport,
and network structure information.

This study makes both methodological and empirical contributions, as follows. Methodologically,
by quantifying the network structure factors using measurements in the domain of a complex network,
comprehensive information and significant regression performance are obtained. To the extent of our
knowledge, little research has been done in this way before. Empirically, different GWR models are
implemented for different time periods, which can both model the local relationships between the
metro station ridership and its potential influencing factors and interpret the temporal variation in the
influencing factors of ridership. Therefore, the study contributes to metro planning and periphery
development from both spatial and temporal perspectives. The findings also have several practical
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implications for urban and transport policymakers, thus bridging the gap between theory and practice.
The study also advances the literature of transit ridership modeling from a local perspective. In addition,
its framework can be extended to other areas, such as analyzing the influencing factors of public health
conditions (virus and disease spreading) and customer volume at different locations.

The remaining parts of the paper are organized as follows. A comprehensive review of the research
on modeling and analyzing transit ridership and its influencing factors is provided in Section 2. The data
collected for the study are described in Section 3. Section 4 introduces the methods of estimating transit
station ridership and identifying the key influential factors. Section 5 details and analyzes the results
of the model implementation. Section 6 concludes and provides practical recommendations.

2. Prior Research

2.1. Models for Estimating Transit Ridership

Numerous studies have recently emerged that explore the influencing factors impacting transit
ridership. We review the research focusing on direct demand models in transit ridership estimation
(as summarized in Table 1). The most widely used direct demand model in this research field is OLS
multiple regression. Kuby et al. (2004) [5], Sohn and Shim (2010) [8], Loo et al. (2010), Sung and Oh
(2011) [10], Gutierrez et al. (2011) [1], Thompson et al. (2012) [11], Guerra et al. (2012) [12], Zhao et al.
(2013) [13], Chan and Miranda-Moreno (2013) [14], Singhai et al. (2014) [15], Liu et al. (2016) [16], Pan
et al. (2017) [17], and Vergel-Tovar and Rodriguez (2018) [18] all used OLS regression models to fit the
relationship between transit ridership and its influencing factors. However, OLS regression is limited
by its assumption that the factors affecting transit ridership have nothing to do with the spatial location
of stations, as OLS regression does not consider the spatial autocorrelation of variables. Fotheringham
(1996) [19] proposed the geographically weighted regression (GWR) model, which is able to reveal the
spatial correlations of variables under the condition of spatial heterogeneity, and thus is more suitable
for dealing with spatial data analytics.

GWR is widely used for spatial data analysis in many fields, such as economics, geography, and
ecology. However, the model has rarely been applied to the field of transportation planning. The
only analyses comparing the results of OLS and GWR modeling of the factors influencing transit
ridership are those conducted by Cardozo et al. (2012) [2] and Tu et al. (2018) [20], who found a better
fit for GWR. Jun et al. (2015) [21] used mixed geographically weighted regression (MGWR) models
incorporating both local and global factors to explore the association between metro ridership and
land use features. Their work provides new research directions that justify further investigations using
this type of model. However, their GWR models still have some limitations, such as ignoring the
differences in travel demand between time periods and other network structure factors. Thus, there is
room for improvement in the implementation of GWR in transit ridership modeling.

Other methods have also been considered, such as multiplicative regression (Choi et al., 2012;
Zhao et al., 2014; Kepaptsoglou et al., 2017) [3,22,23], two-stage least square regression (2SLS) (Taylor et
al., 2004; Estupiñán and Rodriguez, 2008) [24,25], Poisson regression (Chu, 2004; Choi et al., 2012) [3,6],
negative binomial regression (Thompson et al., 2012) [11], and structural equation modelling (SEM)
(Sohn and Shim, 2010) [8]; geographical methods such as distance-decay weighted regression (Gutiérrez
et al., 2011) [1] and the network Kriging method (Zhang and Wang, 2014) [26]; machine learning methods
such as the decision tree (DT) and support vector regression (SVR); and item-based collaborative
filtering methods based on cosine similarity (CF) (Hu et al., 2016) [27], cluster analysis (Deng and Xu,
2015) [28], and back propagation neural networks (BPNN) (Li et al., 2016) [29]. However, understanding
the results is a major challenge in terms of the interpretability of the function modeled by the machine
learning algorithm. In regression models, there is a very simple relationship between inputs and
outputs, and thus we choose the GWR model for our study.
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Table 1. A review of the literature related to transit ridership modeling [1–18,20–29].
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City 
Data 
Time 
Span 

Response Variable Factors Investigated 

Analysis 
Method Reference Average 

Weekday 
Ridership 

Monthly 
Station 

Ridership 

Annual 
Ridership 

Residual 
Daily and 

Hourly 
Subway 

Ridership 

Daily 
Station 

Passenger 
Volume 

Morning 
Peak and 
Evening 

Peak 
Ridership 

Weekly 
Ridership 

Ridership 
by 

Transit 
Mode 

Not 
Mentioned 

Land 
use 

Network 
Structure 

Intermodal 
Connections 

Socio-
Economics 

Station Built 
Environment Weather

Transit 
Service TimeCitywide

External 
Connectivity 

Seoul, Korea 
Not 

mentioned 
√         √  √       √ 

OLS/structural 
equation 

model (SEM) 

Sohn and 
Shim (2010) 

Madrid, 
Spain 

2004  √        √ √ √        
Distance-decay 

weighted 
regression 

Gutiérrez et 
al. (2011) 

Madrid, 
Spain 

2004  √         √ √ √       OLS/GWR 
Cardozo et al. 

(2012) 
Nanjing, 

China 
2010 √          √ √ √ √     √ OLS 

Zhao et al. 
(2013) 

Shanghai, 
China 

2011     √     √ √ √ √       OLS 
Pan et al. 

(2017) 
Hong Kong; 
New York, 

U.S. 
2005 √         √  √ √ √      OLS 

Loo et al. 
(2010) 

Nine U.S. 
cities 

(ranging 
from Buffalo 
to St. Louis 

to San 
Diego) 

2000 √         √ √ √ √     √  OLS 
Kuby et al. 

(2004) 

The state of 
Maryland, 

which 
consists of 
23 counties 
and the city 
of Baltimore, 

U.S. 

2011     √     √   √ √  √    OLS 
Liu et al. 

(2016) 

Nanjing, 
China 

2011      √    √  √  √      
OLS and 

multiplicative 
regression 

Zhao et al. 
(2014) 

New York, 
U.S. 

2010–2011    √           √     OLS 
Singhal et al. 

(2014) 

Singapore 
Not 

mentioned 
     √    √       √   Decision tree 

(DT), support 
Hu et al. 
(2016) 
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vector 
regression 
(SVR), and 
item-based 

collaborative 
filtering 

method based 
on cosine 

similarity (CF) 

Tokyo, 
Japan 

2010 √         √   √ √      
Back 

propagation 
neural network 

(BPNN) 

Li et al. (2016) 

Montreal, 
Canada 

1998 and 
2003 

√     √    √   √       OLS 

Chan and 
Miranda-
Moreno 
(2013) 

Beijing, 
China 

2014       √   √   √       Cluster 
analysis 

Deng and Xu 
(2015) 

Seoul, Korea 
Not 

mentioned 
        √ √  √ √       MGWR 

Jun et al. 
(2015) 

New York 
City, U.S. 

Not 
mentioned 

√            √ √      
Network 
Kriging 
method 

Zhang and 
Wang (2014) 

265 
urbanized 
areas in the 

U.S. 

2000   √          √ √     √ 

Two-stage 
least squares 

regression 
(2SLS) 

Taylor et al. 
(2003) 

Jacksonville, 
Florida, U.S. 

2001 √           √ √ √  √    Poisson 
regression 

Chu (2004) 

Bogota, 
Colombia 

2005, 2006     √      √   √     √ 2SLS 

Estupiñán 
and 

Rodríguez 
(2008) 

Seoul, Korea 2007        √  √    √  √    OLS 
Sung and Oh 

(2011) 

Seoul, Korea 
For 

2010      √    √  √        
Multiplicative 
and Poisson 
regression 

Choi et al. 
(2012) 

Broward 
County, FL, 

U.S. 
2000   √       √   √   √    

Negative 
binomial 

regression 

Thompson et 
al. (2012) 

Three major 
cities in 
Cyprus 

Not 
mentioned 

√            √  √ √ √  √ 
Multiplicative 

regression 
Kepaptsoglou 

et al. (2017) 
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Shenzhen, 
China 

2014     √     √  √ √       OLS/GWR 
Tu et al. 
(2018) 

Seven Latin 
American 

cities 
2014 √         √  √ √   √   √ OLS 

Vergel-Tovar 
and 

Rodriguez 
(2018) 
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2.2. Explanatory and Response Variables

The explanatory variables used in the models summarized in Table 1 can be categorized into
the four main groups of land use, socio-economics, transport accessibility, and network structure
variables. Land use variables have been used extensively in previous research. For example, Jun
et al. (2015) [21] first evaluated land use characteristics, including the proportions of residential,
commercial and office, manufacturing, and mixed land use, within the PCAs of metro stations in
the Seoul metropolitan area, and then explored the impact of these characteristics on metro station
ridership. Hu et al. (2016) [27] examined the association between land use characteristics at two levels
of granularity and public transit ridership in Singapore in time and space. The main socio-economics
variables used are population, employment, and automobile ownership ratio. For example, Kuby et
al. (2004) [5] identified the factors that attracted light-rail ridership in nine U.S. cities. They found
that employment within walking distance of each station and residential population were significant
factors. Thompson et al. (2012) [11] analyzed the determinants of work trip transit ridership in
Broward County, Florida. Vehicles per person and parking fees were the potential determinants, and
automobile parking fees were found to induce higher levels of transit ridership. As for the third
category, transport accessibility, Loo et al. (2010) [9] considered the intermodal competition public
transit mode (i.e., the number of bus stations within a station’s PCA) as an important factor influencing
metro ridership, and they found that the number of bus stations is statistically significant in determining
metro ridership in the regression model. Zhao et al. (2013) [13] studied how the accessibility of
Nanjing metro stations to other modes of transport, such as feeder bus lines stopping at a station
and park-and-ride spaces for nonmotor vehicles, influenced metro station ridership, and found that
both were significant factors. Finally, in terms of network structure, Kuby et al. (2004) [5] considered
transfer stations and terminal stations when examining the relationship between transit ridership and
the station’s properties, using dummy variables to distinguish between these station types. Sohn and
Shim (2010) [8] and Thompson et al. (2012) [11] also considered the factor of transfer station using
dummy variables. However, measurements from graph theory and network analysis have not been
applied in this research field, although practical significance can be achieved by calculating the degree
centrality of nodes to distinguish between transfer, terminal, and normal stations, or by calculating a
node’s betweenness centrality to indicate how a station allows traffic flows to pass from one part of the
metro network to another.

In terms of the response variable in direct demand models, daily ridership has been the most
common concern, as in Kuby et al. (2004) [5], Chu (2004) [6], Sohn and Shim (2010) [8], Loo et al.
(2010) [9], Zhao et al. (2013) [13], and Zhang and Wang (2014) [26], who all regarded the average
weekday ridership as the response variable. Gutierrez et al. (2011) [1] and Cardozo et al. (2012) [2]
considered monthly station ridership as the response in their models. Taylor et al. (2003) [24] and
Thompson et al. (2012) [11] used annual ridership as the response. Zhao et al. (2014) [22], Singhal et al.
(2014) [15], Hu et al. (2016) [27], Li et.al. (2016) [29], and Chan and Miranda-Moreno (2013) [14] used
the shorter hourly analysis interval (e.g., peak hour ridership) as the response. However, few studies
have considered the differences in influencing factors between time periods.

3. Study Area and Data

Our study investigates Shenzhen Metro network, which consisted of five lines and 118 stations
in the year of 2013. The Shenzhen Metro ridership used in this study was collected and aggregated
from the transit entry-exit smart cards records between 14 October (Monday) 2013 and 20 October
(Sunday) 2013, which are provided by Shenzhen Metro Corporation (Shenzhen Metro Corporation:
http://www.szmc.net/) in China, which obtains the smart cards records from AFC system.

http://www.szmc.net/
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3.1. Explanatory Variables

Explanatory variables represent the factors that hypothetically affect the ridership at the station
(Table 2). Variables can be categorized into four groups: (1) land use; (2) socio-economics; (3) network
structure; (4) intermodal transport accessibility.

Table 2. Summary of explanatory variables.

Categories Explanatory
Variables

Acronym of
Variables Source Minimum Mean Maximum

Land use (The
number of

***(land uses)
within PCA)

Residential units Residence Baidu Map 0 36.86 218
Restaurants Restaurant Baidu Map 0 48.52 291

Retailers/shopping Shopping Baidu Map 0 115.18 400
Schools School Baidu Map 0 5.64 64
Offices Offices Baidu Map 0 18.58 298
Banks Bank Baidu Map 0 9.60 73

Hospitals Hospital Baidu Map 0 1.008 10
Hotels Hotel Baidu Map 0 13.24 135

Network structure

Distance to the city
center Dis_to_center Calculated 0.36 9.97 27.41

Degree centrality Degree Calculated 0.017 0.037 0.068
Betweenness

centrality Betweenness Calculated 0 0.11 0.31

Socio-economics
Population Pop Worldpop 27.54 156.49 354.55

Days since opening Days_open UrbanRail 839 1762 3132

Intermodal
transport

accessibility

The number of bus
stations within PCA Bus Baidu Map 0 7.72 30

3.1.1. Land Use

Dovey et al. (2017) [30] believe that in large and medium-sized cities, friendly walking distance
is generally 500 m. Therefore, we determine the PCA for each Shenzhen Metro Station as a circular
buffer with a radius of 500 m. Then, with the help of Baidu Map API, we can collect the relevant
data of land use variables. Land use variables include surrounding residence, recreational facilities,
commercial districts, educational institutions, office areas, and so on. To be more detailed, land use
variables involve the number of residential units, restaurants, schools, offices, hospitals, banks, shops,
and hotels within the PCA with a radius of 500 m.

3.1.2. Socio-Economics

In the category of socio-economic variables, there are two factors to be considered. The information
about when those metro stations were opened was collected from a website named

“UrbanRail” (Source: http://www.urbanrail.net/as/cn/shen/shenzhen.htm). With the information,
we can calculate the elapsed days since stations were opened to the investigating days (14 October
2013 to 20 October 2013). A higher residential population is assumed to be positively correlated
with ridership. Here, we obtained information on population distribution all around Shenzhen
in 2013 collected from the website of Worldpop (Source: WorldPop (www.worldpop.org---School
of Geography and Environmental Science, University of Southampton; Department of Geography
and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and
Center for International Earth Science Information Network (CIESIN), Columbia University (2018).
Global High Resolution Population Denominators Project—Funded by The Bill and Melinda Gates
Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645). The population data were
processed with ArcGIS 10.2 (Environmental Systems Research Institute, Inc (Esri) (2014) Arcgis. URL
http://desktop.arcgis.com/en/arcmap/). Specifically, the buffers of all stations with a radius of 500 m
were generated and the population within the buffers are aggregated, and the population distribution
and 500 m buffers are illustrated as Figure 1.

http://www.urbanrail.net/as/cn/shen/shenzhen.htm
www.worldpop.org---School
https://dx.doi.org/10.5258/SOTON/WP00645
http://desktop.arcgis.com/en/arcmap/
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Figure 1. The 500 m buffers of metro stations and population distribution.

From Figure 1, we can observe that the densely populated areas are mainly surrounding the metro
stations. The impact of residential population density on ridership in the buffer zone of each station
will be analyzed in further modeling.

3.1.3. Network Structure

We consider the degree centrality, betweenness centrality, and the distance from metro stations to
the city center as the main factors in the category of network structure. In graph theory and network
analysis, degree centrality is one of the easiest centrality measures to calculate, which is simply a count
of how many edges a node has. Betweenness centrality of a node is measured with the number of
shortest paths (between any pair of nodes in the graphs) that passes through the target node [31].
Therefore, they are related to specific transfer stations, normal intermediate stations, and terminal
stations, as well as the role of a station in allowing traffic flows to pass from one part of the metro
network to the other. The city center of Shenzhen is Shenzhen Municipal People’s Government in
Futian District. To accurately calculate the distance of each station to the city center, we take the
influence of the radius of the earth into consideration, and the distance from station i to the city center
Disti is as follows (1):

Disti = R ∗ arccos(cos(Lat0) ∗ cos(Lati) ∗ cos(Lon0 − Loni) + sin(Lati) ∗ sin(Lat0)) ∗
π

180
(1)

where R is the radius of the earth, (Lat0, Lon0) and (Lati, Loni) are respectively the latitude and longitude
of the city center and station i. The required geographical information was collected from Google
Maps (Source: https://maps.google.com).

3.1.4. Intermodal Transport Accessibility

For intermodal transport accessibility, assuming that the number of surrounding bus stations of
the metro station is positively correlated with the ridership at the station, we consider the feeder bus
system of the metro. The data are also collected from the Baidu map.

3.2. Response Variable
The purpose of this study is to explore the various impact factors of metro station ridership during

different time periods. As mentioned earlier, travel demands and patterns differ at the time of day and
the day of week, and the temporal distribution of smart card records in all available days (14 October
to 20 October) (shown in Figure 2b) indicates that the average daily travel frequency is higher than that
on weekends.

https://maps.google.com
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We use the smart card records data collected from the AFC system of Shenzhen metro on 14 October
2013 to make a preliminary statistical analysis. Figure 2a presents the number of transaction records of
smart cards distributed in space on 14 October. The top four stations (Grand Theatre Station, Laojie
Station, Huaqiang Road Station, and Luohu Station) with the most transaction records are marked in
Figure 2a.

Figure 2b shows the temporal distribution of smart card records. It is noted that there is a morning
traffic rush and an evening traffic rush on both weekdays and weekends. Moreover, the records of
rush hours on weekdays are significantly more than those of weekend rush hours, whereas the records
of nonrush hours on weekdays are less than those of weekends.

Therefore, the regression models with different response variables including evening rush hour
(17:00–19:00), nonrush hour (9:00–17:00, 19:00–23:00), average weekday ridership, average weekend
ridership, and average daily ridership of a week (Shenzhen Metro is operated from 6:30 to 23:00 in
2013) are built to identify the impact factors of ridership during the five aforementioned time intervals.
More concretely, ridership of each station is the sum of entry and exit records (Average daily ridership
refers to the average of the total ridership within a few days of operation time (6:30–23:00). Evening
rush hour ridership is determined by dividing the total ridership in the whole week of evening rush
hours from 17:00 to 19:00 by 14 h (2 h multiplied by seven days). Nonrush hour ridership is obtained
by dividing the total ridership of remaining time (9:00–17:00, 19:00–23:00) except morning (7:00–9:00)
and evening rush hours of a whole week by 84 h (12 h multiplied by seven days)).

4. Methodology

4.1. Variable Selection

The structured data contain 14 explanatory variables (shown in Table 1) with a limited amount
of observations, which may cause multicollinearity and overfitting. Redundant variables should be
removed to ensure that the modeling process is efficient. Thus, before fitting the regression model,
features from the original variables candidates must be selected. The backward stepwise regression
method, a popular wrapper method, is used to select features and control the model complexity [32].
The regression begins with a full model with all variables included, and at each step the variables are
gradually eliminated to minimize the specific statistic used as a variable selection criterion. We can
thus eventually obtain a reduced model that best explains the data.

The Akaike information criterion (AIC) is commonly used in such methods. In general, suppose
we have a model with variables. Let p be the number of variables in the model. Then, the AIC values
are as follows:

AIC = −2log− likelihood + 2p (2)
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Models with more variables have smaller root sum squares (RSSs), indicating a better goodness of
fit, but increasing the complexity with more parameters. Models that strike a balance between fit and
model size can generalize the best and perform substantially better than others. The AIC penalizes
large models, so it strikes a balance. Thus, we use the AIC as a selection criterion for the backward
stepwise regression method to obtain a reasonable model.

4.2. Geographically Weighted Regression

We utilize geographically weighted regression (GWR) models to estimate station-level ridership.
The GWR model is an extension of OLS multiple regression, which is shown as follows:

yi = β+

p∑
k=1

βkxik + εi (3)

Local parameters can be estimated by introducing a geographical location factor into the regression,
and the extended GWR model is as follows:

yi = β0(ui, vi) +

p∑
k=1

βk(ui, vi)xik + εi (4)

where given the observation point i (i = 1, 2, . . . , n) with longitude/latitude coordinates (ui, vi), yi and
xi1, xi2, . . . , xip refer to the observed values of the response variable y and explanatory variables x1, x2,
. . . , xp of point i, and εi is the error term, following a normal distribution. βk(ui, vi) (k = 1, 2, . . . , p)
denotes p unknown functions related to spatial location. The geographic location calibrated by (ui, vi)

of each observation point i is weighted by the GWR model, and the weight is a type of distance decay
function [33]. When calculating the distance matrix among stations, the Euclidean distance metric and
network distance metric are assessed, and the latter considers that the travel activities always occur
along the connection intermedia of the transportation network, such as metro lines and roads [26].
As the network structure of the Shenzhen Metro in 2013 was not particularly complex and there are
no clear differences between the results calibrated by the network distance metric and the Euclidean
distance metric, we use the Euclidean metric for simplicity of calculation. For application to other
networks, the distance metric should be selected considering the network complexity, and more distance
metrics related to network accessibility [34]. The determination of bandwidth will directly affect the
weight function and the precision of the model, and is therefore critical. GWR4 software (GWR4 User
Manual. http://geoinformatics.wp.st-andrews.ac.uk/download/software/GWR4manual.pdf.) is used to
construct the GWR model, as it includes multiple kernel-type options and bandwidth methods. We
select an adaptive bisquare kernel and use AICc to determine the bandwidth of the model, where AICc
is the AIC with a correction for small sample sizes.

5. Results and Discussion

5.1. Spatial Autocorrelation Test for Variables

Establishing whether the candidate variables are spatially autocorrelated is necessary before
the GWR model can be implemented. A spatial autocorrelation test can detect the degree of spatial
correlation of the variables, which will provide theoretical support for the feasible application of
spatial models. Moran’s I, proposed by Patrick Alfred Pierce Moran (1950) [35], is a correlation
coefficient that measures the spatial autocorrelation. The estimated Moran’s I values of the response
variables and all of the candidate explanatory variables are higher than the expected I values, indicating
that the variables have positive spatial autocorrelations (Table 3). In the tables, we use the concise
expressions weekly_ridership, weekday_ridership, weekend_ridership, evenrush_ridership, and
nonrush_ridership to denote the average daily ridership in a week, average weekday ridership, average

http://geoinformatics.wp.st-andrews.ac.uk/download/software/GWR4manual.pdf
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weekend ridership, evening rush hour ridership, and nonrush hour ridership, respectively. The Moran
scatter plot can directly reflect the spatial autocorrelation of variables, and the plot has four quadrants.
A strong positive spatial correlation is observed when the values are distributed in the first and third
quadrants, and a negative spatial correlation will emerge if they fall in the second and fourth quadrants.
Figure 3 presents the Moran scatter plots of several variables.

Table 3. Moran’s I test for spatial autocorrelation of all variables.

Variable Moran’s I Expected I p-Value

Response
Variables

Weekly_ridership 0.241166216 −0.008547009 1.214e−06
Weekday_ridership 0.263893648 −0.008547009 1.441e−07
Weekend_ridership 0.166122759 −0.008547009 0.0004006
Evenrush_ridership 0.277295727 −0.008547009 3.899e−08
Nonrush_ridership 0.247797251 −0.008547009 4.637e−07

Candidate
Explanatory

Variables

Residence 0.393652311 −0.008547009 1.349e−14
Restaurant 0.341715207 −0.008547009 1.692e−11
Shopping 0.231551952 −0.008547009 3.923e−06

School 0.289176791 −0.008547009 4.164e−11
Offices 0.174946826 −0.008547009 1.365e−05
Bank 0.388310167 −0.008547009 1.978e−14
Bus 0.312294327 −0.008547009 7.898e−10

Hospital 0.211271593 −0.008547009 1.263e−05
Hotel 0.466480947 −0.008547009 <2.2e−16

Dis_to_center 0.959152856 −0.008547009 <2.2e−16
Degree 0.125833878 −0.008547009 0.005471

Betweenness 0.241057563 −0.008547009 1.674e−06
Pop 0.710332939 −0.008547009 <2.2e−16

Days_open 0.383186771 −0.008547009 2.108e−13
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None of the Moran’s I values presented in Figure 3 are 0, indicating that they are not randomly
distributed in space. In addition, most belong to the first and third quadrants, which indicates that the
variables show significantly positive spatial autocorrelation. The three explanatory variables with the
highest Moran’s I values are population, distance to the city center, and days since station opened,
as their Moran’s I values are greater than 0.3 [36]. The results of the Moran’s I test thus provide a
theoretical foundation for the rationale of the follow-up study.

5.2. Model Implementation and Results Analysis

Strong spatial autocorrelation is found for all of the variables included in our study. Thus, it is
feasible to implement GWR models to explore the association between Shenzhen Metro ridership and
its influencing factors. The final selection of explanatory variables derived from the backward stepwise
regression method for the five models is given in Table 4.

Table 4. Variables selected in the models.

Variables Model 1 Model 2 Model 3 Model 4 Model 5

Response
Variable

(Ridership)
Weekly_ridership Weekday_ridership Weekend_ridership Evenrush_ridership Nonrush_ridership

Explanatory
Variables

Pop Pop Pop Pop Pop
Betweenness Betweenness Degree Degree Degree
Days_open Days_open Betweenness Betweenness Betweenness
Shopping Office Days_open Days_open Days_open

Dis_to_center Dis_to_center Residence School Shopping
Shopping Dis_to_center Dis_to_center

Table 4 enables us to find the common explanatory variables among the five models and the
individual variables of each model. The common explanatory variables are the major factors impacting
metro ridership, including population, betweenness centrality, and days since opening. The different
individual variables of the five models indicate that factors affecting station-level ridership differ by
the day of the week and time of the day.

The number of offices within the PCA and the distance from the station to the city center
are individual variables in the model for average weekday ridership. The number of residences
and shopping places within the station catchment area is related to the average weekend ridership.
Thus, commuting activities appear to mainly affect the average weekday ridership, while recreational
activities related to commercial development such as shopping malls mainly affect the average weekend
ridership. Across a single day, the number of schools and the distance to the center mainly affect the
evening rush hour ridership, while the number of shopping places and the distance to the center mainly
affect the nonrush hour ridership. Thus, passengers from schools (primary schools, high schools, and
universities) contribute to the evening rush ridership and noncommuting activities like shopping affect
the nonrush hour ridership.

Due to limitations on space, we only compare the results of Model 5 with those of the OLS model
in Table 5, and we give the results of Models 1–4 compared with those of the OLS models in Appendix A
(Tables A1–A4).
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Table 5. Results of the model for Nonrush_ridership.
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First, Table 5 shows that the AICc values of all of the GWR models are smaller than those of the
corresponding global regression (OLS) models. According to the evaluation criterion proposed by
Fotheringham et al. (1996) [19], if the difference between the AICc values of a GWR model and an
OLS model is more than 3, the GWR model can be considered more applicable than the OLS model,
even though it is more complex. The adjusted R-squared values of the GWR models are greater than
those of the corresponding OLS models, demonstrating that the GWR model has strong explanatory
power even when considering model complexity. Likewise, the parameter values (Sigma) indicating
the model error of the GWR models are lower, and the residual sum of the squares from the GWR
models are smaller than those from the OLS models. Thus, the results show that the GWR models
generally perform better in goodness-of-fit measures than the OLS models. ANOVA tests, as shown
in Table 5, are conducted to find out if the global (OLS) regression model and the GWR model have
the same statistical performance (the same size of error variance). The results suggest that there is a
significant improvement when GWR is used.

In addition, by comparing the results of the five models, the model for nonrush_hour ridership
regression is found to perform the best in terms of the R-squared value. We only need the information
about population distribution, degree centrality, betweenness centrality, days since opening, the
number of shopping places and distance to the city center to use the GWR model to explain 88% of the
response variable of nonrush hour ridership. In addition, the relevant data covering the information
on the explanatory variables are easily accessible.

Figure 4 shows the standardized residuals of the GWR model for average weekday ridership,
and for most stations these are relatively small, demonstrating the high accuracy of the model.
Overpredictions (red bubbles) and underpredictions (blue bubbles) are randomly distributed in
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Figure 5, which indicates that our model is well specified. The spatial autocorrelation (Moran’s I) test
of the regression residuals helps to ensure that they are spatially random (Table 6).
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models. Colors indicate significant positive (red and pink), negative (pale blue and yellow), and not
significant (blue) spatial autocorrelation. (a) LISA cluster map of residuals of OLS model for the average
ridership across the whole week. (b) LISA cluster map of residuals of GWR model for the average
ridership across the whole week.

Table 6. Global Moran’s I residuals test of the models for the average ridership across the whole week.

OLS GWR

Moran’s index 0.108184155 −0.114488799
Expected index −0.008547009 −0.008547009

Variance 0.002855149 0.002870601
z-score 2.18460251 −1.9773379
p-value 0.01446 0.976

The global Moran’s I residuals test of the models for the average ridership over the whole week,
shown in Table 6, demonstrates that GWR surpasses OLS, as the Moran I’s calculation is closer to
the expected value in the GWR model. The residuals of the GWR model have a greater likelihood
of random distribution (p-value) and show less variance (z-score). However, the residuals of OLS
demonstrate statistically significant clustering characteristics (reflected by the Z-score and p-value).

The local indicator of spatial association (LISA) was proposed to represent local pockets of
nonstationarity, assess the influence of individual locations on the magnitude of the global statistic, and
identify “outliers” [37]. Figure 5 shows the LISA cluster maps of residuals in the OLS and GWR models
for average daily ridership over a whole week. The residuals of the OLS model give significantly
positive high-value clustering, while in the GWR model almost all of the clusters of residuals are ruled
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out, implying that GWR makes a significant improvement over OLS in terms of model fitting from the
perspective of residuals.

Using the Voronoi algorithm [38], the Shenzhen Metro coverage area can be divided into several
Thiessen polygons according to the locations of the stations. Here, the spatial distribution of the
local R-squared and local coefficients is visualized using Thiessen polygons. The values of the local
R-squared range between 0 and 1, which indicates the satisfactory fitting of the local regression model.
Mapping the local R-squared values can help us to see where GWR has a higher predictive capacity and
where it performs poorly. Figure 6 illustrates the spatial distribution of the local R-squared of Model 2
for average weekday ridership and Model 5 for nonrush hour ridership, enabling us to understand
where the model has a stronger explanatory power (local R-squared). Both Model 2 and Model 5 have
a higher explanatory power in the central-north and southeast regions than in the other regions. In
addition, the local R-squared values of most of the stations are higher than 0.82; these stations are
mainly located in Luohu district.
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By understanding the spatial distribution of local coefficients (elasticities) and t-values
(significance), we can determine how the relationship between the variables changes spatially (estimated
coefficients), and at what level of statistical significance. For example, in Model 2 (see Figure 7), as
a common factor, the mean of the coefficients for the population variable is 3284.89. Thus, for each
person within the station’s PCA, the number of trips adds up to 3284.89 each weekday. However, these
elasticities are distributed unevenly in space. More trips per capita are expected in the central zone and
the mid-north, where commercial and administrative areas and educational institutions are intensively
distributed, while elasticity values are lower in the west and east. The t-value map on the right also
shows that the effect of population is more significant in the middle area at a 0.05 level (the absolute
value of a t-value larger than 1.96) (Figure 7a).
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of local coefficients (elasticities) and t-values (significance) for the population variable. (b) Spatial
distribution of local coefficients (elasticities) and t-values (significance) for the office variable.

For the individually selected factor in Model 2, the mean of the elasticities for the office variable is
2397.24. Thus, for each new office within the station’s PCA, the number of trips adds up to 2397.24
each weekday. Elasticities are higher (more trips attracted per office) in the east and west than in the
middle, whereas the elasticities of the central and north regions are negative and low, indicating that
people who go to work in these regions depend more on transport other than the metro. In addition,
the t-value map on the right shows that the effect of offices is more significant in the east, west, and
mid-south areas at a 0.05 level (the absolute value is larger than 1.96) (Figure 7b). Thus, in general
GWR is shown to have strong spatial explanatory power, based on local analysis of the variation of
each coefficient across space (elasticities).

6. Conclusions

This study mainly discussed the impact factors of station ridership of Shenzhen metro at a local level
during different time periods. Four categories of influencing factors, including land use, socio-economic,
network structure, and intermodal transport access, are considered. For data collection of the factors of
network structure, what is new compared with prior studies is that we introduce measurements from
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the field of network analysis, including degree centrality and betweenness centrality. Compared with
the dummy variables mostly applied in the prior studies, these measurements covering comprehensive
information can better quantify the network structure factors related to the practical significance of
metro networks. Through adopting backward stepwise regression method for variables selection, and
Moran’s I spatial autocorrelation test, this paper builds GWR models to analyze the influencing factors
of Shenzhen metro ridership at different time resolutions (including the day of week and the time of
day) during different time periods (average daily ridership of weekdays, weekends and a whole week,
and average hourly ridership of evening rush hours and nonrush hours). Finally, we demonstrate
the superiority of GWR models through the case study of Shenzhen metro. Additionally, the impact
factors of Shenzhen metro station ridership are explored and analyzed from a local perspective.

The experimental results show that GWR models outperform OLS models in terms of both
goodness-of-fit and explanatory power. In addition to the coefficient of determination of GWR models
dramatically higher than OLS models, GWR models can provide more information about the spatial
distribution of models’ elasticities and other parameters (e.g., significance and goodness-of-fit).

The main findings of this study can be summarized as follows. First, the influencing factors are not
entirely consistent as time changes. For different models corresponding to different time periods, the
common influencing factors including population, days since stations were opened, and betweenness
centrality refer to the major impact factors of Shenzhen metro ridership, while the individual factors
can help to address the different impact factors of Shenzhen metro ridership during different time
periods. It is found that the main source of the ridership over weekdays is from the commuting, and
the ridership is driven by recreational activities related to commerce such as shopping over weekends.
In a day, the ridership during evening peak hours is mainly affected by activities from school and
commutes, while the ridership at nonrush hours is mainly driven by recreational activities related to
commerce. Second, the spatial distribution of elasticities can help us to identify where the specific factor
can attract more trips, for example, more trips per capita are expected in the center and mid-north,
where commerce, administration, and education are concentrated, while elasticity values are lower in
the west and east of Shenzhen. These results of the GWR models show great spatial interpretation in
transport planning.

Above all, these findings have significant implications for the understanding of transportation
planning and periphery development. First, in general, population affects all metro station ridership,
especially for the center and mid-north of Shenzhen, indicating that metro station ridership would
be significantly increased by an additional resident population in these regions; therefore, the results
suggest that it is reasonable to give priority to the planning and construction of the metro lines in
the regions of densely distributed resident population. Second, betweenness centrality is positively
associated with station ridership, indicating that the role of a station to the shortest paths through the
metro network is important to attract more passengers, so it suggests the network planner take the
network structure into consideration. Third, days since the stations were opened also has positive
impacts on station ridership. One possible reason for this is that the first line of metro to be built is
generally along the hottest line with the highest travel demands in a city. Therefore, it suggests those
cities without metro and in the stage of metro system planning carry out forecasting and estimation of
travel demands before determining the first line to be built. Fourth, traffic rush hours are different
in different functional zones, so different strategies of diverting passenger flows are suggested to
be adopted flexibly. For example, enhancing security when diverting passenger flows is vital in
commercial developed areas, while improving transit efficiency is more important when diverting
passenger flows in employment-based areas. Finally, the GWR model discusses different local effects
of influencing factors on metro ridership. It implies that it is necessary for urban and transportation
policy-makers to refer to the GWR results to adjust measures to local conditions when implementing
the principle of Transit Oriented Development (TOD) planning.

In general, different GWR models implemented for different levels of time periods in this study
can not only model the local relationships between the metro station ridership and its potential impact
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factors, but also interpret the temporal variation of impact factors of ridership, and therefore inspire
metro planning and periphery development from both spatial and temporal perspectives.

This study was limited by the absence of some additional influencing factors and not incorporating
the local model selection in the model. The method in this study could be extended to take the
cross-boundary travel flows between Shenzhen and Hong Kong into consideration, which might
have an impact on the ridership of cross-boundary metro stations (Luohu station as well as Futian
Checkpoint station) [39,40]. It was not included in the present study because the data collection for the
cross-boundary travel data involved the institutional barrier. We will extend the relevant study once
the data are available. Moreover, future work will also be carried out on model improvement, and a
GWR model incorporating regression coefficient shrinkage and local model selection would help us to
gain more insights of metro planning and periphery development from a local perspective.
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Appendix A

The results of models 1–4 compared with those of OLS models were shown in the following
Tables A1–A4.

Table A1. Results of the model for Weekly_ridership.
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Global(OLS) Local(GWR) 
Variables Estimate Standard Error t(Est/SE) Min Max Mean STD 
Intercept 148,902.14 8373.14 17.78 −220,846.06 1,259,330.97 230,997.13 231,395.86 

Pop 29,682.08 9949.31 2.98 −87,929.62 174,341.19 24,227.35 57,929.46 
Betweenness 25,971.88 9096.29 2.86 −75,396.67 122,215.16 30,440.91 53,705.86 
Days_open 36,322.47 8796.81 4.13 −449,460.34 868,771.29 72,348.20 158,603.43 
Shopping 15,242.75 9217.93 1.65 −68,601.68 58,895.47 1474.80 29,877.34 

Dis_to_center −10,074.73 9248.92 −1.09 −207,415.70 755,777.31 43,828.83 157,781.05 
Diagnostic 

R-square 0.35 0.81 
Adjusted R-

square 0.32 0.65 

Sigma 90,925.69 64,811.17 
AICc 3038.33 3035.27 

Residual sum 
of squares 925,957,952,739.49 269,172,991,697.74 

Number of 
parameters 6 37.83 

GWR ANOVA Table 
Source SS DF MS F p-Value 

Global Residuals 925,957,952,739.493 6.000    
GWR Improvement 656,784,961,041.749 47.919 13,706,255,804.666   

GWR Residuals 269,172,991,697.743 64.081 4,200,487,280.123 3.263016 0.00000618 
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Table A2. Results of the model for Weekday_ridership.
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Table A4. Results of the model for Evenrush_ridership.
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