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Abstract: In recent years, machine learning methods have shown the great potential for real-time transient
stability status prediction (TSSP) application. However, most existing studies overlook the imbalanced
data problem in TSSP. To address this issue, a novel data segmentation-based ensemble classification
(DSEC) method for TSSP is proposed in this paper. Firstly, the effects of the imbalanced data problem on
the decision boundary and classification performance of TSSP are investigated in detail. Then, a three-step
DSEC method is presented. In the first step, the data segmentation strategy is utilized for dividing the
stable samples into multiple non-overlapping stable subsets, ensuring that the samples in each stable
subset are not more than the unstable ones, then each stable subset is combined with the unstable set into
a training subset. For the second step, an AdaBoost classifier is built based on each training subset. In the
final step, decision values from each AdaBoost classifier are aggregated for determining the transient
stability status. The experiments are conducted on the Northeast Power Coordinating Council 140-bus
system and the simulation results indicate that the proposed approach can significantly improve the
classification performance of TSSP with imbalanced data.

Keywords: imbalanced data; data segmentation; ensemble classification; transient stability status

1. Introduction

With the emergence of the large-scale interconnected power grid and the high penetration of
distributed generation, modern power systems are faced with severe challenges for stable operation.
Transient stability is a crucial and complex issue in modern power systems [1]. Rapid and accurate
recognition of transient stability status is important for being aware of the imminent unstable risk so
that enough time is available for applying the appropriate control strategies to prevent catastrophic
outage [2].

Classical transient stability analysis methods can be categorized into two branches, time-domain
simulation (TDS) and transient energy function (TEF) [3,4]. Although the TDS method is straightforward
and reliable, its high time complexity hinders real-time decision-making applications. As for the TEF
method, it has low computational cost and provides the transient stability margin, but it is normally
difficult to construct an available energy function when considering detailed system models.

With the wide deployment of phasor measurement unit devices, tremendous synchrophasor data
is accessible for monitoring the stability of power systems [5]. As a key tool for power system data
analysis, machine learning shows great potential for real-time transient stability status prediction
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(TSSP) applications. Generally, TSSP itself can be regarded as a binary classification problem [6], i.e.,
stable/unstable status. In the offline, the nonlinear relationship between the selected features and the
corresponding stability status can be established via machine learning methods. When online, transient
stability status can be predicted immediately after feeding the collected features to the classification
model. Up to now, a variety of machine learning methods have been applied for TSSP, e.g., neural
networks [7,8], support vector machines [9,10], decision trees [11], and ensemble learning [12,13].

In general, practical power systems can remain at transient stable status when subjected to most
disturbances. That is to say, an unstable status is detected only in a few situations, which results in
the imbalanced data problem in the training database, i.e., stable samples significantly outnumber
unstable samples [14,15]. Faced with this issue, conventional machine learning methods aiming to
minimize the overall error rate tend to classify the samples as the stable class and show ineffectiveness
in identifying unstable samples [14]. It is known that the unstable class is more important than the
stable class for power system operators, and poor recognition of unstable samples would dramatically
deteriorate the practical utility of the TSSP classification model.

In the machine learning community, the imbalanced data problem in classification tasks is a hot
topic of research and effective solutions can mainly be divided into data-level and algorithm-level
approaches [16]. The former achieves data rebalance by adding samples of minority class, namely
oversampling, or reducing samples of majority class, namely undersampling. The latter handles this
problem via enhanced classification algorithms, e.g., cost-sensitive learning [17,18].

However, few studies attempted to counteract the negative effects of imbalanced data for TSSP.
Specifically, the unstable samples are duplicated to balance the sample number of different classes
in Reference [14]. Although this method could be simply and directly conducted, it is prone to
overfitting [18]. An adaptive synthetic sampling (ADASYN) algorithm is adopted in Reference [15] to
generate more unstable samples, but the generated unstable samples by linear interpolation are hard
related to the actual operating conditions of power systems, which may affect the rationality of the
classification model.

In this paper, a novel data segmentation-based ensemble classification (DSEC) method is proposed
to better handle the imbalanced data problem of TSSP. The DSEC method consists of three steps. In the
first step, the data segmentation strategy is utilized for dividing the stable samples into multiple
non-overlapping stable subsets, ensuring that the samples in each stable subset are not more than
the total unstable ones, then each stable subset is combined with the unstable set to form a training
subset. For the second step, an AdaBoost classifier is constructed based on each training subset. In the
final step, decision values from each AdaBoost classifier are aggregated for determining the transient
stability status.

The rest of this paper is organized as follows: Section 2 investigates the effects of the imbalanced
data problem on TSSP. The DSEC method is proposed in Section 3. The TSSP based on the DSEC
method is introduced in Section 4. The case studies are shown in Section 5. Finally, conclusions are
drawn in Section 6.

2. Effects of the Imbalanced Data Problem on TSSP

2.1. The Breif Description of the TSSP Issue

Transient stability refers to the ability of the power system to maintain synchronism after large
disturbances, and it is mainly affected by the operating condition and the fault condition [1]. When using
the TDS method for transient stability analysis, the stability status of the power system is usually
determined by whether the rotor angle of any generator is greater than 360◦ or not at the end of the
simulation time [6]. If all rotor angles of generators are less than 360◦, the power system is considered
transient stable, otherwise, it is transient unstable. For illustration, a three-phase short-circuit fault
occurs at the head of line 8–9 in the IEEE 39-bus system. Figure 1 shows the rotor angle curves
corresponding to different time of faults duration. In this figure, (a) represents the transient stable
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case when fault duration is set to 0.1 s and (b) represents the unstable case when fault duration is set
to 0.26 s. As the transient unstable process works so fast, an accurate and rapid method for TSSP is
urgently needed to avoid blackout and to provide the auxiliary decision support for operators.
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2.2. The Effect on the Decision Boundary

The TSSP based on machine learning methods can be regarded as a binary classification problem
and the decision boundary between stable and unstable classes is built by the classification method in
the feature space. Given the training set D= {(x1, y1), (x2, y2), . . . , (xN, yN)}, yi ∈ {−1,1}, the loss function
of the machine learning method is generally expressed as follows:

ε( f ; D) =
1
N

N∑
i=1

I( f (xi) , yi), (1)

where xi represents the feature vector of sample i and yi is the corresponding class label. Here, if yi = 1,
it is unstable; otherwise, it is stable. The value N is the number of training samples. The value f
represents the decision function. The I is indication function and if its internal logic is true, the value is
1; otherwise, it returns 0.

For transient stability status classification problem, training set D can be divided into the stable
set DS and the unstable set DU, and Equation (1) can be further expressed as follows:

ε( f ; D) = 1
N

∑
xi∈DS

I( f (xi) , yi) +
1
N

∑
xi∈DU

I( f (xi) , yi)

=
NS
N

∑
xi∈DS

I( f (xi),yi)

NS
+ NU

N

∑
xi∈DU

I( f (xi),yi)

NU

=
NS
N εS +

NU
N εU

(2)

where εS and εU are the classification error rates of stable class and unstable class, respectively, and NS
and NU are the number of stable samples and unstable samples in the training set, respectively.

From Equation (2), it can be seen that the loss function of the classification algorithm is not only related
to the classification error rate of stable class and unstable class, but also closely related to the sample number
of each class. For the stability status classification problem, the stable samples are always more than the
unstable ones, which indicates that, compared to the unstable class, the proportion of the classification
error rate of the stable class is relatively larger. Therefore, due to the imbalanced data problem, the decision
boundary of the classification method will shift towards the unstable class to reduce the classification error
rate of stable class, resulting in the poor classification performance of the unstable class.

The imbalanced ratio (IR) of training set is defined as follows:

IR =
NS
NU

. (3)
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In order to illustrate the effect of IR on the decision boundary of the classification model, the IEEE
39-bus system is taken as the test system. Employing the approach proposed in our previous study [19],
the database is generated and the importance of features is ranked. For visualization of the decision
boundary, the top 2 features, f 1 and f 2, are utilized to build the classification model. Here, f 1 represents
the variance of generator rotor angles at the fault clearing time and f 2 is the mean absolute of the
generator angular velocities at the fault clearing time.

To construct different training sets based on different IRs, the number of unstable samples is fixed
to 100 and the number of stable samples is respectively chosen as 100 (IR = 1), 200 (IR = 2), 400 (IR =

4), 600 (IR = 6), 800 (IR = 8), and 1000 (IR = 10). The logistic regression method is employed as the
classifier. The decision boundaries of the classifier under different IRs are all depicted in Figure 2.
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It can be seen from Figure 2 that as the IR increases, the decision boundary of classification model
gradually shifts towards the unstable class that has fewer samples.

2.3. The Effect on the Classification Performance

Generally, the classification performance of TSSP can be characterized by the confusion matrix
shown in Table 1.

Table 1. Confusion matrix of TSSP.

Real Status
Prediction Status

Stable Unstable

Stable TS FU
Unstable FS TU

The true stable class rate (TSR) and the true unstable class rate (TUR), utilized as the classification
performance indexes of TSSP, are defined respectively as follows:

TSR =
TS

TS + FU
. (4)

TUR =
TU

TU + FS
. (5)
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In addition to using the TSR and TUR as the performance indexes for stable class and unstable
class, respectively, the geometric mean (GM) of TSR and TUR is also employed to measure the overall
classification performance of TSSP [20] and the expression of GM is shown as follows:

GM =
√

TSR× TUR. (6)

The value of GM is not affected by the IR, so it is more suitable than the overall classification
accuracy when dealing with the imbalanced data problem. The value of GM ranges from 0 to 1.
The higher the value, the better the overall classification performance of TSSP.

The classification performance of TSSP is analyzed and compared under different IRs, shown in
Table 2.

Table 2. Confusion matrix of TSSP.

IR
Classification Performance

TSR (%) TUR (%) GM (%)

1 74.00 75.00 74.50
2 91.00 68.00 78.66
4 96.25 51.00 70.06
6 98.50 40.00 62.77
8 98.38 37.00 60.33

10 98.40 33.00 56.98

From Table 2, when IR = 1, the values of TSR and TUR are almost the same. With the increase of
IR, the TSR gradually increases and then remains unchanged, while the TUR continues to decrease.
When IR = 10, the TSR increases to 98.40% and the TUR decreases to 33.00%. In addition, as IR
increases, the GM value first increases and then decreases. When IR = 2, the GM reaches its highest
value, which is 78.66%. The results clearly validate that the imbalanced data problem dramatically
deteriorates the classification accuracy of the unstable class, which seriously hinders the application of
machine learning methods for TSSP.

3. The Proposed DSEC Method

From the analysis in Section 2, the imbalanced data problem in the training set deteriorates the
classification performance of the TSSP model. To address this challenge, the DSEC method is proposed
for TSSP. The detailed description of this method is shown in the following.

3.1. Data Segmentation Strategy

The training set in the TSSP problem can be divided into the stable set and the unstable set, and the
stable samples usually outnumber the unstable samples. To obtain a relatively balanced training set,
the data segmentation strategy is proposed. The basic idea of the data segmentation strategy is to
divide the stable set into multiple non-overlapping stable subsets, ensuring that the samples in each
stable subset are not more than the unstable samples.

The specific processes of data segmentation strategy are shown below.
Step 1: Given the stable set S with NS samples and the IR value, determine the number of stable

subset T by
T = ceil(IR), (7)

where ceil represents the ceiling function.
Calculate the remainder P by

P = mod(
NS
T

). (8)

Set k and P0 both equal to 1.
Step 2: If P0 ≤ P, go to step 3; otherwise go to step 4.
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Step 3: Determine the number of samples in stable subset Sk by

|Sk| =
NS − P

T
+ 1. (9)

Create the stable subset Sk by randomly selecting |Sk| samples from stable set S without replacement.
Set P0 = P0 + 1, k = k + 1, then go to step 5.

Step 4: Determine the number of samples in stable subset Sk by

|Sk| =
NS − P

T
. (10)

Create the stable subset Sk by randomly selecting |Sk| samples from stable set S without replacement.
Set k = k + 1.

Step 5: If k ≤ T, return to step 2; otherwise go to step 6.
Step 6: Output T stable subsets S = {S1, S2, . . . , ST}.
From the strategy hereinbefore, if IR is an integer, the number of samples in each stable subset is

the same as that of unstable samples. If not, the number of samples in each stable subset is less than
that of unstable samples.

3.2. AdaBoost Algorithm

As a widely used machine learning method, AdaBoost is employed as the classifier in this paper.
With the advantages of a sound theoretical foundation and simple implementation [21], it has been
applied to many classification problems in practice [22,23].

Since AdaBoost itself is also an ensemble learning method, the classification and regression tree
(CART) is adopted as its base learner and the basic processes of the AdaBoost algorithm are described
as follows:

Step 1: Given the training set D = {(x1, y1), (x2, y2), . . . , (xN, yN)}, yi ∈ {−1, +1}, set the iteration
round to R.

Step 2: Set r = 1, and initialize the weight of sample i, i = 1, . . . , N

ωr(i) =
1
N

. (11)

Step 3: Create Dr by randomly selecting N samples from D with the probability ωr(i).
Step 4: Train the CART hr by using Dr.
Step 5: Calculate the classification error on D.

εr =
1
N

N∑
i=1

I(hr(xi) , yi) (12)

Step 6: Calculate the weight αr of CART hr.

αr =
1
2

ln
(1− εr

εr

)
. (13)

Step 7: Update the weight distribution.

ωr+1(i) =
{
ωr(i) × exp(−αr) i f hr(xi) == yi
ωr(i) × exp(αr) otherwise

. (14)

ωr+1 = normalize(ωr+1). (15)

Set r = r + 1, if r ≤ R, return to step 3; otherwise go to step 8.
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Step 8: Output decision value.

H(xi) =
R∑

r=1

αrhr(xi). (16)

3.3. The DSEC Method

To solve the imbalanced data problem of TSSP, the three-step DSEC method is proposed.
The descriptions of each step are summarized below.

Step 1: Divide the training set D into stable set S and unstable set U. Next, utilize the data
segmentation strategy to split the stable set into T stable subsets, S = {S1, S2, . . . , ST}. Then, combine
each stable subset with unstable set U into T training subsets, D = {D1, D2, . . . , DT}. If IR is an integer,
the stable samples are as many as the unstable samples in each training subset; otherwise, the unstable
samples are more than the stable samples in each training subset.

Step 2: Train T AdaBoost classifiers with T training subsets independently.
Step 3: Ensemble the decision values from T AdaBoost classifiers by using the summation rule

expressed as follows:

F(xi) =
T∑

t=1

Ht(xi) =
T∑

t=1

R∑
r=1

αtrhtr(xi). (17)

Then, determine the transient stability status by

yi =

{
1 i f F(xi) ≥ 0
−1 otherwise

. (18)

The schematic diagram of DSEC method is shown in Figure 3:
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4. The DSEC Method for TSSP

4.1. Database Generation and Preprocessing

In order to generate a statistical database for TSSP, the Monte Carlo method is utilized and the
main steps of data generation and preprocessing are described as follows:

Step 1: Utilize the Monte Carlo method to randomly generate a new operating condition of the
power system based on the base condition. Check the feasibility of the new operating condition and
then randomly generate a disturbance scenario. Obtain the response trajectories of generators after
given the disturbance scenario using the TDS method.

Step 2: Construct the initial features for the TSSP consisting of system-level features and single
machine-level features. The electrical variables closely related to the transient stability characteristics,
such as load level, generator active power output, rotor angle, kinetic energy, etc., are considered.
A detailed feature description can be found in Reference [19].

Step 3: Determine the transient stability status of the power system. If the power system is
unstable, it is labeled as 1; otherwise, it is stable, labeled as −1.

Step 4: Combine the initial features with the corresponding label to form a sample and put the
sample into the database.

Step 5: Repeat steps 1–4 until the predefined number of samples is obtained.
Step 6: Employ the two-stage feature selection method [19] to eliminate the irrelevant and

redundant features in the original database and, finally, obtain the classification database.

4.2. Flowchart of the DSEC Method for TSSP

The proposed framework of the DSEC method for TSSP involves two stages: (1) Offline training
and (2) online application, which are described respectively below:

(1) Offline Training: The classification database is randomly divided into three parts, as follows:
Training set, validation set, and testing set. The training set is split by the data segmentation
strategy and then utilized for training multiply AdaBoost classifiers. The validation set is used
for selecting the optimal parameter of the classifier and the testing set is utilized for evaluating
the classification performance of the DSEC model for TSSP.

(2) Online Application: The monitoring information of power systems is utilized to judge whether
the system is subjected to a disturbance or not. If a disturbance occurs, the measured data is
adopted to construct the input features and the stability status is predicted immediately after
feeding these features into the DSEC model. If the system is predicted to have an unstable status,
the system operator is immediately alerted to take proper control strategies to prevent large-scale
outages. During online application, if significant changes happen to the operating condition or
grid topology, the classification database should be updated immediately so that the DSEC model
can be retrained for robustness improvement.

The flowchart of the proposed DSEC method for TSSP is shown in Figure 4:
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5. Case Studies

The Northeast Power Coordinating Council (NPCC) 140-bus system, representing the equivalent
power grid in the Northeastern United States, is utilized as a test system [24,25]. The simulations are
carried out in MATLAB environment on a computer with an Intel Core i5 3.3 GHZ processor and 8 GB
of RAM.

For database generation, the active power output and the terminal voltage of generators vary
within ±20% and ±2% of the base operating condition, respectively, and the active and reactive power
of loads both vary within ±20% of the base operating condition. A transmission line with permanent
three-phase short-circuit is randomly selected as the fault condition and the fault duration is set to
0.12 s.

A total of 16,000 samples with 270 features are generated to form the original database of the
TSSP. After two-stage feature selection preprocessing, 87 features are retained and the classification
database is formed. A total of 60% of the classification database are randomly selected as the training
set. Another 20% are randomly selected as the validation set and the remaining 20% are formed as the
testing set. The sample distribution is shown in Table 3.

Table 3. Sample distribution in the classification database.

Class
Classification Database

Training Set Validation Set Testing Set Total

Stable samples 7911 2636 2692 13239
Unstable samples 1689 564 508 2761

Total 9600 3200 3200 16000

From Table 3, there is an obvious imbalanced data problem in the classification database and the
number of stable samples is about 4.8 times the number of unstable samples.

After applying the data segmentation strategy, the sample distribution in each training subset is
tabulated in Table 4.
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Table 4. Sample distribution in each training subset.

Training Subset Stable Samples Unstable Samples Total

1 1583 1689 3272
2 1582 1689 3271
3 1582 1689 3271
4 1582 1689 3271
5 1582 1689 3271

5.1. Parameter Selection

The main parameter of the DSEC model is iteration round R. Under different values of R, the GM
performances of the DSEC model on the validation set are analyzed and compared and the value range
is set to [10, 20, . . . , 100]. The results of parameter analysis are shown in Figure 5. Taking into account
the randomness of the AdaBoost classifier, the average results of 10 repeated experiments are utilized
for comparison.
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It can be seen from Figure 5 that, with the increase of R, the GM value increases rapidly at first
and then gradually remains stable. Considering the classification performance and model complexity,
the value of R is set to 40.

5.2. Comparison with Traditional Machine Learning Methods

In this section, a comparison is made between the DSEC model and the traditional machine
learning methods including SVM, ELM, CART, and AdaBoost, which do not consider the imbalanced
data problem. The Gaussian function is chosen as the kernel function of SVM, and its parameters
includes the penalty coefficient, c, and the kernel function parameter, γ. The grid search method is
utilized for selecting the optimal parameters of SVM and the value range of both parameters is [2–8,
2–7, . . . , 28]. The main parameter of ELM is the number of hidden layer nodes, L, and its range is set as
[50, 100, ..., 1500]. The default parameters are adopted in the CART algorithm and the iteration round
of the AdaBoost classifier is 40.

The results of these methods for TSSP are compared and tabulated in Table 5.
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Table 5. Results comparison with traditional machine learning methods.

Methods Parameters TSR (%) TUR (%) GM (%)

SVM C = 16; γ = 1 98.14 82.09 89.76
ELM L = 850 98.15 77.99 87.49

AdaBoost R = 40 98.37 85.02 91.45
CART – 96.36 81.69 88.72
DSEC R = 40 92.28 97.03 94.62

From Table 5, when dealing with the TSSP problem with imbalanced data, the traditional machine
learning methods lead to a high TSR but quite low TUR and GM. While the proposed DSEC model can
significantly improve the TUR and GM, which become as high as 97.03% and 94.62% respectively, with
the TSR still being maintained at 92.28%.

5.3. Comparison with Other Data-Level Methods

In this section, the DSEC method is compared with some state-of-the-art data-level methods
for imbalanced TSSP problem, including random oversampling (ROS) [14], random undersampling
(RUS) [20], the synthetic minority over-sampling technique (SMOTE) [26], ADASYN, cluster-based
undersampling (CUS) [27], and EasyEnsemble [20]. The detailed processes using these methods for
the imbalanced data problem of TSSP are described as follows:

(1) ROS: A new unstable set UROS is sampled with replacement from the original unstable set U,
so that |UROS| = NS. Then the unstable set UROS is combined with stable set S to form a new
training set.

(2) RUS: A new stable set, SRUS, is sampled with replacement from the original stable set, S, so that
|SROS| = NU. Then the stable set SRUS is combined with stable set U to form a new training set.

(3) SMOTE: New NS-NU unstable samples are generated by using SMOTE. Then, these unstable
samples are added into the original training set, so that |USMOTE | = NS in the new training set.

(4) ADASYN: New NS-NU unstable samples are generated by using ADASYN. Then, these unstable
samples are added into the original training set, so that |UADASYN| = NS in the new training set.

(5) CUS: The k-mediods algorithm is used for clustering the stable samples with NU clusters. A new
unstable set UCUS is constructed with the NU samples from cluster center, so that |UCUS| = NS.
Then the unstable set UCUS is combined with stable set S to form a new training set.

(6) EasyEnsemble: Randomly sample a stable subset SEasy from the original stable set S, so that
|SEasy| = NU. Then the stable set SEasy is combined with stable set U to form a new training subset.
Repeat above process TEasy times and obtain TEasy training subsets. Here, TEasy is set to 5.

The AdaBoost classifier is employed for data-level methods hereinbefore, and considering the
randomness of these methods, the average results of 10 repeated experiments are taken for comparison.
The training time and classification results of these methods are compared and shown in Table 6.

Table 6. Results comparison of imbalanced data process methods.

Method Training Time (s) TSR (%) TUR (%) GM (%)

ROS 32.53 98.35 85.55 91.73
RUS 3.46 91.98 95.89 93.91

SMOTE 32.85 97.40 89.84 93.54
ADASYN 45.28 96.95 90.94 93.90

CUS 51.36 95.41 92.13 93.75
EasyEnsemble 17.16 92.13 96.26 94.17

DSEC 16.57 92.28 97.03 94.62
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From Table 6, the DSEC method has higher TUR and GM values than other imbalanced data
process methods, which means that the proposed method has a better classification performance both in
unstable samples and overall samples and costs relatively less training time than other methods, except
RUS. Therefore, the DSEC method is superior for TSSP with imbalanced data. Furthermore, the total
time cost of DSEC method on testing data is 0.20 s, i.e., the computation time of one sample, is about
0.06 ms, which demonstrates the feasibility of applying the method for online application.

5.4. The Performance of the DSEC Method Under Different IRs

In order to study the classification performance of the DSEC method under different IRs, the value
range of IR is set to [2, 4, ..., 10] and new training sets and testing sets for studying are constructed
based on the value of IR. The GM performance of the DSEC method is evaluated under different IRs.
In addition, as a traditional machine learning method, the AdaBoost classifier is utilized for comparing
with the DSEC method using the same sample set. The results of these two methods are illustrated and
compared in Figure 6.
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As the IR increases, the GM performance of the AdaBoost classifier decreases continuously and
when IR = 10, the GM value decreases to about 87%. The performance of the DSEC method is almost
unaffected with the change of IR and all the GM values are all higher than 93% under different IRs.
The results further demonstrate the effectiveness of the DSEC method in dealing with the imbalanced
data problem of TSSP.

Under different IRs, the increment of GM (IGM) value of the DSEC method over the AdaBoost
classifier is shown in Table 7.

Table 7. IGM values under different IRs.

IR 2 4 6 8 10

IGM (%) 0.61 2.10 4.43 4.61 5.79

An approximate linear function between the IR and the IGM value is fitted as follows:

IGM = 0.64× 10−2
× IR− 0.35× 10−2. (19)

The discrete data points and the fitted linear function are shown in Figure 7.
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As shown in Figure 7, the IGM value almost increases linearly with the increase of IR, which
means that the more severe the imbalanced data problem of TSSP, the greater the improvement of the
DSEC method over the AdaBoost classifier makes.

6. Conclusions

This paper proposes the DSEC method to deal with the imbalanced data problem of TSSP.
Firstly, the effects of the imbalanced data problem on the decision boundary and the classification
performance of TSSP are analyzed in detail. Then, the three-step DSEC method is proposed to handle
this problem. Finally, the effectiveness is demonstrated on the NPCC 140-bus system. The conclusions
are drawn as follows:

(1) The imbalanced data problem can seriously deteriorate the classification performance of TSSP.
(2) Compared with traditional machine learning methods, the proposed DSEC method can

significantly improve the TUR and GM of TSSP, with the TSR value still being kept at a
high level.

(3) Compared with state-of-the-art data-level methods, the proposed DSEC method has higher TUR
and GM values. Furthermore, the rapidity of the DSEC method fully meets the requirement of
online application of TSSP.

(4) The proposed DSEC method maintains a high GM value under different IRs. Moreover, the higher
the IR value is, the greater the advantage of DSEC method over traditional machine learning
methods will have.

Author Contributions: Z.C. and X.H. developed the idea of this research and performed simulation verification;
C.F. collected and processed the data; Z.C. and Z.H. wrote this paper; X.S. and S.M. checked and polished
this paper.

Funding: This work was supported by Science and Technology Project of State Grid Sichuan Electric Power
Company (No. 52199718001V).

Acknowledgments: The authors would like to appreciate Yuqin Chen from South Western University of Finance
and Economics for her efforts in checking and polishing this paper. Also we would like to thank Pengfei Chen
from Xihua University for his help in this paper.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2019, 9, 4216 14 of 15

References

1. Kundur, P.; Paserba, J.; Ajjarapu, V.; Andersson, G.; Bose, A.; Canizares, C.; Hatziargyriou, N.; Hill, D.;
Stankovic, A.; Taylor, C.; et al. Definition and classification of power system stability IEEE/CIGRE joint task
force on stability terms and definitions. IEEE Trans. Power Syst. 2004, 19, 1387–1401.

2. Zhou, Y.Z.; Guo, Q.L.; Sun, H.B.; Yu, Z.H.; Wu, J.Y.; Hao, L.L. A novel data-driven approach for transient
stability prediction of power systems considering the operational variability. Int. J. Electr. Power 2019, 107,
379–394. [CrossRef]

3. Meng, K.; Dong, Z.Y.; Wong, K.P.; Xu, Y.; Luo, F.J. Speed-up the computing efficiency of power system
simulator for engineering-based power system transient stability simulations. IET Gener. Transm. Distrib.
2010, 4, 652–661. [CrossRef]

4. Bhui, P.; Senroy, N. Real-time prediction and control of transient stability using transient energy function.
IEEE Trans. Power Syst. 2017, 32, 923–934. [CrossRef]

5. De La Ree, J.; Centeno, V.; Thorp, J.S.; Phadke, A.G. Synchronized phasor measurement applications in
power systems. IEEE Trans. Smart Grid 2010, 1, 20–27. [CrossRef]

6. Zhang, Y.C.; Xu, Y.; Dong, Z.Y.; Xu, Z.; Wong, K.P. Intelligent early warning of power Ssystem dynamic
insecurity risk: Toward optimal accuracy-earliness tradeoff. IEEE Trans Ind. Inform. 2017, 13, 2544–2554.
[CrossRef]

7. Xu, Y.; Dong, Z.Y.; Meng, K.; Zhang, R.; Wong, K.P. Real-time transient stability assessment model using
extreme learning machine. IET Gener. Transm. Distrib. 2011, 5, 314–322. [CrossRef]

8. Yu, J.J.Q.; Hill, D.J.; Lam, A.Y.S.; Gu, J.T.; Li, V.O.K. Intelligent time-adaptive transient stability assessment
system. IEEE Trans. Power Syst. 2018, 33, 1049–1058. [CrossRef]

9. Gomez, F.R.; Rajapakse, A.D.; Annakkage, U.D.; Fernando, I.T. Support vector machine-based algorithm for
post-fault transient stability status prediction using synchronized measurements. IEEE Trans. Power Syst.
2011, 26, 1474–1483. [CrossRef]

10. Zhou, Y.Z.; Wu, J.Y.; Yu, Z.H.; Ji, L.Y.; Hao, L.L. A hierarchical method for transient stability prediction of
power systems using the confidence of a SVM-based ensemble classifier. Energies 2016, 9, 778. [CrossRef]

11. Amraee, T.; Ranjbar, S. Transient instability prediction using decision tree technique. IEEE Trans. Power Syst.
2013, 28, 3028–3037. [CrossRef]

12. Liu, C.X.; Tang, F.; Leth Bak, C. An Accurate online dynamic security assessment scheme based on random
forest. Energies 2018, 11, 1914. [CrossRef]

13. Thirugnanasambandam, V.; Jain, T. AdaBoost classifiers for phasor measurements-based security assessment
of power systems. IET Gener. Transmiss. Distrib. 2018, 12, 1747–1755. [CrossRef]

14. Kamwa, I.; Samantaray, S.R.; Joos, G. catastrophe predictors from ensemble decision-tree learning of wide-area
severity indices. IEEE Trans. Smart Grid 2010, 1, 144–158. [CrossRef]

15. Tan, B.D.; Yang, J.; Tang, Y.F.; Jiang, S.B.; Xie, P.Y.; Yuan, W. A deep imbalanced learning framework for
transient stability assessment of power system. IEEE Access 2019, 7, 81759–81769. [CrossRef]

16. He, H.B.; Garcia, E.A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284.
17. Chen, Z.; Xiao, X.Y.; Li, C.S.; Zhang, Y.; Hu, Q.Q. Real-time transient stability status prediction using

cost-sensitive extreme learning machine. Neural Comput. Appl. 2016, 27, 321–331. [CrossRef]
18. Zhu, L.P.; Lu, C.; Dong, Z.Y.; Hong, C. Imbalance learning machine-based power system short-term voltage

stability assessment. IEEE Trans Ind. Inform. 2017, 13, 2533–2543. [CrossRef]
19. Chen, Z.; Han, X.Y.; Fan, C.W.; Zheng, T.W.; Mei, S.W. A two-stage feature selection method for power

system transient stability status prediction. Energies 2019, 12, 689. [CrossRef]
20. Liu, X.Y.; Wu, J.X.; Zhou, Z.H. Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst.

Man Cybern. B Cybern. 2009, 39, 539–550.
21. Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to

boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [CrossRef]
22. Gamal, H.; Ismail, N.E.; Rizk, M.R.M.; Khedr, M.E.; Aly, M.H. A Coherent Performance for Noncoherent

Wireless Systems Using AdaBoost Technique. Appl. Sci. 2019, 9, 256. [CrossRef]
23. Wang, Y.B.; Ai, H.Z.; Wu, B.; Huang, C. Real time facial expression recognition with AdaBoost. In Proceedings

of the 17th International Conference on Pattern Recognition, Cambridge, UK, 26 August 2004.

http://dx.doi.org/10.1016/j.ijepes.2018.11.031
http://dx.doi.org/10.1049/iet-gtd.2009.0701
http://dx.doi.org/10.1109/TPWRS.2016.2564444
http://dx.doi.org/10.1109/TSG.2010.2044815
http://dx.doi.org/10.1109/TII.2017.2676879
http://dx.doi.org/10.1049/iet-gtd.2010.0355
http://dx.doi.org/10.1109/TPWRS.2017.2707501
http://dx.doi.org/10.1109/TPWRS.2010.2082575
http://dx.doi.org/10.3390/en9100778
http://dx.doi.org/10.1109/TPWRS.2013.2238684
http://dx.doi.org/10.3390/en11071914
http://dx.doi.org/10.1049/iet-gtd.2017.0013
http://dx.doi.org/10.1109/TSG.2010.2052935
http://dx.doi.org/10.1109/ACCESS.2019.2923799
http://dx.doi.org/10.1007/s00521-015-1909-9
http://dx.doi.org/10.1109/TII.2017.2696534
http://dx.doi.org/10.3390/en12040689
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.3390/app9020256


Appl. Sci. 2019, 9, 4216 15 of 15

24. Chow, J.H.; Cheung, K.W. A toolbox for power system dynamics and control engineering education and
research. IEEE Trans. Power Syst. 1992, 7, 1559–1564. [CrossRef]

25. Ju, W.Y.; Qi, J.J.; Sun, K. Simulation and analysis of cascading failures on an NPCC power system test bed.
In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015.

26. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling
technique. J. Artif. Intell. Res. 2002, 16, 321–357. [CrossRef]

27. Lin, W.C.; Tsai, C.F.; Hu, Y.H.; Jhang, J.S. Clustering-based undersampling in class-imbalanced data. Inf. Sci.
2017, 409, 17–26. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/59.207380
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1016/j.ins.2017.05.008
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Effects of the Imbalanced Data Problem on TSSP 
	The Breif Description of the TSSP Issue 
	The Effect on the Decision Boundary 
	The Effect on the Classification Performance 

	The Proposed DSEC Method 
	Data Segmentation Strategy 
	AdaBoost Algorithm 
	The DSEC Method 

	The DSEC Method for TSSP 
	Database Generation and Preprocessing 
	Flowchart of the DSEC Method for TSSP 

	Case Studies 
	Parameter Selection 
	Comparison with Traditional Machine Learning Methods 
	Comparison with Other Data-Level Methods 
	The Performance of the DSEC Method Under Different IRs 

	Conclusions 
	References

