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Abstract: This paper solves the leader-following consensus problem for a class of second-order
multi-agent systems with input quantized by a newly proposed adaptive dynamic quantizer.
The novel dynamic quantizer is an adaptive quantizer that combines the logarithmic quantizer
and the uniform quantizer by introducing dynamic gain parameters to achieve quantizer adaptive
adjustment. It has advantages of logarithmic, uniform, and adaptive dynamic quantizers in ensuring
reducible communication expenses and acceptable quantizer errors for better system performance.
On this basis, we transform the guide way climbing frame (GWCF) under ideal conditions into a
second-order multi-agent system and solve the motion synchronization problem of GWCF. Finally,
we illustrate our approach by numerical examples.

Keywords: second-order multi-agent systems; adaptive dynamic quantizer; consensus; motion
synchronization; distributed control law

1. Introduction

Because of cooperative control widespread potential applications in various fields such as
synchronized rise of guide way climbing frame (GWCF), formation control of mobile robots, distributed
coordination of multiple dynamic systems (also known as multi-agent systems [1–6]), has achieved
rapid development in recent decades. Consensus is one of the most popular topics in this area,
which has received significant attention from numerous researchers [7,8]. These approaches are often
classified as leaderless consensus [9–11] and leader-following consensus solutions (see [12–14] and the
references therein). Moreover, many of the early works were established for systems with first-order
dynamics, whereas more results have been reported in recent years, such as [15] for systems with
second or higher-order dynamics.

However, all the above results assume that the communication among the agents under
consideration is not limited [16,17], and that real-time changes are entered in the context of continuous
time. This assumption does not hold in practical systems, and mechanical equipment cannot be
adjusted in real time under continuous-time conditions. Therefore, the consensus problem under the
limitation of communication bandwidth [18,19] has become a new hot-spot issue in the field of control.
In recent years, most consensus problems have been solved in the background of dynamic discrete
time [20,21]. However, the practical system is rare in the context of dynamic discrete time. It is more in
the context of continuous time, so it is very meaningful to solve the consensus problem of bandwidth
limitation in a continuous-time background. Therefore, this paper uses the quantization approach to
solve the bandwidth limitation or finite capacity problem in continuous-time dynamics. Quantization
can be seen as a map from continuous signals to discrete finite sets [22]. Quantizer digitizes incoming
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information and usually gives piecewise constant output and input. Therefore, only finite bits of
channel capacity are required for the transmission of quantized data among agents [23,24]. To our best
knowledge, the current research on the consensus of multi-agent systems under input quantization is
not very extensive.

Static quantizer include logarithmic quantizer and uniform quantizer, which usually contains
a fixed quantization interval and an infinite quantization level. Compared with newly proposed
adaptive dynamic quantizer, it is inefficient and unrealistic. When the input of system is large, the use
of logarithmic quantizer will lead to large quantization error, which makes the system instability.
When the input of system is small, the use of uniform quantizer also will lead to relatively large
quantization error. To overcome the shortcomings of two static quantizers, which are static and have
large errors under specific conditions, the newly proposed adaptive dynamic quantizer combines
the logarithmic quantizer and the uniform quantizer by introducing dynamic gain parameters, and
gives the boundary conditions. The error of the newly proposed adaptive dynamic quantizer is less
than that of the dynamic uniform quantizer [25] when the input of system is small, and which is
equal to that of the dynamic uniform quantizer when the input of system is large. Generally speaking,
the quantization error of this quantizer has dynamic quantization interval, limited quantization level
and small quantization error compared with the logarithmic quantizer [26], uniform quantizer [27]
and dynamic uniform quantizer.

To our best knowledge, dynamic uniform quantizer has been applied to leaderless multi-agent
systems. For systems with information quantization, input is quantized by a quantizer which results
in an inevitable quantization error. Because when an actual value is sent from an agent to its neighbor,
the value will be truncated and only a quantified version will be received by the neighbor, which
may cause undesirable oscillating behavior in the process of leader-following consensus [28,29].
Therefore, it is still very challenging to consider the leader-following consensus of multi-agent systems
under followers input quantization. In fact, many practical systems that can be transformed to
second-order multi-agent systems, such as synchronous motion of GWCF. In this paper, the followers’
input are quantized by the newly proposed adaptive dynamic quantizer, which solve the problem
leader-following consensus with limited communication bandwidth. The static quantizer in [30] is a
special case of the newly proposed dynamic quantizer, the dynamic gain parameter is 1 and applied to
the SISO system [31].

At present, the synchronous motion of the second-order system has not been resolved very well.
For example, the synchronized rise of GWCF adopts switches for one-to-one control of each node.
During the lifting process, there are four observers around. When the GWCF in that direction rises and
falls, slowly or quickly, the switches of corresponding nodes are controlled by the indoor personnel
through the walkie-talkie. It makes the whole rises process very inefficient and the workload of the
staff is huge. To effectively solve this problem and be more suitable for practical working conditions,
we adopt the distributed control law. This law cannot only make current node state within a reasonable
range according to the state of the around nodes, but also require a small number of calculations
by a single node. To apply the distributed control law, we first build the mathematical model by
analyzing the force on the practical object, and then calculate it, such as the vertical force of each
hanging point in the climbing frame, the horizontal force of a single mobile robot and so on, under the
condition that the friction force does not changed by the time. A mathematical model of a second-order
integrator systems is established for the longitudinal force of the single hanging point in the GWCF.
The second-order integrator system of all hanging points constitutes a network structure, which is
regarded as a second-order multi-agent systems. Supposing one of the hanging point with constant
speed is the leader, the other hanging points are the followers. The pull of the motor at a single
suspension point is the input to a single second-order integrator system. Under the action of a novel
adaptive dynamic quantizer, the input of a single hanging point can be adjusted intermittently in the
initial stage of the motion process by means of distributed control law, and the synchronous motion
can be achieved in a short time.
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In this paper, we first introduce self-proposed adaptive dynamic quantizer which has dynamic
quantization interval, limited quantization level and smaller quantization error compared with the
logarithmic quantizer, uniform quantizer and dynamic uniform quantizer. On this basis, the follower
input is quantized by a dynamic quantizer in a second-order integrator multi-agent systems, and the
leader-following consensus problem with limited communication bandwidth is solved by a distributed
control law. Finally, the distributed control law is applied to practical systems, such as synchronous
motion of GWCF. According to the simulation example, the better results are achieved.

The main contributions of this paper include three aspects.
(1) First, a novel adaptive dynamic quantizer is proposed. Compared with the previous quantizer,

this quantizer can effectively reduce quantization error, has dynamic quantization interval and limited
quantization level.

(2) Secondly, most of researcher solve the multi-agent system consensus problem after the input is
quantized, using leaderless method and the quantizer adopts the static quantizer. In this paper, using
second-order systems and having a leader, the problem of leader-following consensus of multi-agent
systems is realized by using the adaptive dynamic quantizer proposed by ourselves. The second-order
system and the self-proposed adaptive dynamic quantizer are more realistic.

(3) Moreover, the mathematical model of the second-order multi-agent system is established
by analyzing the vertical force acting on the lifting nodes of GWCF under ideal conditions.
The second-order multi-agent system will realize synchronous lifting of GWCF under the distributed
control law whose input is quantized by the novel adaptive dynamic quantizer.

The rest of the paper is organized as follows. In Section 2, we will give the basic notion and
preliminary results. In Section 3, we will give the problem statement. In Section 4, we will give the
main result and stability analysis. The effectiveness of the proposed method and design is illustrated
by examples in Section 5. Some concluding remarks are given in Section 6. In addition, some proofs
are attached in the Appendix A.

2. Basic Notions and Preliminary Results

In this section, we introduce graph theory, some basic concepts of quantizers, and propose a novel
dynamic quantizer.

2.1. Graph and Matrix

We first introduce some graph terminologies which can be found in [32]. A digraph g = (ν, ε)

consists of finite set of nodes ν = {1, 2, 3, ..., N} and an edge set ε ⊆ ν× ν. An edge of ε from node
i to node j is denoted by (i, j), where the nodes i and j are called the parent node and child node
of each other, and the node i is also called a neighbor of the node j. Let Ni denote the subset of ν

which consists of all the neighbors of node i. If the digraph g contains a sequence of edges of the
form (i1, i2), (i2, i3), ..., (ik, ik+1), then the set {(i1, i2), (i2, i3), ..., (ik, ik+1)} is called a path of g from
node i1 to node ik+1 and node ik+1 is said to be reachable from node i1. if i1 = ik+1, the path is called
a cycle. The adjacency matrix of g is defined as Ag =

[
aij
]
∈ RN×N with nonnegative adjacency

elements aij > 0⇔ (j, i) ∈ ε. The degree matrix ∆g =
[
∆ij
]

is a diagonal matrix with [∆ii] = ∑N
j=1 aij,

i = 1, 2, ..., N, element and the graph Laplacian of the weighted digraph g is defined by L = ∆g − Ag

whose eigenvalues will be ordered and denoted as 0 < λ1 ≤ λ2 ≤ ... ≤ λN . L corresponding
eigenvector 1 = [1, 1, ..., 1]T , i.e., L1 = 0.

Lemma 1 ([33]). For a quasi-strongly connected graph g, the graph Laplacian L have the N nonzero eigenvalues,
which are all in the open right-half plane.
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2.2. Quantizer Description

2.2.1. Logarithmic Quantizer

In this section, the logarithmic quantizer described in [34] is considered. The quantizer with
bounded region satisfies the following properties:

ql(u) =


ui

ui
1+δ < u < ui

1−δ

0 0 ≤ u < d
1+δ

−ql(−u) u < 0
(1)

|∆ql(u)| ≤ δ|u|+ (1− δ)d (2)

where ∆ql(u) = q(u)− u, ql with quantization error ∆ql , ui = ρ(1− i)d, i = 1, 2, ..., N. The parameters
d > 0 and 0 < ρ < 1, δ = 1−ρ

1+ρ determine the quantization density of ql(u). ql(u) is in the set

U = {0,±ui}. umin = d
1+δ determines the size of the deadzone for ql(u). For this quantizer, some

remarks about its range, number of quantization levels and quantization density are given in [35].

2.2.2. Hysteresis Quantizer

The hysteresis quantizer employed is described in the following form, similar to [36].

qh(u) =



uisgn(u) ui
1+δ < |u| < ui, u̇ < 0, or
ui < |u| ≤ ui

1−δ , u̇ > 0

ui(1 + δ)sgn(u) ui < |u| ≤ ui
1−δ , u̇ < 0, or

ui
1−δ < |u| ≤ ui(1+δ)

1−δ , u̇ > 0

0 0 ≤ |u| < d
1+δ , u̇ < 0, or

d
1+δ ≤ |u| ≤ d, u̇ > 0

q(u(t−)) u̇ = 0

(3)

where i = 1, 2, ..., N, the parameters d > 0 and 0 < ρ < 1 determine the quantization density of q(u),
δ = 1−ρ

1+ρ , ui = ρ1−id. q(u) is in the set U = {0,±ui,±ui(1 + δ)} and q(u(t−)) denotes the status prior
to q(u(t)). For this kind of quantizer, some detailed discussions about its parameters and hysteresis
mechanism can be found in [35].

The hysteresis quantizer can be considered to be an extension of the logarithmic quantizer, it
can be seen as a combination of two logarithmic quantizers with the same coarseness but different
quantized values. Thus, control law, which adopts a logarithmic quantizer, can be also applied to the
hysteresis quantizer, and vice versa. In the rest part of the paper, we only consider the logarithmic
quantizer for simplicity. However, with the additional quantized values, a hysteresis quantizer can
avoid chattering phenomenon. The detailed discussions can be found in [37].

2.2.3. Uniform Quantizer

The uniform quantizer was proposed in [38], which had relatively simple form and was
described as

qu(u) =
⌊

u
v

+
1
2

⌋
v (4)

where bac denotes the greatest integer, it is less than or equal to a, v is the parameter (v > 0) of the
uniform quantizer, which can be found in [38]. For this kind of quantizer, the following inequality
is satisfied.
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|∆qu(u)| ≤
1
2

v. (5)

where the quantization error of qu is ∆qu, the logarithmic quantizer and the hysteresis quantizer satisfy
property with 0 < δ < 1 based on [39]. For the uniform quantizer, the sector bound property is also
true with δ = 0 and d = v

2 .

2.2.4. Novel Adaptive Dynamic Quantizer

For a logarithmic quantizer, the quantization level becomes coarser as the magnitude of signal
gets larger (away from the original), the uniform quantizer has the disadvantage of fixed error that
the error does not decrease when the input is very small, dynamic uniform quantizer is no exception.
To overcome these problems, we propose a novel adaptive dynamic quantizer, which combines the
logarithmic quantizer and the uniform quantizer by introducing dynamic gain parameters, give the
boundary conditions of the novel quantizer. (Please note that this quantizer can be easily extended to
a combination of a hysteresis quantizer and a uniform quantizer by replacing qι(·) with qh(·)).

kqχ(u/k) =


kqι(uth) +

⌊
u−kuth

kv + K
⌋

kv kuth ≤ u ≤ kM

kqι(
u
k ) 0 < u < kuth

−kqχ(
−u
k ) u < 0

(6)

where kqχ(u/k) is the result of quantization of novel adaptive dynamic quantizer, k is the constant
to be specified later, k(k > 0) is adopted as a zooming variable, kM is quantization range. K = 1

2 ,
if ql(uth) < uth and K = 0 if ql(uth) ≥ uth, uth is a positive constant specified by the designer denoting
the threshold to switch between the dynamic logarithmic quantizer and dynamic uniform quantizer,
the equation 1

2 v = |ql(uth)− uth|, where v is a parameter for the dynamic uniform quantizer.
Let us make k = 1, v = 1. We get Figure 1.

Figure 1. Novel adaptive dynamic quantizer.

Remark 1. The quantization error of the novel adaptive dynamic quantizer is shown below (see the proof in
Appendix A).

|∆qχ(u)| ≤
{

k(δ |u|k + (1− δ)d) |u| < kuth
1
2 kv kuth ≤ |u| ≤ kM

(7)

where d > 0, 0 < ρ < 1, δ = 1−ρ
1+ρ , the quantization error of kqχ(

|u|
k ) is ∆qχ, ∆qχ for the novel adaptive

dynamic quantizer is always bounded for any u. In addition, low communication cost is still maintained with
a suitable choice of large uth. Thus, the newly proposed adaptive dynamic quantizer has the advantages of
logarithmic, uniform, dynamic uniform quantizers.

The quantization error comparisons of magnitude between the newly proposed adaptive dynamic
quantizer and the traditional dynamic uniform quantizer as follows:
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According to (7), we divide the input into the following three stages to analyze.

∆qµ = ∆qχ = 1
2 kv |u| > kuth

∆qµ = ∆qχ = 1
2 kv |u| = kuth

∆qχ < ∆qµ |u| < kuth

where ∆qµ is the quantization error of the dynamic uniform quantizer mentioned in [25],

∆qχ = k(δ |u|k + (1− δ)d), d∆qχ

du > 0.
In summary, the error of the dynamic uniform quantizer is ∆qµ, the error of the newly proposed

adaptive dynamic quantizer is ∆qχ. ∆qµ ≥ ∆qχ if the input is in a finite compact set, it will be more
clearly illustrated by the subsequent digital simulation.

3. Problem Statement

Considering the GWCF, we can write the equation of motion in the vertical direction as

Fi(t)− fi −mig−mi ẍi(t) = 0
fi = µi Ni i = 1, ..., N

(8)

Fi(t) represents the pulling force of each hanging point, µi is the coefficient of sliding friction of
an object at each hanging point, Ni is the pressure on the orbit of the object at each hanging point, fi is
the sliding friction force in the vertical direction of an object at each hanging point, mi is the mass of an
object at each hanging point, g is the acceleration of gravity. To obtain the state space model of the
GWCF synchronized rise. First, let us take the state variables as x1i = xi(t) and x2i = ẋi(t). Then the
state space equation of the input quantized is as follows by the newly proposed adaptive quantizer (6)

ẋ1i = x2i (9)

ẋ2i = kqχ(
ui
k
) (10)

where ui = Fi
mi
− fi

mi
− g, i = 1, ..., N, x1i = col(x11(t), ..., x1N(t)), x2i = col(x21(t), ..., x2N(t)) is the

state, ui = ui(t) is the input.

ẋ10 = x20 (11)

ẋ20 = u0 (12)

where x10 ∈ R and x20 ∈ R are an exogenous signal, x10 = x10(t), x20 = x20(t), u0 = u0(t).
The plants (9), (10) and the exosystems (11), (12) together can be viewed as multi-agent systems

of N + 1 agents with (11), (12) as the leader and the N subsystems of (9), (10)as N followers. Given
the plant(9), (10), the exosystem (11), (12), we can define a digraph g = (ν, ε).

To describe our control law, denote the adjacency matrix of digraph g by A =
[
aij
]
∈ R(N+1)×(N+1)

where aii = 0, aij = 1 ⇔ (j, i) ∈ ε, and aij = 0 ⇔ (j, i) /∈ ε for i, j = 0, 1, ..., N. According to the
paper [25], we can get the following control law:

ui = −
N

∑
j=0

aij(x1i − x1j)−
N

∑
j=0

aij(x2i − x2j) (13)

where i = 0, ..., N, the control law of the form (13) is called distributed control law. It can only access
to the information of its neighbors and itself.

Our problem is described as follows:
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Problem 1. Given the multi-agent system (9)–(12) under the distributed control law (13), the state of followers
eventually tends to leader’s state by using the newly proposed adaptive dynamic quantization, i.e., limt→∞ |x1i−
x10| = 0, limt→∞ |x2i − x20| = 0, i = 1, ..., N.

The structure of the system quantization method is shown in Figure 2.

Figure 2. Subsystem quantization method.

Following the framework in [40], for a given plant to stabilization problem of a well-defined
augmented system, we will first convert the leader-following consensus problem of multi-agent systems.

x̄1i = x1i − x10; (14)

x̄2i = x2i − x20; (15)

where i ∈ 1, ..., N. Then, according to (9)–(15) we can get the following form:

˙̄z = Az̄ + Be (16)

where matrix A and matrix B are Hurwitz, A is Laplacian matrix, according to Laplacian property we
get x1i and x2i to receive signals from itself and its neighbor (that is, only nodes near the leader can
accept the leader’s information), e = ei is quantization error, the specific values of matrix A, B and

e are introduced later. z̄ = z̄i =

[
x̄1i
x̄2i

]
, i = 1, ..., N. If the closed-loop system (16) admits Lyapunov

functions Up(z̄i), satisfying
ã1(||z̄i||) ≤ Up(z̄i) ≤ ã2(||z̄i||) (17)

∂Up

∂t
≤ −λ0Up(z̄i) (18)

where i = 1, ..., N, for some class k∞ functions ã1(·) and ã2(·), and some positive number λ0, then
origin of (16) is globally asymptotically stable.

4. Main Result and Stability Analysis

In this section, we will consider stabilization problem for the system (16). For this purpose,
according to (6), (9), (10) and (13), we first propose the following equation:
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ẍ1i = kqχ(
−∑N

j=0 aij(x1i−x1j)−∑N
j=0 aij(x2i−x2j)

k )

= −kqχ(
Lx1i

k + Lx2i
k )

= −Lx1i − Lx2i − ei

(19)

According to (19), (9) and (10) is converted into following form:[
ẋ1

ẋ2

]
=

[
0 I
−L −L

] [
x1i
x2i

]
−
[

0
1

]
(ei) (20)

where ei = kqχ(
Lx1i

k + Lx2i
k )− (Lx1i + Lx2i), L̂ =

[
0 I
−L −L

]
, x1i = x1i(t), x2i = x2i(t), i = 1, ..., N.

We translate (9), (10) into the following form:

ẋ1i = x2i (21)

ẋ2i = −Lx1i − Lx2i − ei (22)

then define the following T, T+ (see the solution process in Appendix A) and T̂+ matrix:

T =


−1 1 0 · · · 0
−1 0 1 · · · 0

...
...

...
...

. . .
−1 0 0 · · · 1



T+ =



− 1
N − 1

N − 1
N · · · − 1

N

N−1
N − 1

N − 1
N · · · − 1

N

− 1
N −N−1

N − 1
N · · · − 1

N

...
...

...
. . .

...

− 1
N − 1

N − 1
N · · · N−1

N


T̂+ =

[
T+ 0
0 T+

]

where T ∈ RN×(N+1), T+ ∈ R(N+1)×N and Ť+ ∈ R2(N+1)×2N .
According to T, we translate (14) and (15) into the following equations:

x̄1i = Tx1ι (23)

x̄2i = Tx2ι (24)

where i ∈ 1, ..., N, ι ∈ 0, ..., N.
For convenience of writing, we translate (23), (24) into the following equation:

z̄ = T̂z (25)

where z = z(t) =

[
x1i
x2i

]
, z̄ = z̄(t) =

[
x̄1i
x̄2i

]
, T̂ =

[
T 0
0 T

]
, i = 1, ..., N.

According to (14) and (15), (19) is converted into the following form:
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¨̄x1i = Tẍ1ι

= −TLx1ι − TLx2ι − Teι

= −TLT+ x̄1i − TLT+ x̄2i − Teι

= −L̄x̄1i − L̄x̄2i − Teι

(26)

where L̄ = TLT+, e = eι, i = 1, ..., N, ι = 0, ..., N.
According to (14) and (15), (20) is converted into the following form:[

˙̄x1
˙̄x2

]
=

[
0 I
−L̄ −L̄

] [
x̄1

x̄2

]
−
[

0
T

]
(e) (27)

where

L̄ =


l11 − l01 l12 − l02 · · · l1n − l0n
l21 − l01 l22 − l02 · · · l2n − l0n

...
...

. . .
...

ln1 − l01 ln2 − l02 · · · lnn − l0n


We get following equation:

˙̄z = Ľz̄− Ěe (28)

where x1 = x1i, x2 = x2i, Ľ =

[
0 I
−L̄ −L̄

]
, Ě =

[
0
T

]
, Ľ ∈ R2N×2N , Ě ∈ R2N×(N+1), z̄ =

[
x̄1

x̄2

]
,

A = Ľ, B = Ě.
According to (7), The quantization error |e| of the novel adaptive dynamic quantizer is as follows:

|e| ≤
{

(δ|Uk |+ (1− δ)d)k |U| < kxth
1
2 kv kxth ≤ |U| ≤ kM

(29)

where U = Ui = Lx1i + Lx2i, i = 0, ..., 1, k ∈ N+, kM is the maximum quantization range, kxth is
the switching value of dynamic logarithmic quantizer and dynamic uniform quantizer in a novel
adaptive dynamic quantizer. The parameters d(d > 0) and ρ(0 < ρ < 1), δ(δ = 1−ρ

1+ρ ) determines the
size of the deadzone for qι(u). Where bac denotes the greatest integer that is less than or equal to a,
v(v > 0) is the parameter of uniform quantizer and determines the quantization density. We defined
1
2 kv = kqι(xth)− kxth. where qι(·) is the logarithmic quantizer.

Theorem 1. The leader-following consensus problem of system (9)–(12) is transformed into the problem of
augment system (16) origin stabilization. We can solve Problem 1, i.e., get the following equation:

lim
t→∞

z̄ = 0 (30)

Proof. We can define the nonsingular special P matrix.

P =

[
ρ 0
0 ρ

]
(31)

where ρ =

[
T

1√
N

1T

]
, 1 = [1, 1, ..., 1]T . The inverse matrix of the P matrix is shown below:

P−1 =

[
ρ−1 0

0 ρ−1

]
(32)

Clearly the eigenvalues of PL̂P+ are same as those of L̂, we have
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PL̂P−1 =


0 0 I 0
0 0 · · · 0

−TLT+
... −TLT+

...
0 0 · 0



=


0 0 I 0
0 0 · · · 0

−L̄
... −L̄

...
0 0 · 0


(33)

The eigenvalues of (33) are the solutions of the characteristic polynomial.

det(λI − PL̂P−1) = λ2det(λI − Ľ) = 0 (34)

Therefore Ľ has the same eigenvalues of L̂ but the two zero eigenvalue.
The existence of negative definite matrix τ makes positive definite matrix symmetric matrix η

and θ to satisfy the following equation:

τTη + ητ = −θ (35)

We can choose following Lyapunov function candidate.

v = z̄Tηz̄ (36)

where v = v(t), λmin(η) and λmax(η) are some know class K∞ functions, and they are the smallest and
largest eigenvalues of matrix η, respectively.

λmin(η)|z̄|2 ≤ v ≤ λmax(η)|z̄|2 (37)

According to (28), By taking the derivate of (36), we get the following inequality:

v̇ ≤ −z̄Tθz̄− 2z̄TηĚe
≤ −λmin(θ) ¯|z|2 + 2|z̄T |‖ηĚ‖|e|
= −λmin(θ) ¯|z|( ¯|z| − 2‖ηĚ‖|e|

λmin(θ)
)

(38)

According to Equation (29), e is a piecewise function, so we get the following inequality:

v̇ ≤ min(−λmin(θ) ¯|z|( ¯|z| − ‖ηĚ‖|kv|
√

M
λmin(θ)

),

−λmin(θ) ¯|z|( ¯|z| − 2‖ηĚ‖|(δ|Uk |+(1−δ)d)k|
√

M
λmin(θ)

))
(39)

We replace the variables in (39) for facilitate writing as follows:

φ =


‖ηĚ‖|kv|

√
M

λmin(θ)
kM ≥ |U| ≥ kxth

2‖ηĚ‖|(δ|Uk |+(1−δ)d)k|
√

M
λmin(θ)

|U| < kxth

(40)

According (7), we get φmax = ‖ηĚ‖|kv|
√

M
λmin(θ)

.
So that for any ε > 0, we get the following piecewise function:

φmax ≤ (1 + ε)φmax ≤ |z̄| (41)
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Under the condition of (41), we obtain the inequality v̇ < 0, and transform the inequality of (38)
into the following form:

v̇ ≤ −λmin(θ)(
ε

1 + ε
)

v
λmax(η)

(42)

We replace the following variable for facilitate writing:

a =
λmin(θ)

λmax(η)

ε

1 + ε
(43)

Then by applying the Comparison Lemma [39],we can provide the following estimates of the
convergence rate as in [40].

v̇ ≤ −av (44)

By solving (44) inequality, we get the following answer:

v ≤ e−atv(0) (45)

Based on Lemma 1 of [41], for an arbitrary ε > 0, we according to different definitions can define
the ellipsoid. {

R1 := {z̄ : λ(η)|z̄|2 ≤ λmin(η)k2M2}
R2 := {z̄ : λ(η)|z̄|2 ≤ λmax(η)((1 + ε)φmax)2} (46)

According to (46), R1 and R2 are invariant regions for the multi-agent system (28). With this
setting, the trajectories of (28) staring in R1 will approach R2 in finite time.

We can provide the estimates (44) of the convergence rate as in [35]. With the estimation of the
upper bound of the convergence time that staring in R1 enter R2 as

ψ =
1
a

ln
λmin(η)(M)2

λmax(η)(1 + ε)2φ2
max

(47)

To guarantee the asymptotic stability of the whole system, the Liberzon’s design strategy [41] is
employed. The control scheme contains two steps: “zooming-out” to detect measurement of states by
increasing k; “zooming-in” to achieve more accurate quantization by decreasing k. When the initial
state is in ellipsoid R1 or R2 with the initial zooming variable k(t0), the zooming-in phase starts with
the update interval ψ. Let k(t) = k(t0) for t ∈ [t0, t0 + ψ], where ψ is given by (47). Then z̄(t0 + ψ)

belongs to the ellipsoid R1. The equation about k is as follows:

k = πβk0 (48)

π =

√
λmax(η)(1+ε)φmax√

λmin(η)M
(49)

where k = k(t), k0 = k0(t), ψ is defined as (47) and β is the number of update times. It is easy to check
π < 1 and k < k0 according to (48) and (49). To decrease k by means of multiplying it by the scaling
factor π, we have limt→∞ k = 0, (44) implies limt→∞ z̄ = 0.

Remark 2. As the initial states of multi-agent systems generally known for quantizers, we can select k0 < 1 in
advance to keep the systems starts in the ellipsoids R1 (46).

Remark 3. The steps for proof limt→∞ z̄(t) = 0 under novel dynamic quantizer, are summarized as follows:
(1) Design the novel dynamic quantizer (6) as shown in Section 2.
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(2) The design transforms the multi-agent consensus problem into the origin stabilization problem in
Section 3.

(3) Lyapunov function are defined in (36) and prove that in Section 4.

5. Example

In this section, a simulation example is provided for illustration. We consider the form of the
second-order integrator multi-agent system with followers state quantized by the newly proposed
adaptive dynamic quantizer is as follows. The exosystem is in the form of (11), (12).

ẋ1i = x2i

ẋ2i = qχ(
Fi
mi
− fi

mi
− g)

(50)

where u0 = 0. qχ(·) is the state quantization by quantizer (1), where d = 0.02, δ = 0.2, xth = 14,
v = 0.84. The initial quantization parameter is k0, so that the initial condition after transformation is
in ellipse R1 (46). Reduction ratio π and update interval ψ are calculated by (47), (49).

A network of three followers is modeled by (50), which is shown in the Figure 3. where node 0
represents the exogenous signal (leader) and other nodes represent followers.

Figure 3. The communication graph.

L̂ =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
1 −2 1 0 1 −2 1 0
0 1 −2 1 0 1 −2 1
1 0 1 −2 1 0 1 −2


where L is the Laplacian matrix after conversion of adjacent matrix.

Ľ =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−2 1 0 −2 1 0
1 −2 1 1 −2 1
0 1 −2 0 1 −2
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where −Ľ is Hurwitz, the matrix η and θ are calculated by linear matrix inequality θ = −Ľη − η ĽT ,
obtain as follows:

η =



3.9375 2.25 1.3125 −1.5 0 0
2.25 5.25 2.25 0 −1.5 0

1.3125 2.25 3.9375 0 0 −1.5
−1.5 0 0 2.625 0.75 0.375

0 −1.5 0 0.75 3 0.75
0 0 −1.5 0.375 0.75 2.625



θ =



3 0 0 0 0 0
0 3 0 0 0 0
0 0 3 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3


where λmax(η) = 8.8, λmin(η) = 0.5, λmin(θ) = 3, M = 1600, ‖ηĚ‖ = 8.58, according to (40),
φmax = 96k, x10(0) = 0, x1(0) = [−1, 2, 1], x20(0) = 5 ,x2(0) = [1.2, 1, 1.2], ψ = 2.46, π = 0.757, ε = 2,
k0 = 1.

Figure 4 shows the change of dynamic parameter k over time.

Figure 4. Zooming variable k.

The error of the novel adaptive dynamic quantizer is less than that of the dynamic uniform
quantizer proposed in [25]. To show more clearly, we simplify the leader-following system as follows:

x1 = x2

x2 = q(u)
(51)

where q(u) is input quantized by quantizer, x1(0) = −1, x2(0) = 1.2, the parameters of the leader (11)
and (12), the novel adaptive dynamic quantizer (6) and the dynamic uniform quantizer (4) are the
same as those mentioned above. We get the error comparison between the two dynamic quantizers,
as shown in Figure 5.
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Figure 5. Dynamic quantizer quantization error.

Let e1 = qχ(u) − u, e2 = qµ(u) − u, e1 and e2 are the quantization errors under the action
of the new adaptive dynamic quantizer and uniform quantizer [25], respectively. Figure 5 show
the comparison between the quantization error of the newly proposed dynamic quantizer and the
quantization error of the dynamic uniform quantizer in the system (51). These simulation results
confirm that e1 ≤ 0.12 and e2 ≤ 0.42. Moreover, we can get the error of the novel dynamic quantizer at
any time is less than dynamic uniform quantizer error.

The following is applied to the multi-agent system shown in Figure 3, where the follower’s input
is quantized by the dynamic quantizer (6) proposed in this paper.

Figure 6 shows the speed of three followers hanging points. The final velocity tends to be 1.

Figure 6. The Speed of Three Followers Hanging Points.

Figure 7 shows the errors between the speed of three followers’ hanging points and the speed of
leaders’ hanging points. The final error tends to be 0.

Figure 7. Errors between the Speed of Three Followers’ Hanging Points and the Speed of Leaders’
Hanging Points.
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Figure 8 shows the errors between the displacement of three followers’ hanging points and that
of leaders’ hanging points. The final error tends to be 0.

Figure 8. Errors between the displacement of three followers’ hanging points and that of Leaders’
hanging points.

Figure 9 shows the displacement of three followers’ hanging points. Eventually followers and
leaders’ motion synchronization.

Figure 9. Displacement of Three Followers’ Hanging Points.

6. Conclusions

In this paper, the novel adaptive dynamic quantizer combines the logarithmic quantizer and the
uniform quantizer by introducing dynamic gain parameters. Under the same initial conditions, the
quantization error of the newly proposed adaptive dynamic quantizer is less than or equal to 0.12,
and the quantization error of the dynamic uniform quantizer is less than or equal to 0.42. From the
above quantitative results, we get that the quantization error of the newly proposed adaptive dynamic
quantizer is significantly smaller than the dynamic uniform quantizer. The final simulation proves
that we solve the problem of leader-following consensus of second-order multi-agent systems after the
follower input is quantized by the newly proposed adaptive dynamic quantizer.
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Appendix A

Appendix A.1. Proof of Identity (7)

When k = 1.
|u| < uth

|∆qχ| = |qχ(|u|)− |u|| ≤ δ|u|+ b (A1)

where u is input, 0 < δ < 1, b is a constant, when u = d
1+δ , we get |∆qχ| = d

1+δ .

b =
d(1− δ)

1 + δ
≤ d(1− δ) (A2)

The following inequalities are obtained by introducing (A2) into (A1).

|∆qχ| ≤ δ|u|+ d(1− δ) (A3)

uth ≤ |u| ≤ M

|∆qχ| = |qχ(|u|)− |u||

≤ (
|u|
v

+
1
2
)v− |u| (A4)

=
1
2

v

When we bring in the dynamic parameter k, the error of the new dynamic quantizer is as follows.
|u| < kuth
According to (6) and (A3), we get

|∆qχ| = |kqχ(
|u|
k
)− |u||

= |kqχ(
|u|
k
)− k

|u|
k
| (A5)

= k|∆qx(
|u|
k
)| ≤ k(δ

|u|
k

+ d(1− δ))

kuth ≤ |u| ≤ kM
According to (6) and (A4), we get

|∆qχ| = |kqχ(
|u|
k
)− |u||

≤ (
|u|
kv

+
1
2
)kv− |u| (A6)

=
1
2

kv

Appendix A.2. The Solution Process of T+

To solve the pseudo inverse of T matrix, T is divided into the following forms of BC multiplication.

T = BC (A7)

The actual values of B and C matrices are as follows.
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B =


1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1



C =


−1 1 · · · 0
0 −1 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 1


where B ∈ RN×N and C ∈ RN×N , according to the solution formula of generalized inverse matrix,
T+ is transformed into the following form.

T+ = CH(CCH)−1(BH B)−1BH (A8)
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