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Abstract: Non-destructive testing (NDT) plays a crucial role in large scale industrial production such
as in the nuclear industry and bridge structures where even a small crack can lead to severe accidents.
The pulsed eddy current infrared thermography testing method, as a classic non-destructive testing
technology, is proposed to detect cracks in the presence of excitation sources that cause temperature
changes in the vicinity of defects, which is higher than normal area. However, in the vicinity of the
excitation sources, the temperature is higher than normal even if there is no defect. Traditional infrared
image enhancing algorithms do not work efficiently when processing infrared images because the
colors in the images represent the temperature. To address this, a novel algorithm is proposed in this
paper. A weighted estimation algorithm is proposed because each pixel value has a strong relationship
with its neighboring pixels. The value of each pixel is determined by calculating the values of its
neighboring pixels with a specific step-size and the correlation coefficients between them. These
coefficients are obtained by calculating the differences between the pixels. The experimental results
indicated that the outline of the welding defect became significantly clearer after being processed
using the proposed algorithm, which can eliminate the errors caused by the excitation source.

Keywords: non-destructive testing evaluation; infrared thermography testing; defect detection;
image enhancement

1. Introduction

Defects detection such as in bridges and nuclear structures testing, especially the small and
surface/subsurface cracks detection, is the main target of non-destructive testing (NDT) [1–3].
These kinds of defects such as welding defect, which can cause severe accidents in large scale
industrial production and transportation, have been studied for many years [4]. The application of
new materials for industrial processes make it difficult to detect defects using traditional NDT methods
such as eddy current testing (ECT) technology. For instance, with the application of new materials in
modern aircraft manufacturing, composites are widely used to manufacture the key components of the
aircraft. As a consequence, infrared thermography testing which is an important branch of NDT [5–7],
is gaining attention as an efficient method for defect detection in new materials [8–10]. Compared to
other NDT technologies, infrared thermography testing has significant advantages. It can be used
to detect defects for various materials and geometries [11]. It can also be used for the detection and
location of wielding defects by collecting and processing infrared images [12–15].

Infrared thermography testing technology produces images that show the temperature distribution
of the defects and the background [16].

The images are processed to collect as much information as possible to reconstruct the defects.
Many researchers have done considerable amounts of work on the processing of infrared images [17,18].
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The image processing approach can be classified into two categories namely spatial and frequency
domain methods.

In spatial domain infrared image processing methods, the pixels of the image are manipulated
directly. This is done by performing mathematical operations on each pixel and the surrounding pixels
to obtain the gray value of the pixel. Common spatial domain image processing methods utilize sharp
and smooth filters [19–21]. The fundamental purpose of the spatial domain processing method is to
distinguish the defects from the background.

The frequency domain method transforms the image into frequency domain using a frequency
transform methods such as the Fourier transform (FT) or wavelet transform (WT) [22]. The first step of
the frequency domain image processing method is to convert the image into the frequency domain,
after which the signal in the frequency domain is filtered. The frequency domain method yields low
and high frequencies, which can be distinguished by a frequency transform of the infrared image.
The low and the high frequency components are enhanced and suppressed respectively, such that the
information of the defects in the image is made clearer.

However, most of the image processing methods only focus on the image itself, ignoring the
significant differences between infrared and common images. In particular, infrared images do not
show the actual scene being imaged. Instead, they show the distribution of temperature, which is
influenced by excitation sources. In this paper, a method for enhancing infrared images is proposed.
This method can eliminate the influence of the excitation source, and yield an infrared image with a
clearer defect profile.

The essence of infrared thermography non-destructive testing technology is to obtain the
temperature by measuring the amount of infrared radiation from the surface of an object. The common
excitation sources of infrared thermography testing can be classified into three types: optical,
electromagnetic, and mechanical excitation sources. In electromagnetic excitation sources, eddy
current pulsed thermography (ECPT) is widely used as it can uniformly generate sufficient heat in a
short time, and the heat it provides is generated from the eddy current induced from the excitation
source. This allows the object to be heated evenly and makes the outline of the defect in the infrared
image clearer [23].

The operating principle of eddy current pulsed thermography can be explained as follows.
A high-frequency alternating current is applied to the excitation coil, which induces an eddy current
on the surface and inside the conductive object. The inducted eddy current flows in the conductive
object. The conduction of the eddy current is influenced by the size, shape, and position of the defect,
as the eddy current is forced to flow around the defect [24].

Figure 1 shows the spreading process of the eddy current in an object containing a defect.
The distribution of the eddy current is influenced by the defect. The eddy current is much denser the
edge of the defect than it is in other regions without defects.
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The distribution of heat generated according to Joule’s Law is uniform, because the distribution
of eddy current is uniform. Joule’s law is as follows:

Q =
1
σ
|J|2t, (1)
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where σ is the electrical conductivity of the object and J is the eddy current density, t. It is known from
Joule’s Law that the heat generated increases as the eddy current density increases.

An infrared thermal imager can detect and record thermal radiation on the surface and display it
in the form of a temperature value in the infrared image. Figure 2 shows a schematic of the operating
principle of the infrared thermal imager.
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Figure 2. Operating principle of infrared thermal imager.

The different colors in the infrared image show the different temperatures on the surface of the
object. A brighter region in the infrared image corresponds to a higher temperature on the surface of
the detected object. The presence of an excitation source causes the infrared image collected in the
experiment to differ from an image obtained under ideal conditions. However, most researchers have
ignored the influence of the excitation source. An excitation source has a significant influence on an
infrared image. The temperature of the surface in the presence of an excitation source is significantly
higher than that of the surface far from the excitation source. We can find that there is a huge part whose
size and shape is similar to the excitation source different from the background in the infrared image.
Typically, the region influenced by the excitation source appears brighter in the infrared image, which
means that the temperature is higher than the background without a defect underneath. If the defect is
directly under the location of the excitation source on the surface, it is difficult to distinguish the defect.
The area in the white box in Figure 3 is directly under the excitation source coil. There is a defect under
the surface in the left box containing brighter colors. However, it is difficult to determine whether
there is a defect inside the area in the right box, because its color is too similar to the background.
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Figure 4. Meshed infrared image.

The temperature in the area directly beneath the excitation source was higher than that in other
areas, causing a temperature swell to appear. The highest swell was caused by the defect in the left box
in Figure 3. However, the swell caused by the defect in the right box in Figure 3 is not as clear because
the excitation source is too large.

To eliminate the influence of the excitation source and make the defect profile clearer in the
infrared image, several processing operations are proposed in this paper.

Several operations were applied to the pixels in the infrared image. We considered the value of a
target pixel in the infrared image to be influenced by the neighboring pixels. The neighboring eight
pixels were chosen to obtain the value of the target pixel.

2. Experiment Setup

In the infrared thermal imaging experiment, the specimen was heated to create different thermal
distributions in the cracked and undamaged areas. A pulsed eddy current was applied to heat the
material from the inside. In this way, the cracked area in the specimen produced considerably more
heat than other areas. Generally, cracks distributed at different depths can be detected by NDT methods.
The heat information at different depths depends on the rich frequency components during the pulsed
eddy current excitation. Deep cracks could not be detected using infrared thermal imaging testing,
because the heat transfer distribution became uniform over time as the heat was transferred from
deeper regions to the surface. The experimental setup is shown in Figure 5.
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Figure 5. Experimental setup.

Figure 5 shows that the excitation coil was restricted by the excitation controller. To detect deep
cracks, the period of the square wave signal could be varied by the excitation controller. The specimen
used in the experiment was a ferromagnetic material, and the cracks in it were artificial defects with
depths of 0.1, 0.8, and 3 mm and width of 0.5 mm. The thermal imager and excitation controller could
be simultaneously controlled by the computer (PC), where a 100 ms heating duration is selected for
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inspection. This heating time is long enough to elicit an observable heat pattern. The excitation coil is
60 mm width placed above the specimen, and the distance between the thermal imager and specimen
is about 600 mm. The signal flow chart in the experiment is shown in Figure 6.
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3. Proposed Algorithm

The coordinate of the selected pixel is (i, j). The pixel value is denoted as F(i, j). The values
of the neighboring eight pixels with the specified step-sizes are as follows: F(i − s, j − s), F(i − s, j),
F(i− s, j + s), F(i, j− s), F(i, j + s), F(i + s, j− s), F(i + s, j), and F(i + s, j + s), which can be expressed
in matrix form as follows:

P =



F(i− s, j− s);
F(i− s, j);
F(i− s, j + s);
F(i, j− s);
F(i, j + s);
F(i + s, j− s);
F(i + s, j);
F(i + s, j + s);


, (2)

The model of the pixels in the infrared image is shown in Figure 7. The pixel value of a selected
pixel, F(i,j) (yellow box in Figure 7), is considered to be related to the neighboring eight pixels, whose
step-sizes are 2 (green boxes in Figure 7). For convenience, the neighboring pixels are expressed by ai,
arranged in clockwise order from the top left corner.
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To find the relationships between F(i, j) and the neighboring pixels, we subtract the values of
neighboring pixels from the value of F(i, j) and arrange them in a column matrix, L, as follows:

L =



X(i, j) − a1

X(i, j) − a2

X(i, j) − a3

X(i, j) − a4

X(i, j) − a5

X(i, j) − a6

X(i, j) − a7

X(i, j) − a8


, (3)

The differences between F(i, j) and the neighboring pixels shows the correlations between them.
The correlation matrix, R, representing the correlation between the neighboring pixels is obtained from
the difference matrix, L, as follows:

R = L× LT, (4)

The differences between F(i, j) and the neighboring pixels are denoted as ∆1–∆8. After calculating
the correlation between F(i, j) and the neighboring pixels, the value of F(i, j) is calculated as follows:

F(i, j) =

√√√√ 8∑
i=1

8∑
j=1

∆i∆ jaia j, (5)

Equation (5) can be written as follows:

F(i, j) =
√

PT ×R× P, (6)

The value of F(i, j) obtained from the process above is not the exact value, as the sum of the
correlation coefficients is not equal to 1. Thus, to obtain the real value of F(i, j), the value above must
be normalized as follows:

F(i, j) =
F(i, j)

(
n∑

i=1
∆i)

2 , (7)

The infrared image can finally be obtained by calculating the value of every pixel using the method
presented above.

4. Results and Discussion

The infrared image analyzed is shown in Figure 3. The image was collected with the excitation
source directly above the surface and two defects under it. The defect on the right side of the image is
not clear.

By verifying the value of the step-size, we determined that the method was most efficient when
the step-size was 8. Figure 8 shows the result when the step-size was 8. Compared with the initial
infrared image, it is evident that the swell caused by the excitation source was eliminated.

Figure 9 shows the contrast between the processed infrared image and the initial image.
The infrared image after processing was significantly clearer than the initial image. The bright
area influenced by the excitation source was eliminated in the processed infrared image. Furthermore,
the bright area in the right box was caused by the defect inside the object became clearer.
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Figure 9. Comparison of initial and processed images: (a) Initial infrared image; (b) Infrared image
after processing.

The swell in the infrared image caused by the excitation source was eliminated by using the
algorithm provided in this paper. Furthermore, the outlines of the defects were made more distinct.
The method presented in this paper improved the defect detection accuracy by enhancing the two crack
images, and most importantly, it reduced the background noise which could increase the credibility of
crack estimation compared with the original detected infrared image.

It should be noted that this algorithm is designed to reduce the background noise imported
through the temperature of the environment and the excitation. Furthermore, in the pulsed eddy
current infrared imaging test, multiple cracks will influence the distribution of the temperature so that
the low temperature area of a crack will be covered in the background. This is because the thermal
imager should adapt to the temperature in the whole vision area to make sure the image is clear. Thus,
the proposed method is motivated by this problem. From the results, it can be inferred that when
multiple cracks exist in the visible area, this method could reduce the influences produced by the
thermal transforming. At stable temperatures, because the temperature between every two crack is
similar and smooth but the temperature in the crack area is higher than that of the other areas, this
method could be used.

5. Conclusions

A novel algorithm was proposed to enhance the infrared images by performing mathematical
operations using pixel values with a specific step-size for the detection of welding defects. The pixel
value was calculated using the neighboring pixels’ values and the correlation between them.
The relationship between the neighboring pixels was inferred from the differences between the
target and neighboring pixel values. The correlation coefficients between the neighboring pixels were
arranged in a matrix. The elements were multiplied by the corresponding pixel values and were
subsequently summed and normalized, yielding a final pixel value. The method proposed in this paper
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represents each pixel value using the neighboring pixels, eliminating swells in an infrared image due to
an excitation source, which make the detection of defects significantly more difficult. The outline of the
defect was found to be clearer when the processing was performed using the above-mentioned method.
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