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Abstract: Accurate and efficient localization of the optic disk (OD) in retinal images is an essential
process for the diagnosis of retinal diseases, such as diabetic retinopathy, papilledema, and glaucoma,
in automatic retinal analysis systems. This paper presents an effective and robust framework for
automatic detection of the OD. The framework begins with the process of elimination of the pixels
below the average brightness level of the retinal images. Next, a method based on the modified robust
rank order was used for edge detection. Finally, the circular Hough transform (CHT) was performed
on the obtained retinal images for OD localization. Three public datasets were used to evaluate the
performance of the proposed method. The optic disks were successfully located with the success rates
of 100%, 96.92%, and 98.88% for the DRIVE, DIARETDB0, and DIARETDB1 datasets, respectively.

Keywords: optic disk; OD localization; OD detection; statistical edge detection; diabetic retinopathy
detection; modified robust rank order

1. Introduction

Biomedical image analysis has gained more importance and is attracting increasing attention from
researchers. With the development of image analysis techniques, biomedical image analysis facilitates
feature extraction in retinal images and the diagnosis of such retinal diseases as diabetic retinopathy,
papilledema, and glaucoma.

The optic disk (OD) is a bright area on the retina where blood vessels pass through the OD and
which does not carry any light sensors. The diameter of the OD is approximately 80–100 pixels in a
retinal image with an average resolution [1], which is an important indicator for the detection of the
fovea and other retinal anatomic structures [2,3].

The detection of retinal blood vessels provides preliminary knowledge for the classification and
grading of glaucoma and diabetic retinopathy. Other fundus features, such as the fixed distance
between the center of the macula and OD, are also used as an indicator for estimating the region of the
macula [4,5]. The OD is used as a starting point for retinal vessel tracking methods as well [4].

A perusal of the literature shows that the starting point for an operation is always the OD, whether
to detect blood vessels from retinal images, to detect the fovea and other anatomical structures, or to
diagnose a retinal disease. Therefore, localization of the OD is the most basic and preliminary step in
the automatic analysis of retinal images and in the detection of retinal diseases [6].

Anatomical structures on the retina—the optic disk, blood vessels, and fovea/macula regions—are
shown in Figure 1 [7].
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OD in the retinal image, and related to segmentation of the OD region, which is the extraction process 
of the actual region of the OD.  

OD detection is comprised by three categories, which are morphology-based methods, template-
based methods, and deformable model-based methods.  

Morphology-based approaches benefit from brightness and shape properties of the OD. 
Therefore, boundaries of the OD can be detected by utilizing morphological operators. The shape of 
the OD, with some errors, was detected by morphological filtering techniques and the watershed 
transformation algorithm [8].  An adaptive morphological method was proposed to determine the 
OD and OD boundaries (rim) and was applied to the DRIVE and DIARETDB1 public datasets and 
compared with the success rates of other methods [9]. Dai et al. [10] offered a new method for 
automatically segmenting the OD in fundus images based on variational models with multiple 
energies. Firstly, a sparse coding-based method was designed in which the initial boundary curve is 
estimated by the circular Hough transform to determine the OD center. Then, OD segmentation was 
considered as a problem of energy minimization, and a variational model combining the three energy 
terms to reach the limit of the OD curve was proposed.  

Within the second category, template-based approaches are generally interested in the shape of 
the OD, for example, the circular or elliptical shape. A template-matching algorithm was applied to 
OD segmentation in one study [11] . In another study carried out in 2004 [12], principal component 
analysis (PCA) and a modified active shape model (ASM) were used for model-based OD detection. 
The Sobel edge-detection algorithm and Hough transform were used to detect the OD and its center 
[13]. Zou et al. [14] proposed a framework based on the density of the image and the parabolic 
placement of retinal blood vessels in order to obtain the OD position. In cases where the OD location 
cannot be detected by image density, OD localization is obtained with respect to the placement of 
retinal blood vessels. The approximate location of the OD is detected by finding the intersection of 
the thickest veins in the retinal fundus images [15]. Pereira et al. [16] proposed an isotropic diffusion-
based method which uses an ant colony algorithm for OD localization. Kamble et al. [17] used a one-
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1.1. Optic Disk Detection Literature

There have been many studies proposed in the literature related to the detection of the OD. These
studies are mainly related to localization of the OD, which stands for detection of the location of the
OD in the retinal image, and related to segmentation of the OD region, which is the extraction process
of the actual region of the OD.

OD detection is comprised by three categories, which are morphology-based methods,
template-based methods, and deformable model-based methods.

Morphology-based approaches benefit from brightness and shape properties of the OD. Therefore,
boundaries of the OD can be detected by utilizing morphological operators. The shape of the OD, with
some errors, was detected by morphological filtering techniques and the watershed transformation
algorithm [8]. An adaptive morphological method was proposed to determine the OD and OD
boundaries (rim) and was applied to the DRIVE and DIARETDB1 public datasets and compared
with the success rates of other methods [9]. Dai et al. [10] offered a new method for automatically
segmenting the OD in fundus images based on variational models with multiple energies. Firstly, a
sparse coding-based method was designed in which the initial boundary curve is estimated by the
circular Hough transform to determine the OD center. Then, OD segmentation was considered as a
problem of energy minimization, and a variational model combining the three energy terms to reach
the limit of the OD curve was proposed.

Within the second category, template-based approaches are generally interested in the shape of
the OD, for example, the circular or elliptical shape. A template-matching algorithm was applied to OD
segmentation in one study [11]. In another study carried out in 2004 [12], principal component analysis
(PCA) and a modified active shape model (ASM) were used for model-based OD detection. The
Sobel edge-detection algorithm and Hough transform were used to detect the OD and its center [13].
Zou et al. [14] proposed a framework based on the density of the image and the parabolic placement
of retinal blood vessels in order to obtain the OD position. In cases where the OD location cannot be
detected by image density, OD localization is obtained with respect to the placement of retinal blood
vessels. The approximate location of the OD is detected by finding the intersection of the thickest veins
in the retinal fundus images [15]. Pereira et al. [16] proposed an isotropic diffusion-based method
which uses an ant colony algorithm for OD localization. Kamble et al. [17] used a one-dimensional
scanned density profile analysis for rapid and accurate localization of the OD and fovea. The proposed
method effectively uses both time- and frequency-domain information for OD localization with high
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accuracy rates. Sarathi et al. [18] proposed a methodology for localization of the OD center based on the
staining of vessels around the OD. After detection of the center of the OD, an adaptive threshold-based
region growing technique was applied to obtained points.

Regarding the deformable model-based approaches, they exploit the specific characteristics of
the OD. Harangi et al. [19] proposed a model based on the combination of probability models in
order to detect the OD and its boundaries. Furthermore, they increased the accuracy of the method
using axiomatic and Bayesian approximations. Al-Bander et al. [20] designed and trained a deep
multiscale sequential convolutional neural network for simultaneous localization of the OD and fovea.
In this deep learning method where public databases are used, the detection of the OD and fovea
are done accurately and fast. Abed et al. [21] focused on swarm intelligence techniques and also
proposed a novel preprocessing approach called background subtraction-based optic disk detection
(BSODD) for effective and fast OD localization. Five swarm intelligence algorithms were compared,
and according to experimental results, the best performance was obtained with the FireFly algorithm.
Li et al. [22] suggested that learning a series of controlled descent directions between the coordinates
of the OD limit and the surrounding visual appearance for their OD segmentation would improve the
performance of the OD segmentation, and evaluated the method for the six datasets. A supervised
gradient vector flow snake (SGVF snake) method was used for OD localization by Hsiao et al. [23].
The results show that the SGVF snake algorithm is capable of OD localization with high success rates.

1.2. Proposed Method

Firstly, the green channel extraction was performed on the retinal image in order to effectively
detect OD location in the proposed method. The reason of using the green channel for extraction is that
the channel contains the best contrast value between the background and the anatomical structures
and gives more information about vessels than other channels [24].

Then, contrast-limited adaptive histogram equalization (CLAHE) was used to increase the clarity
of the images. Based on the rule that the OD region is the brightest region of the retinal image, the
average brightness level of each image was calculated and the pixels below the average value were
eliminated from the image. As is known, there are differences between the brightness of the images due
to the settings of the fundus cameras. Due to the different brightness level of each image, the threshold
value was adjusted dynamically for each image rather than defining a constant threshold value.

Next, a modified robust rank order-based edge-detection method was applied [25], which
has never been implemented in the OD localization problem and shows better performance than
conventional edge-detection methods in noisy images. After obtaining the edges of the image, the
circular Hough transform was performed due to the fact that the OD has a circular structure.

Figure 2 illustrates the steps of the proposed method.
The main issues addressed in the proposed procedure are:
(a) The average brightness level of each image was calculated, and the pixels below the average

value were eliminated from the image. Due to the different brightness levels of each image, the
threshold value was adjusted dynamically.

(b) Dust accumulates in the lens of the fundus camera due to lack of maintenance, and this
causes noise in the retinal images and reduces the performance of OD localization methods. Therefore,
a statistical edge-detection framework was applied to retinal images, and successful results were
obtained in this work. The edge detection performance of the applied method has been proven to be
higher in noisy images than other conventional edge-detection methods [25,26].

This paper is organized as follows: In Section 2, the methods and algorithms for OD detection are
presented in detail. Experimental results are explained in Section 3. Section 3 also gives a discussion
about the experimental results. Finally, a conclusion is given in Section 4.
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Figure 2. Main steps of the proposed method. CLAHE: contrast-limited adaptive histogram equalization.

2. Materials and Methods

In this paper, a new procedure is presented by which to detect the OD properly. The proposed
algorithm consists of 4 steps: (1) increasing the significance of the image in a preprocessing step,
(2) eliminating the pixels below the average brightness level by subtracting by the average brightness
level of the image, (3) implementing the modified robust rank order method for edge detection, and
(4) detection of the circular OD via circular Hough transform.

In the first phase, green channel extraction was performed on the retinal images to enhance
the image contrast. Then, the clarity of the image was increased by using contrast-limited adaptive
histogram equalization (CLAHE).

In the second phase, the average brightness level of each image was calculated. The pixels that
were below the average brightness level of the image were eliminated because the OD region is the
brightest region of the retinal image [14]. Furthermore, due to the specific brightness level of each
image, a dynamic calculation of the average is more accurate for OD detection.

In the third phase of the algorithm, the modified robust rank order-based edge-detection algorithm
was applied to the image, in which the non-bright pixels were eliminated.

In the last phase, the circular Hough transform was applied to the edge-extracted image to locate
the OD. Due to the fact that the OD has a circular structure and the OD diameter is about 80–100 pixels
in each retinal image [1], the circular Hough transform is easy to implement.

2.1. Retinal Datasets

The proposed procedure was tested on fundus images obtained from three widespread
public datasets.

1. The DRIVE (Digital Retinal Images for Vessel Extraction) dataset [27] was established to allow
comparative studies on the segmentation of blood vessels in retinal images. In total, 40 retinal images
from the DRIVE dataset, which were obtained from a diabetic retinopathy screening program in the
Netherlands, were randomly selected from 400 people between 25 and 90 years of age. The images
were captured using a Canon CR5 non-mydriatic 3CCD with a forty-five-degree field of view (FOV)
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and saved in JPEG format. The size of each image was (584 × 565) pixels. Diabetic retinopathy was
detected in 7 images, while 33 images showed no signs of the disease.

2. The DIARETDB0 (Standard Diabetic Retinopathy Database Calibration level 0) dataset [28]
was established to evaluate the success of automatic diabetic retinopathy detection and compare the
performance of the developed methods. The dataset consists of 130 colored fundus images, of which
20 are normal and 110 include symptoms of diabetic retinopathy. The fundus images were captured
with a fifty-degree field of view (FOV). The dataset was titled as “calibration level 0 fundus images”,
and the size of each image was (1152 × 1500) pixels.

3. The DIARETDB1 (Standard Diabetic Retinopathy Database Calibration level 1) dataset [29] is a
public dataset for evaluating the performance of automatic diabetic retinopathy detection methods.
The dataset consists of 89 colored fundus images, of which 84 include mild non-proliferative signs
(Ma) of the diabetic retinopathy and the remaining 5 fundus images contain no sign of the disease.
The fundus images were captured with a Nikon F5 fundus camera and with a fifty-degree field of
view. The dataset was titled as “calibration level 1 fundus images”, and the size of each image was
(1152 × 1500) pixels.

The detailed specifications for the DRIVE, DIARETDB0, and DIARETDB1 datasets are given in
Table 1.

Table 1. The specifications of the public datasets used in this work.

Database Normal Images Diseased Images Total

DRIVE 33 7 40
DIARETDB0 20 110 130
DIARETDB1 5 84 89

2.2. Preprocessing for Image Contrast Enhancement

The preprocessing step has a vital importance for contrast enhancement and for easier
OD localization.

2.2.1. Green Channel Extraction

A color retinal fundus image consists of a combination of red, green, and blue color channels
(RGB). Among these channels, the green channel is more successful in separating the OD and blood
vessels at the forefront of the image from the background of the image, giving the highest contrast
values [30,31]. For this reason, the preliminary processing step of the images was started with green
channel extraction. The green channel extractions of different retinal images are shown in Figure 3 [32].

2.2.2. Contrast-Limited Adaptive Histogram Equalization (CLAHE)

The basis of contrast-limited adaptive histogram equalization, which is frequently used for image
enhancement, is based on histogram equalization. In histogram equalization, image quality can be
improved by expanding the dynamic range of density with the entire image histogram. In histogram
equalization, the intensity distribution of the image is normalized in order to obtain an output image
with a uniform density distribution. Adaptive histogram equalization is also a modified histogram
equalization process. The main idea of CLAHE is that the image is divided into rectangular regions in
the form of a grid and the standard histogram equalization is applied to each region. After dividing
the image into subregions and applying histogram equalization to each of them, the subregions are
combined with the bilinear interpolation method to obtain an optimized whole image. However,
adaptive histogram equalization shows poor performance when an image has various types of noise.
In order to prevent the noise problem, it is necessary to limit contrast enhancement in homogeneous
regions. Contrast-limited adaptive histogram equalization was developed to overcome the difficulty. In
this method, each pixel is mapped using its four nearest neighbors. When the subregions are combined
with bilinear interpolation, the regions are divided into groups according to their neighborhood.
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This method is formulated based on the fact that the image is divided into several regions of nearly
equal size that do not overlap with each other. In the literature, contrast-limited adaptive histogram
equalization has given successful results on medical images [33–35].Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 17 

Retinal Image Green Channel Image
Figure 3. Retinal fundus images and their green channel images. 

2.2.2. Contrast-Limited Adaptive Histogram Equalization (CLAHE)

The basis of contrast-limited adaptive histogram equalization, which is frequently used for 
image enhancement, is based on histogram equalization. In histogram equalization, image quality
can be improved by expanding the dynamic range of density with the entire image histogram. In 
histogram equalization, the intensity distribution of the image is normalized in order to obtain an 
output image with a uniform density distribution. Adaptive histogram equalization is also a modified 
histogram equalization process. The main idea of CLAHE is that the image is divided into rectangular 
regions in the form of a grid and the standard histogram equalization is applied to each region. After 
dividing the image into subregions and applying histogram equalization to each of them, the 
subregions are combined with the bilinear interpolation method to obtain an optimized whole image. 
However, adaptive histogram equalization shows poor performance when an image has various 
types of noise. In order to prevent the noise problem, it is necessary to limit contrast enhancement in
homogeneous regions. Contrast-limited adaptive histogram equalization was developed to 
overcome the difficulty. In this method, each pixel is mapped using its four nearest neighbors. When 
the subregions are combined with bilinear interpolation, the regions are divided into groups 
according to their neighborhood. This method is formulated based on the fact that the image is 
divided into several regions of nearly equal size that do not overlap with each other. In the literature, 

Figure 3. Retinal fundus images and their green channel images.

In Figure 4, we can see the original color retinal image and the enhanced fundus image, which
was obtained by using CLAHE with a healthy image and a diseased image.
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2.3. Calculation of the Average Brightness Level of Images

The region of the OD has the maximum intensity of retinal images, and thus it is time-consuming
to look over dark areas. For this reason, the average brightness level was calculated in order to reduce
calculation time. The average brightness value was considered as a threshold and the pixels below the
threshold value were eliminated from the image. The threshold value and the number of eliminated
pixels are specific for each fundus image.

The calculation of the average brightness level is given by the following equation:

Threshold Level =
1

MxN

M

∑
i=0

N

∑
j=0

Img(i, j) (1)

M and N represent the number of rows and columns of an image, respectively. In order to
calculate the average color value, the grayscale color values, which take a range of possible values
from 0 to 255, of all pixels are added and divided by the total number of pixels in the image (M × N).
A block diagram for this calculation is given in Figure 5.

Elimination of the pixels below the specified threshold value from the retinal image was applied
with the formula:

Img(i, j) =

{
255, i f (Img(i, j) < Threshold Level

Img(i, j), otherwise
(2)
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An image resulting from the elimination of the pixels below the threshold from the retinal image
is shown in Figure 6.
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2.4. Implementing the Modified Robust Rank Order Test-Based Edge-Detection Algorithm

A subimage of size r × r is chosen for each pixel. r should be odd and selected properly according
to the image and its size. In this study, r is equal to 5, as shown in Figure 7. If a r value smaller than 5



Appl. Sci. 2019, 9, 350 9 of 16

is chosen, the subimage would be sensitive to noise. Conversely, a larger r value increases the time
complexity and edge variations. Two different regions are considered as a set of N = m + n, excluding
the target pixels, which are divided into X = (X1, X2, . . . , XM) and Y = (Y1, Y2, . . . , YN). Xi and Yi are
pixels in two different groups as shown in Figure 7, where white pixels represent the X region and
blue pixels represent the Y region in the mask. The model is built as:

Ai =

{
XI , XI ∈ X
YI , YI ∈ Y

}
(3)

The null hypothesis and alternative hypothesis are set as:

H↑0 : X ≥ Y (4)

H↑1 : X < Y (5)

The term “null hypothesis” was first defined and used by Ronald Fisher, a British-born statistician
and geneticist [36]. A rank-order based statistical test is used as a good alternative to the Wilcoxon
test. Figure 7 shows 8 distinct edge scenarios representing 2 different colors. The test to be performed
will be applied for each scenario and will be considered as the edge for the evaluated pixel if any of
the scenarios are appropriate for the criteria selected for edge detection. From this point on, it will
be explained through scenario (a) shown in Figure 7, and the same procedures are performed for the
other scenarios.Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 17 
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Figure 7. Eight different edge scenarios, where white pixels represent the X region and blue pixels
represent the Y region in the mask.

To evaluate H0 against H1, Ai is obtained as follows: For each Xi , ∈ X the sum of the difference
of lower-valued Yi pixels in Y are calculated. The obtained number represents Xi and is denoted by
U(Y, Xi). Then, the average of the U (Y, Xi) is calculated by

U(Y, X) =
m

∑
i=1

U(Y, Xi)/12 (6)

This calculation is also done for the Y pixels Yi, Yi , ∈ Y. U(X, Yi) is calculated with the sum of
the difference of lower-valued Xi pixels in X. Then, the average of U(Y, Xi) is calculated by

U(X, Y) =
m

∑
i=1

U(X, Yi)/12 (7)
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Next, the homogeneity index is defined as:

VX =
m

∑
i=1

[U(Y, XI)−U(Y, X)]2 (8)

VY=
m

∑
i=1

[U(X, YI)−U(X, Y)]2 (9)

After obtaining test parameters and homogeneity index, the test statistic is built as:

U =

∣∣∣∣∣ m ·U(Y, X)− n ·U(X, Y)
2
√

VX + VY + U(Y, X) ·U(X, Y)

∣∣∣∣∣ (10)

Uselected = max(Ui) i ≤ 0 (11)

The U value is calculated eight times for eight edge scenarios. If any U value is higher than the
threshold u∝, H0 is rejected and the pixel is labeled as an edge pixel.

The result of applying the modified robust rank order edge-detection algorithm is shown in
Figure 8.Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 17 
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2.5. Circular Hough Transform

The OD center can be detected by the circular Hough transform for retinal images. Various types
of circular Hough transform have been proposed, and recently, the latest circular Hough transform
has been proposed by Duda et al. [37]. The Hough transformation basically works with the logic of
voting for the possible geometric shape of the edges [38]. The Hough transform can be defined as
the transformation of a point in Cartesian space into the parameter space defined by the shape of the
object of interest. When circular forms are concerned, the following formula for the conversion of
equations is taken into consideration:

r2 = (x− a)2 + (y− b)2 (12)

In Equation (12), r represents the radius and a and b represent the center of the circle and the
abscissa, respectively [39].

A result of the circular Hough transform applied to the retinal image after the edge-detection
process is given in Figure 9.
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3. Experimental Results and Discussion

In this work, a method developed for OD localization is proposed. The method was tested on the
DRIVE, DIARETDB0, and DIARETDB1 public datasets. The detailed specifications of these databases
are given in Table 1.

Proposed methods and all experiments and observations were carried out by the following
specifications of computer and programs:

• Operating system: Windows 10, 64-bit
• Processor: Intel(R) Core(TM) i5-2430 CPU @2.40 GHz
• Memory: 8.00 GB RAM
• Computing environment: MATLAB R2016a

The OD center localization performance is evaluated by comparing it with ground-truth OD
centers. According to Hoover and Goldbaum’s study [40], a distance of up to 60 pixels between the
automatically detected OD center and manually detected OD center is acceptable. The proposed
method for OD localization was measured and evaluated in terms of the accuracy rate and mean
absolute distance of the algorithm. The accuracy rate is calculated separately for each dataset. The mean
absolute distance is defined as the difference in pixels between the automatically detected and
manually detected OD centers. The accuracy rate and mean absolute distance are calculated by
the following equations:

Accuracy =
C0

N0
(13)

N0 represents the total number of retinal images present in a database. C0 indicates the number
of images in which OD centers are correctly detected.

Distance =
1

N0

N0

∑
i=1

(|Mci(x)− Aci(x)|) + (|Mci(y)− Aci(y)|)
2

(14)

The distance is the difference between the automatically detected and the manually detected
OD centers. Mc(x, y) and Ac(x, y) are the manually and automatically calculated OD center points,
respectively [41].

The accuracy of the proposed method was 100%, 96.92%, and 98.88% for the DRIVE, DIARETDB0,
and DIARETDB1 datasets, respectively. The average absolute distance value was approximately
10 pixels for the DRIVE dataset, about 10 pixels for the DIARETDB0, and about 12 pixels for the
DIARETDB1 dataset.

A comparative analysis of the results and average absolute distance values of the proposed
method and the state-of-the-art models in the literature is given in Table 2.

Table 2. A comparative analysis of the results of the proposed method and other methods in
the literature.

Method Dataset Number of
Images

Correct
Classification

Accuracy
(%) Distance

Pereira et al. [16]
DRIVE 40 40 100 -

DIARETDB1 89 83 93.25 -

Ahmad and Amin [42]
DRIVE 40 39 97.5 -

DIARETDB1 89 86 96.5 -

Youssif et al. [43] DRIVE 40 40 100 17

Rangayyan et al. [44] DRIVE 40 40 100 23.2

Dehghani et al. [45] DRIVE 40 40 100 15.9
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Table 2. Cont.

Method Dataset Number of
Images

Correct
Classification

Accuracy
(%) Distance

Zhu et al. [13] DRIVE 40 36 90 18

Bharkad [41]
DRIVE 40 40 100 9.12

DIARETDB0 130 126 96.92 11.83

DIARETDB1 89 88 98.88 13.00

Mahfouz and Fahmy
[46]

DRIVE 40 40 100 -

DIARETDB0 130 128 98.5 -

DIARETDB1 89 87 97.8 -

Sinha and Babu [47]
DRIVE 40 38 95 -

DIARETDB0 130 126 96.9 -

DIARETDB1 89 89 100 -

Proposed Method
DRIVE 40 40 100 10.07

DIARETDB0 130 126 96.92 10.54

DIARETDB1 89 88 98.88 12.36

Our method was compared with nine studies in the literature, and the results are shown in Table 2.
For the DRIVE dataset, it is seen that the rate of correctly detecting the OD is 100% in all other studies
except three. Only one image could not be identified correctly in the study conducted by Ahmad and
Amin [42]; also, Zhu et al. [13] failed to identify four images. The other work that could not detect all
the images in the DRIVE dataset is the study of Sinha and Babu [47]. The OD regions of all the images
in the DRIVE dataset have been correctly identified by the proposed method.

For the DIARETDB0 dataset, OD localization performance was 96.92% in the study of Bharkad [41].
Mahfouz and Fahmy [46] achieved 98.5% accuracy success in the same dataset. Sinha and Babu [47]
performed OD localization at a success rate of 96.9%. In the proposed approach, the OD location in
126 of the 130 images was correctly identified.

For the DIARETDB1 dataset, Sinha and Babu [47] successfully performed the OD localization in
all retinal images; the proposed method and the study by Bharkad [41] followed the study of Sinha
and Babu [47] with a 98.88% success rate. In the proposed study, only one image was not detected
correctly, and the remaining 88 images were successfully detected.

The average absolute distance values in the proposed study were calculated as 10.07, 10.54, and
12.36 for the DRIVE, DIARETDB0, and DIARETDB1 datasets, respectively. The proposed method
was observed to be superior to other studies discussed in the literature for the DIARETDB0 and
DIARETDB1 datasets. For the DRIVE dataset, the proposed method was ranked second after the
method proposed by Bharkad, according to the average absolute distance measure [41].

It has been observed that the proposed method can detect the OD from retinal images effectively
and successfully in spite of all lesions and diseases. When the images that caused the failure of the
method in OD localization were examined, it was observed that the OD regions were not significantly
bright compared to other regions. The reason for this problem is that the proposed method is based on
the hypothesis that the OD region is the brightest region of the retinal images.

4. Conclusions

In this study, a methodology for the automatic localization of the OD based on statistical edge
detection and circular Hough transform was described. After the standard preprocessing steps, the
average brightness value for each image was calculated, and the pixels below the mean value were
eliminated from the image with a dynamically determined threshold. Then, the statistical edge
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detection framework was applied to retinal images in order to avoid performance degradation due
to noise. Optic disk localization was performed by applying the circular Hough transform to the
images, which has previously been used in the edge-extraction process. It has been proved in previous
studies [25,26] that the performance of the robust rank order-based statistical edge detection method
is the most robust to variations in noise and performs better in all noise distributions tested than
the conventional edge detection methods. Therefore, compared to the approaches proposed by the
researchers given in Table 2, the proposed procedure for OD detection has the advantage that it is
applicable to images contaminated with noise.

The results show that the proposed method is able to locate the OD accurately in three public
databases. According to experiments, the accuracy of the method was 100%, 96.92%, and 98.88% for
the DRIVE, DIARETDB0, and DIARETDB1 databases, respectively.

As a limitation of the proposed method, in some cases, such as when the OD region is not
significantly bright compared to other regions, the circular Hough transform may be found to be
unsuccessful in detecting the OD.

In our future studies, it is planned to overcome this limitation by using a hybrid framework in
which heuristic methods are used.
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