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Abstract: Alongside its other favorable properties, the large refraction nonlinearity of graphene-related
material makes it ideal for use in optoelectronics applications. Numerous experimental studies about
nonlinear optical refraction have been conducted, but theoretical verification is lacking. In this paper
the nonlinear refractive index for rectangular graphene quantum dots (RGQDs) was calculated using
the relationship between nonlinear refractive index and the third-order nonlinear optical susceptibility.
The third-order nonlinear optical susceptibility for third harmonic generation was derived employing
the electronic states obtained from the Dirac equation around K point in RGQDs under hard wall
boundary conditions. Results revealed that the calculated nonlinear refractive index, n2, was in the
magnitude of 10−14 m2/W in the visible region, which is nearly five orders larger than conventional
semiconductor quantum dots, while in the infrared region the nonlinear refractive index reached
up to the magnitude of 10−11 m2/W for M = 3M0 sized RGQDs where the resonance enhancement
occurred. The nonlinear refractive index could be tuned both by the edges and sizes.
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1. Introduction

Graphene is comprised of a plane of carbon atoms arranged in honeycomb lattices, and
has attracted intense attention due to its extraordinary physical and chemical properties [1–3].
The planar geometry of graphene is advantageous to the tailoring of various nanostructures, such as
one-dimensional nanoribbons [4] and zero-dimensional quantum dots [5] with desired size, edge,
and shape [6–8]. Due to the quantum size and edge effect, the tunable electronic and optical
properties make the graphene-based nanostructures promising candidates for building blocks of
future opto-electronic devices [9,10]. To this end, the integrability of the graphene quantum dot
combined with its large refraction nonlinearity makes it ideal for use in several applications in optical
communication and signal-processing [11].

Numerous experimental works have been conducted on the nonlinear refractive index in the
graphene and related nanostructures. H. Zhang et al. showed that graphene possesses the giant
nonlinear refractive index of n2 ' 10−7 cm2 W−1, almost nine orders of magnitude larger than
bulk dielectrics, using the Z-scan technique on loosely stacked few-layer graphene [12]. The spatial
self-phase modulation was observed directly by G. Wang et al. when a focused He–Ne laser beam at
633 nm went through liquid-phase-exfoliated graphene dispersions [13]. They estimated the relative
change of effective nonlinear refractive index by tuning the incident intensity or the temperature of the
dispersions. By means of the ultrafast optical Kerr effect method coupled to optical heterodyne
detection (OHD-OKE), E. Dremetsika’s group characterized the third-order nonlinear response

Appl. Sci. 2019, 9, 325; doi:10.3390/app9020325 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/9/2/325?type=check_update&version=1
http://dx.doi.org/10.3390/app9020325
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 325 2 of 9

of graphene and they estimated a negative nonlinear refractive index for monolayer graphene
(i.e., n2 ' −1.1 × 10−13 m2/W) [14].

To our knowledge, there have so far not been any theoretical calculations on the nonlinear
refractive index in graphene and related nanostructures. In our previous work, we explored the
two-photon absorption properties of RGQDs from the second-order perturbation theory with respect
to the electron–photon interaction [15]. In this work, we report a simple theoretical calculation of
the nonlinear refractive index for monolayer graphene with confining boundaries in the orthogonal
directions of zigzag- and armchair-edge, which is an ideal object for us to investigate which edge plays
a more important role in nonlinear refraction. Our derivation originates from the relationship between
nonlinear refractive index n2, and the real part of the third-order nonlinear optical susceptibility χ(3),
which can be derived employing the electronic states obtained from the Dirac equation around the
K point in RGQDs under hard-wall boundary conditions. The results revealed that the nonlinear
refractive index n2 for these sized RGQDs was in the magnitude of 10−14 m2/W in the visible region,
which was nearly five orders larger than conventional semiconductor quantum dots. In the infrared
band (~2500 nm), the nonlinear refractive index n2 was up to 10−11 m2/W. We also found that the
refractive index and the position of the refractive peak could be tuned by the sizes of both edges in
RGQDs, especially the armchair-edge dimension. If we varied the size of the two edges, for non-3M0

sized RGQDs, the increase of the armchair-edge dimension brought a larger increment of refractive
index than that of the zigzag-edge. There was a blue shift for the refractive peak when the size of
zigzag-edge dimension increased while there was a distinct red shift when armchair-edge dimension
increased. For RGQDs with M = 3M0, the peak value of nonlinear refractive index for M = 3M0 was
nearly eight times of the case of M = 3M0 ± 1, because the resonance enhancement of electron transition
occurred within the transitions between (1, n) states. The refractive peak did not move.

2. Theory and Calculation

In a system showing a negligible linear absorption (α0 ≈ 0), the nonlinear refractive index n2

is proportional to the real part of the third-order nonlinear optical susceptibility χ(3) through the
following expression in SI units [16]:

χ
(3)
R = (4/3)n2

0ε0cn2, (1)

where n0, ε0, and c denote, respectively, the linear refractive index of the material, the electric
permittivity of free space, and the speed of light in vacuum. For the third harmonic generation
effect, the resonant third-order susceptibility χ(3)(3ω) is given by [17,18]:

χ(3)(3ω) = ∑ D
ε0

µ03µ32µ21µ10

× 1
(}ω30 − 3}ω− iΓ30)(}ω20 − 2}ω− iΓ20)(}ω10 − }ω− iΓ10)

(2)

where µij the dipole transition matrix element transited from ψj state to ψi state and µij =
〈

ψi

∣∣∣e⇀r ∣∣∣ψj

〉
,

the transition frequency ωij = (Ei − Ej)/}; D is the density of RGQDs, and Γij is the relaxation energy.
From Equations (1) and (2), it is found that the electronic energy states are the key for the

calculation of nonlinear refractive index. We consider an isolated 2D confined graphene nanosheet
with two orthogonal boundaries, which is shown in Figure 1a. The zigzag- and armchair-edge are
referred to as the x- and y-axis, respectively, and thus the length of the edges can be calculated using
the units M and N, respectively, by LZZ = Ma, LAC = (N + 1/3)

√
3a/2, where a = 2.46 Å is the lattice

constant. Within the effective mass approximation, the Dirac equation of the electrons around the
K = (4π/3a, 0) and K’ = (−4π/3a, 0) points in momentum space can be expressed as [19,20]:
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HΨ = }vF
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, (3)

where vF ≈ 1× 106 m/s is the Fermi velocity at the Dirac points [15,21], and kx(y) = −i}∂x(y) is
the small wavevector perturbations from K and K’ points. The electron band structure of the RGQD
is studied by the effective mass model, which is reasonable to adopt since we are discussing the
low-energy carrier states near the K and K’ Dirac points [22,23]. The total wave function Ψ(r) of the
sublattice A and B mixed with wavefunctions of valley K and K’ is written as [23]:{

ΨA(r) = eiK·rψA(r) + eiK′ ·rψ′A(r)
ΨB(r) = eiK·rψB(r) + eiK′ ·rψ′B(r)

. (4)

The corresponding eigenenergy is given as:

E = ±}vF|k| = ±}vF

√
k2

x + k2
y. (5)

As for the RGQD structure mentioned above, the electron obeys the same Dirac equation, but
different boundary conditions for zigzag-edge and armchair-edge [23,24]. For the zigzag edge along
the x axis, the boundary conditions are given as:{

ΨA(y = 0) = 0
ΨB(y = LAC) = 0

, (6)

while for armchair-edge along the y axis, the boundary conditions are given as:{
ΨA(x = 0) = ΨA(x = LZZ) = 0
ΨB(x = 0) = ΨB(x = LZZ) = 0

. (7)

These boundary conditions were successfully used to work out the band structures of the graphene
nanoribbons with different edges and the energy spectrum of RGQDs. They originate from the
requirement that the electron probability amplitude at the hard wall around RGQDs must vanish [20].
Applying the above boundary conditions for a RGQD, we can solve Equation (3), the solution of which
can be expressed as: {

ψA = Zeikx x sin(kyy)
ψ′A = −Ze−ikx x sin(kyy)

, (8)

and {
ψB = Zeikx x sin(θk + kyy)
ψ′B = −Ze−ikx x sin(θk + kyy)

, (9)

where θk = arctan(ky/kx), and Z is the normalization constant determined by the normalization
condition [15]:

Z =
[
2LZZLAC + LZZ sin(2θk)/ky

]−1/2. (10)

It can be seen from Equation (5) that the energy has the same linear dispersion relation as graphene.
The difference of energy dispersions between 2D graphene and RGQDs is that the wave vectors around
the K point are discrete in RGQDs, since they should satisfy the quantized condition [15]:{

(K0 + kx)LZZ = mkπ

θk + kyLAC = nkπ
, (11)
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where mk and nk are integers. So, the energy levels are instead predicted to be discrete for the continuous
energy band. We adopt the symbol (m, n) to present every electronic state, where m and n are
determined by the orders of kx and ky, respectively.

After the obtainment of energy states of RGQDs, we can derive the dipole transition matrix
element, with the assumption that the incident light polarization is along the y direction:

µij =
〈

ψi

∣∣∣e⇀r ∣∣∣ψj

〉
=
∫ LZZ

0

∫ LAC
0 4eZiZj sin[(K0 + kxi)x] sin[(K0 + kxj)x] sin(kyiy) sin(kyjy)ydxdy

+
∫ LZZ

0

∫ LAC
0 4eZiZj sin[(K0 + kxi)x] sin[(K0 + kxj)x] sin(θki + kyiy) sin(θkj + kyjy)ydxdy

= 4eZiZj A1(B1 + B2)

(12)

with
A1 = 1/2LZZδmi ,mj − 1/2LZZδmi ,−mj , (13)

B1 =
L2

AC
2(niπ − θi − njπ + θj)

[sin(niπ − θi − njπ + θj) +
cos(niπ − θi − njπ + θj)− 1

niπ − θi − njπ + θj
]

−
L2

AC
2(niπ − θi + njπ − θj)

[sin(niπ − θi + njπ − θj) +
cos(niπ − θi + njπ − θj)− 1

niπ − θi + njπ − θj
]

(14)

and

B2 =
L2

AC

2(niπ − θi − njπ + θj)
2 [cos(niπ − njπ)− cos(θi − θj)]

−
L2

AC

2(niπ − θi + njπ − θj)
2 [cos(niπ + njπ)− cos(θi + θj)]

(15)

The transitions can only occur when quantum numbers satisfy mi = ±mj.
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Figure 1. (a) Illustration of a monolayer rectangular graphene quantum dot (RGQD). The black and
red circles are two types of carbon atoms, A and B. a and b are unit vectors. (b) The reciprocal lattice.

3. Results and Discussion

Following the analytical expressions derived above, we performed calculations to predict
the nonlinear refractive index for RGQDs associated with intra conduction band transitions near
the K point. In our calculations the following parameters were adopted: D = 3 × 1024 m−3,
and Γij = 10 meV [15]. Firstly, we displayed the energy spectra of electrons and holes as a function
of kx for RGQDs with different sizes in order to discuss how the size and edge influenced the energy
levels. Figure 2a shows the energy levels of RGQDs for M = 17 and M = 20 with fixed N = 20. It could
be seen that when we increased M, that is, the length of the zigzag dimension, the corresponding
allowed value of kx changed and tended to be closer. Additionally, the energy levels moved to the
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lower energy direction. However, the energy level intervals increased slightly, in the magnitude of
10−2 eV. For N = 17 and N = 20 with fixed M = 20 in Figure 2b, kx did not change. The energy levels
also moved to the lower energy direction since ky decreased, except for the lowest energy level in
conduction band which remained the same, since ky = 0 there. So, the density of states increased.
Conversely, where M = 17 and M = 20 with fixed N = 20, the energy level intervals decreased in the
magnitude of 10−1 eV. The above two situations were both M = 3M0 ± 1 (M0 is an integer), in which
the lowest energy was non–zero and the quantum dot was a semiconductor.

Appl. Sci. 2019, 9, x FOR PEER REVIEW  5 of 9 

point. In our calculations the following parameters were adopted: D = 3 × 1024 m−3, and ijΓ  = 10 

meV [15]. Firstly, we displayed the energy spectra of electrons and holes as a function of xk  for 
RGQDs with different sizes in order to discuss how the size and edge influenced the energy levels. 
Figure 2a shows the energy levels of RGQDs for M = 17 and M = 20 with fixed N = 20. It could be 
seen that when we increased M, that is, the length of the zigzag dimension, the corresponding 
allowed value of xk  changed and tended to be closer. Additionally, the energy levels moved to the 
lower energy direction. However, the energy level intervals increased slightly, in the magnitude of 
10−2 eV. For N = 17 and N = 20 with fixed M = 20 in Figure 2b, xk  did not change. The energy levels 

also moved to the lower energy direction since yk  decreased, except for the lowest energy level in 

conduction band which remained the same, since yk  = 0 there. So, the density of states increased. 

Conversely, where M = 17 and M = 20 with fixed N = 20, the energy level intervals decreased in the 
magnitude of 10−1 eV. The above two situations were both M = 3M0 ± 1 (M0 is an integer), in which 
the lowest energy was non–zero and the quantum dot was a semiconductor. 

  
Figure 2. Energy spectra of M = 3M0 ± 1 sized RGQDs as a function of kx. (a) RGQD with the sizes M = 
17, 20, and fixed N = 20; (b) RGQD with the sizes N = 17, 20, and fixed M = 20. 

In the case of M = 3M0, we plotted the energy spectra in Figure 3. It was very different from the 
case of M = 3M0 ± 1. Firstly, the lowest energy of electron was zero, so it was metallic; secondly, the 
(1, n) states, that is, the states where =0xk , did not change once N was fixed even if M varied. For 
these states, ky = 0 or (l − 1/2)π/LAC with l an integer, the neighboring energy difference between (1, n) 
states kept the exact values: the energy difference between the lowest two states was ħvFπ/(2LAC) 
while ħvFπ/LAC for other neighboring states, and so, it provided the possibility for transition 
resonance. 

 

Figure 3. Energy spectra of 3M0 sized RGQDs as a function of kx. 
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M = 17, 20, and fixed N = 20; (b) RGQD with the sizes N = 17, 20, and fixed M = 20.

In the case of M = 3M0, we plotted the energy spectra in Figure 3. It was very different from
the case of M = 3M0 ± 1. Firstly, the lowest energy of electron was zero, so it was metallic; secondly,
the (1, n) states, that is, the states where kx = 0, did not change once N was fixed even if M varied.
For these states, ky = 0 or (l − 1/2)π/LAC with l an integer, the neighboring energy difference between
(1, n) states kept the exact values: the energy difference between the lowest two states was h̄vFπ/(2LAC)
while h̄vFπ/LAC for other neighboring states, and so, it provided the possibility for transition resonance.
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After getting the energy states of RGQDs, we calculated the nonlinear refractive index for RGQDs
with different sizes in order to explore the influence of the size and edge. Figure 4a,b shows the
size-dependent nonlinear refractive index spectra of RGQDs with non-3M0 sizes as a function of
incident photon energy, calculated by the theoretical model presented in the previous section. We could
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see that the peak value of nonlinear refractive index n2 for these sized RGQDs was in the magnitude of
10−11 to 10−12 m2/W. If we varied the sizes, either armchair-edge dimension or zigzag-edge dimension,
the peak value of n2 increased. However, the amplitude of the increase contributed from the same
three units was not the same. It was observed that the increase amplitude of n2 was much larger when
N increased every three units than that of M. This could be explained by the fact that the transition
matrix element was proportional to LZZ while the square of LAC, which could be concluded from
Equations (12)–(15). Additionally, the increase of the density of states for RGQDs with M = 20 and
N = 14, 17, 20 that we mentioned previously was another important reason. In addition, it was obvious
that there was a blue shift for the refractive peak when M increased, while there was a distinct red
shift when N increased. This was due to the fact that the energy level intervals increased for N = 20
and M = 14, 17, 20, while they decreased for M = 20 and N = 14, 17, 20, which is mentioned above.

Appl. Sci. 2019, 9, x FOR PEER REVIEW  6 of 9 

After getting the energy states of RGQDs, we calculated the nonlinear refractive index for 
RGQDs with different sizes in order to explore the influence of the size and edge. Figure 4a,b shows 
the size-dependent nonlinear refractive index spectra of RGQDs with non-3M0 sizes as a function of 
incident photon energy, calculated by the theoretical model presented in the previous section. We 
could see that the peak value of nonlinear refractive index 2n  for these sized RGQDs was in the 
magnitude of 10−11 to 10−12 m2/W. If we varied the sizes, either armchair-edge dimension or 
zigzag-edge dimension, the peak value of 2n  increased. However, the amplitude of the increase 
contributed from the same three units was not the same. It was observed that the increase 
amplitude of 2n  was much larger when N increased every three units than that of M. This could 
be explained by the fact that the transition matrix element was proportional to LZZ while the square 
of LAC, which could be concluded from Equations (12)–(15). Additionally, the increase of the density 
of states for RGQDs with M = 20 and N = 14, 17, 20 that we mentioned previously was another 
important reason. In addition, it was obvious that there was a blue shift for the refractive peak 
when M increased, while there was a distinct red shift when N increased. This was due to the fact 
that the energy level intervals increased for N = 20 and M = 14, 17, 20, while they decreased for M = 
20 and N = 14, 17, 20, which is mentioned above. 

 
Figure 4. Nonlinear refraction spectra for different-sized RGQDs. (a) Non-3M0 sized RGQDs with 
the sizes M = 14, 17, 20, and fixed N = 20. (b) Non-3M0 sized RGQDs with the sizes N = 14, 17, 20, 
and fixed M = 20. (c) 3M0 sized RGQDs with the sizes M = 15, 18, 21, and fixed N = 20. The dashed 
line is the contribution from the transitions between (1, n) when M = 21 and N = 20. 

For 3M0-sized metallic RGQDs, we plotted the nonlinear refractive index spectra in Figure 4c 
for M = 15, 18, 21, and N = 20. Comparing Figure 4a with Figure 4c, we found that when the 
armchair-edge dimension was fixed at 20, the peak value of nonlinear refractive index for M = 3M0 
was nearly eight times larger than the case of M = 3M0 ± 1. Furthermore, the refractive peak did not 
move once N was fixed. In Figure 4c we inserted the contributions from the transitions between (1, 
n) states, which played a dominant role in the refractive spectrum. These phenomena result from 
the uniformly spaced (1, n) states, where resonant transition enhancement occurred at around ħω = 
ħvFπ/(2LAC) and ħvFπ/LAC. The nonlinear refractive index values of both our theoretical calculations 
and other groups’ experimental measurements in related materials, such as conventional 
semiconductor quantum dot, 2D graphene, and transition metal dichalcogenides (TMDCs) are 
listed in Table 1 for comparison. The nonlinear refractive index of RGQDs was nearly five orders of 
magnitude greater than that of same-sized conventional semiconductor QDs in the visible region. 
The giant discrepancy was due to the relatively uniform energy levels in RGQDs, which could 
bring the transition resonance. Comparing RGQDs with layered graphene and TMDCs in the 
visible region, the magnitude of nonlinear refractive index for RGQDs was 1–3 orders lower. In the 
infrared region, the 2n  in RGQDs, especially with 3M0 size, was nearly 2–3 orders higher than that 
of TMDCs, and several times of that in 2D graphene in the visible band. 
  

Figure 4. Nonlinear refraction spectra for different-sized RGQDs. (a) Non-3M0 sized RGQDs with the
sizes M = 14, 17, 20, and fixed N = 20. (b) Non-3M0 sized RGQDs with the sizes N = 14, 17, 20, and
fixed M = 20. (c) 3M0 sized RGQDs with the sizes M = 15, 18, 21, and fixed N = 20. The dashed line is
the contribution from the transitions between (1, n) when M = 21 and N = 20.

For 3M0-sized metallic RGQDs, we plotted the nonlinear refractive index spectra in Figure 4c for
M = 15, 18, 21, and N = 20. Comparing Figure 4a with Figure 4c, we found that when the armchair-edge
dimension was fixed at 20, the peak value of nonlinear refractive index for M = 3M0 was nearly eight
times larger than the case of M = 3M0 ± 1. Furthermore, the refractive peak did not move once
N was fixed. In Figure 4c we inserted the contributions from the transitions between (1, n) states,
which played a dominant role in the refractive spectrum. These phenomena result from the uniformly
spaced (1, n) states, where resonant transition enhancement occurred at around h̄ω = h̄vFπ/(2LAC) and
h̄vFπ/LAC. The nonlinear refractive index values of both our theoretical calculations and other groups’
experimental measurements in related materials, such as conventional semiconductor quantum dot,
2D graphene, and transition metal dichalcogenides (TMDCs) are listed in Table 1 for comparison.
The nonlinear refractive index of RGQDs was nearly five orders of magnitude greater than that of
same-sized conventional semiconductor QDs in the visible region. The giant discrepancy was due to
the relatively uniform energy levels in RGQDs, which could bring the transition resonance. Comparing
RGQDs with layered graphene and TMDCs in the visible region, the magnitude of nonlinear refractive
index for RGQDs was 1–3 orders lower. In the infrared region, the n2 in RGQDs, especially with 3M0

size, was nearly 2–3 orders higher than that of TMDCs, and several times of that in 2D graphene in the
visible band.



Appl. Sci. 2019, 9, 325 7 of 9

Table 1. Calculated n2 in RGQDs and experimental data in other related materials for comparison.

Materials Size
Wavelength n2 (×10−12 m2/W)

(nm) Experiment Theory

CdS QDs 6.4 nm 790 10−7 [25]
CdS-Ag QDs 10.1 nm 790 −2.3 × 10−5 [25]

CdTe QDs 20 nm 1060 −6 × 10−5 [26]
Graphene 1–6 layers 1550 10 [12]

monolayer 1600 −1.1 × 10−1 [14]
1050 1.7 [11]
1064 −13.7 [27]
532 −2.34 [27]

MoS2 1064 −(0.207 ± 0.021) [27]
532 −(2.5 ± 1.2) [27]

WS2 monolayer 800 0.8 [28]
0.75 nm thick 1040 (1.28 ± 0.03) × 10−2 [29]
18.8 nm thick 1040 (−8.55 ± 0.63) × 10−4 [29]

RGQDs 6.4 nm × 6.4 nm 790 −2.13 × 10−2

5.2 nm × 4.3 nm 699 −1.75 × 10−2

5.2 nm × 4.3 nm 1064 −6.33 × 10−2

3.4 nm × 4.3 nm 2638 9.5
4.2 nm × 4.3 nm 2594 11.4
4.9 nm × 4.3 nm 2583 11.6
4.9 nm × 3.7 nm 2175 5.24
3.7 nm × 4.3 nm 2583 65.2
4.4 nm × 4.3 nm 2583 75.9
5.2 nm × 4.3 nm 2583 90.8

4. Conclusions

In this paper, we derived the nonlinear refractive index n2 which is proportional to the real
part of the third-order nonlinear optical susceptibility χ(3), starting from solving the electronic Dirac
equation in momentum space analytically under hard-wall boundary conditions for different edges.
The results revealed that the nonlinear refractive index n2 for these sized RGQDs was in the magnitude
of 10−14 m2/W in the visible region and 10−11 m2/W in the infrared region. For non-3M0 sized RGQDs,
with the increase of the size—in either armchair-edge dimension or zigzag-edge dimension—the peak
value of n2 increased. However, the increase of armchair-edge dimension contributed much more.
There was also a blue shift for the refractive peak when M increased, while there was a distinct red
shift when N increased. For an RGQD with M = 3M0, the nonlinear refractive index was enhanced
several times compared to that of M = 3M0 ± 1, and there was no peak shift. We gave explanations
to these phenomena, including different peak shift directions, peak value increase, and so on, by the
quantized energy level interval, as well as the size-dependence of transition matrix element in RGQDs.
These theoretical analyses are of great importance to applications based on optical communication,
as well as academic interest.
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