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Abstract: In this paper, we present a hierarchical path planning framework called SG–RL
(subgoal graphs–reinforcement learning), to plan rational paths for agents maneuvering in continuous
and uncertain environments. By “rational”, we mean (1) efficient path planning to eliminate
first-move lags; (2) collision-free and smooth for agents with kinematic constraints satisfied. SG–RL
works in a two-level manner. At the first level, SG–RL uses a geometric path-planning method,
i.e., Simple Subgoal Graphs (SSG), to efficiently find optimal abstract paths, also called subgoal
sequences. At the second level, SG–RL uses an RL method, i.e., Least-Squares Policy Iteration
(LSPI), to learn near-optimal motion-planning policies which can generate kinematically feasible
and collision-free trajectories between adjacent subgoals. The first advantage of the proposed
method is that SSG can solve the limitations of sparse reward and local minima trap for RL agents;
thus, LSPI can be used to generate paths in complex environments. The second advantage is that,
when the environment changes slightly (i.e., unexpected obstacles appearing), SG–RL does not need
to reconstruct subgoal graphs and replan subgoal sequences using SSGs, since LSPI can deal with
uncertainties by exploiting its generalization ability to handle changes in environments. Simulation
experiments in representative scenarios demonstrate that, compared with existing methods, SG–RL
can work well on large-scale maps with relatively low action-switching frequencies and shorter path
lengths, and SG–RL can deal with small changes in environments. We further demonstrate that the
design of reward functions and the types of training environments are important factors for learning
feasible policies.

Keywords: subgoal graphs; reinforcement learning; hierarchical path planning; uncertain environments;
mobile robots

1. Introduction

In this paper, we focus on the problem of planning rational paths in continuous and uncertain
environments. By “rational”, we mean that, firstly, computational costs, mainly the time consumed,
brought by the planning algorithm must be low enough, so requirements such as avoiding
first-move lags and providing human users with an excellent experience can be met; secondly,
resultant paths must be collision-free and smooth, and thus, feasible to follow given kinematic
constraints. One typical application of this problem lies with agents who maneuver in time-sensitive
scenarios (e.g., service robots working in the real world and Non-Player Characters (NPCs) engaging
movement tasks in video games). Briefly, application fields such as robotics and video games strongly
require time-saving path-planning methods which can quickly generate realistic paths.

The problem of path planning is extensively researched in the literature [1–6]. A* on grid maps [6]
is regarded as a fundamental and standard path-planning algorithm based on search. It is complete
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and optimal, which means A* can find an optimal path if there is at least one from the start point
to the goal point. There are at least two shortcomings of A* on grid maps: (1) path symmetry [3],
i.e., the existence of symmetrical paths forces A* to generate same states multiple times along different
paths, which consumes more time; (2) cell-wise expansion, i.e., since successors of a cell which are
expanded are just its adjacent cells, this short-ranged expansion brings about a huge open list and
a large number of operations. These two problems cause many unnecessary cell generations and
expansions, and, as a result, A* is so slow that it cannot meet the first requirement for rational paths.

To overcome the above disadvantages, methods for map abstraction attract many researchers’
attention. Subgoal graphs (SG) [5] is an archetypical map-abstraction-based algorithm, whose
preprocessing stage is responsible for building subgoal graphs. Similar to visibility graphs, its
simple version—SSG—places subgoals at the corners of obstacles. SSG links cells, between which
a reachability relationship called direct-h-reachability is satisfied, and all symmetrical paths are
traversable. Then, over subgoal graphs, A* is used to obtain the abstract path. Finally, depth-first
search is safely utilized to refine it into a ground-level path. As a result, A* on subgoal graphs works
far better than that on grids and satisfies the first requirement mentioned above. As for the second
requirement, however, the optimal ground-level path is constrained to grid edges (i.e., the heading
changes are artificially constrained to specific angles) [7], which causes sharp turns in the generated
paths, and cannot meet kinematic constrains. Moreover, it is time-consuming for SG to deal with
changing environments by reconstructing subgoal graphs.

To plan kinematically feasible paths, interpolating curve planners [8] construct and insert a new
set of data within the range of a previously known set. For example, in Reference [9], hypocycloidal
curves were used to smooth sharp turns, which can maintain a safe clearance in relation to the
obstacles. However, when unexpected obstacles often appear in the detection range of robots, these
kinds of planners need to recalculate a new path frequently, causing more time consumption. It is
also difficult for sampling-based planners, such as Probabilistic Roadmaps (PRM) [10] and rapidly
exploring Random Trees (RRT) [11], to deal with unexpected obstacles. Furthermore, the generated
paths are random and suboptimal.

To deal with uncertain environments and improve the path quality, Reinforcement Learning (RL)
can be used to learn near-optimal policies to find paths in the real world under certain constrains. RL is
learning what to do—how to map situations to actions—to maximize a numerical reward signal [12].
Specifically, RL is an agent that interacts with the environment, and learns an optimal policy by trial
and error [13]. RL emerged as a practical method for robot control [14] and was successfully applied to
solve complex robot manipulation problems [15] and learn complex skills like playing Go [16] and
Atari games [17]. There are two categories of RL (i.e., model-based RL and model-free RL). Since we
cannot provide complete models of uncertain environments for RL, model-free RL is more suitable
for our scenarios. However, RL cannot be used directly to plan paths in complex environments
due to two limitations: (1) sparse reward, i.e., reward is sparsely distributed in large state spaces,
causing difficulties for learning feasible policies; (2) local minima trap, i.e., RL agent may be trapped in
local minima, like goals on the other side of box canyons.

In this paper, to overcome the abovementioned limitations of SG and RL methods, we present a
hierarchical path planning framework, called SG–RL, to integrate the geometric path-planning method
(i.e., SG) and the ground-level motion planning method (i.e., RL), which can plan rational paths in
uncertain and continuous environments. SG–RL solves this path-planning problem in a two-phase
manner. The first phase is a global abstract path-planning phase that focuses on the first requirement
for rational paths. The second phase is a feasible trajectory-planning phase that focuses on the second
requirement. In the first phase, SG–RL uses SSG to find global abstract paths, also called subgoal
sequences, from start points to goal points with high computational efficiency. In the second phase,
considering kinematic constraints, SG–RL uses an RL method, i.e., Least-Squares Policy Iteration
(LSPI) [18], to learn near-optimal motion-planning policies which can generate kinematically feasible
and collision-free trajectories between adjacent subgoals.
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Compared with RL methods, SG–RL can use SSG to plan paths more efficiently so as to eliminate
first-move lags, and owing to the direct-h-reachability of adjacent subgoals, SG–RL can support RL
agents to realize long-range navigation on complex maps by overcoming sparse reward and local
minima trap. Then, compared with SG methods, SG–RL can use LSPI to generate smooth paths that
follow kinematic equations and preserve G1 continuity [9], and due to the generalizability of LSPI,
SG–RL can deal with small changes (i.e., unexpected obstacles) over maps.

The rest of this paper is organized as follows: Section 2 discusses some related work on
path-planning methods based on A*, RL, and hierarchical path planning. Section 3 presents the
hierarchical path-planning approach based on SG and RL. In Section 4, the performance of the proposed
approach is evaluated by simulation experiments. Finally, this paper is concluded in Section 5.

2. Related Work

In this section, studies of three kinds of methods (i.e., path-planning methods based on A*, RL,
and hierarchical path planning) in the path-planning field are introduced.

2.1. Path-Planning Methods Based on A*

Hart, Nilsson, and Raphael jointly proposed the A* algorithm, which is a widely used best-first
search algorithm and can search an optimal path over grid maps [6]. A* plays an important role in areas
that do not require real-time response. However, with many real-time applications getting prevalent in
fields such as real-time strategy games and robotics, A* faces severe challenges (e.g., searching in large
scale and dynamic environments). A* tends to scale poorly as it must compute complete and optimal
paths for agents before agents can move, which brings the first-move lag problem. In brief, A* on
grid maps has two mentioned weaknesses (i.e., path symmetry and cell-wise expansion). These two
weaknesses cause a huge search space and unnecessary cell generations, which renders A* very slow.

To solve these problems, some recent studies focusing on map representations were proposed.
Such kinds of studies mainly construct particular map representations via abstracting topological
structures and key information of original maps to reduce the search space. Jump point search (JPS) [2]
proposed by Harabor and Grastien uses the canonical ordering method to solve the path symmetry
problem and identifies jump points over grid maps to reduce the search space. Then, the optimal
canonical path is searched among jump points. However, in JPS, jump points do not really “jump”
to one another; instead, they just “roll” between jump points, namely to check cells one by one
online. To increase the search speed between jump points, JPS+ [3] builds jump-point maps via
preprocessing. Since the distance information regarding adjacent jump points exists in the jump-point
map, the path between jump points can be directly found. There is another kind of method named
Contraction Hierarchy (CH) [4] that can search over grid maps faster than JPS+ [19], due to its
distinctive preprocessing. The preprocessing of CH involves the contraction of one node at a time out
of the graph and adds shortcut edges to the remaining graph. However, CH costs more preprocessing
time and memory space than JPS+. SSG [5], proposed by Tansel Uras and Sven Koenig, constructs
subgoal graphs by identifying subgoals and checking direct-h-reachability in the preprocessing stage.
Compared with the original map, the subgoal graph abstracts the information of key points, so as to
reduce the search space. The direct-h-reachability ensures that any shortest paths between adjacent
subgoals are not blocked by obstacles, allowing the path symmetry problem can be solved. To reduce
the size of subgoal graphs, the two-level subgoal graphs method [5] relaxes connection conditions
between subgoals and adds a subgoal-pruning strategy. To further increase the search speed, the n-level
subgoal graphs approach [20] was proposed. These above path-planning methods based on A* can
meet the first requirement of rational paths. However, these methods cannot solve the ground-level
motion-planning problem under certain constraints and cannot deal with changes of environments.



Appl. Sci. 2019, 9, 323 4 of 21

2.2. Reinforcement Learning

In the field of ground-level motion planning, RL recently gained prevalence for systems with
unknown dynamics [14]. Q-learning and Sarsa [12] can be useful for dealing with discrete state spaces.
For example, Mihai Duguleana et al. [21] combined Q-learning with the artificial neural network for
solving the problem of autonomous movement of robots in environments that contain both static and
dynamic obstacles. However, in large or continuous state spaces, the abovementioned tabular RL
methods are inefficient or impractical for applications. Function approximation methods that estimate
value function can be used to tackle this problem [22]. There are many function approximators,
such as artificial neural networks, decision trees, linear basis functions, and so on. In this paper,
we focus on linear-basis-function approximators. The least-squares temporal-difference learning
(LSTD) algorithm [23] proposed by Bradtke and Barto, an ideal method for prediction problems,
uses linear basis functions to approximate the value function of a fixed policy. Though LSTD has many
good properties like data efficiency and fast convergence, it cannot be straightforwardly used to learn
good control policies. To solve this problem, the LSPI [18] algorithm proposed by Lagoudakis and
Ronald introduces LSTDQ, an algorithm similar to LSTD that learns approximate state-action value
functions of fixed policies. LSPI adds LSTDQ into the approximate policy-iteration structure, allowing
it to get an optimal policy quickly by combining the policy-search efficiency of policy iteration with the
data efficiency of LSTDQ. Due to its generalizability, LSPI can handle changes in environments. In this
paper, we choose LSPI as the RL method. However, RL cannot be used directly in path planning in
complex environments due to two limitations: (1) sparse reward; and (2) local minima trap.

2.3. Hierarchical Path Planning

To overcome limitations of path-planning methods based on A* and ground-level motion-planning
methods, hierarchical path-planning approaches are widely researched in the literature [24–28].
In Reference [24], a two-level-based, goal-driven architecture is used to solve mobile robot navigation
in real life with vision systems and infrared sensors. In Reference [25], a two-stage path-planning
algorithm uses a variant of A* search to obtain a kinematically feasible trajectory in the first
stage and improves the quality of the solution via numeric non-linear optimization in the second
stage, for an autonomous vehicle operating in an unknown semi-structured (or unstructured)
environment where obstacles are detected online by a robot’s sensors. In Reference [26], to guarantee
the consistency between high and low levels of planning, Cowlagi and Tsiotras proposed a
hierarchical motion-planning framework with a novel mode of interaction between the geometric
path planner and the vehicle trajectory planner. In Reference [27], a novel hierarchical global
path-planning approach for mobile robots in a cluttered environment with multi-objectives was
proposed. This approach has a three-level structure which combines triangular decomposition,
Dijkstra’s algorithm, and a proposed particle swarm optimization called constrained multi-objective
particle swarm optimization. In Reference [28], to find an optimal maneuver that moves a car-like
vehicle between two configurations in minimum time, a two-phase algorithm firstly solves a
geometric optimization problem and then finds the optimal maneuver with system dynamics and its
constraints satisfied.

In this paper, to overcome the abovementioned disadvantages of SSG and LSPI, we designed a
suitable hierarchical framework to combine a global abstract path planner based on SSG with a feasible
trajectory planner based on LSPI, which can improve the computational efficiency of hierarchical
path-planning methods by optimizing the relationship between high and low levels of planning.

3. Materials and Methods

In this section, the problem description and the tracked robot used in the simulation experiments
are briefly introduced in the first subsection. Next, the architecture of the proposed hierarchical
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path-planning method—SG–RL—is presented. Then, the SG-based global abstract path planner and
the LSPI-based feasible trajectory planner are described in detail.

3.1. Problem Description

The path-planning problem investigated in this paper can be stated as follows: in continuous and
uncertain environments, the problem is to plan rational paths for tracked robots from a start position
to a goal position.

In this paper, we used the Cartesian coordinate system. The schematic diagram of the tracked robot
is shown in Figure 1. The position state of the tracked robot in this paper is defined as s = (xr, yr, θ)

by the global coordinate related to the map, where xr and yr are the tracked robot’s abscissa and
vertical coordinates, respectively, and θ is the angle between the forward orientation of the tracked
robot and abscissa axis. We equipped six ultrasonic sensors at the front of the tracked robot to perceive
the external environment. The detection angle of each ultrasonic sensor was 30 degrees. The max
detection distance of each sensor was Dmax. The tracked robot was driven by the left and right tracks.
The kinematic equations of the tracked robot were

.
x
.
y
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θ

 = R
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2
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)
, (1)

where R is the radius of the driving wheels in the tracks, ωl and ωr are the angular velocity of left
tracks and right tracks (rad·s−1), respectively, and lB is the distance between left tracks and right tracks.
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Figure 1. Schematic diagram of the tracked robot.

3.2. The Architecture of the Proposed Algorithm

As mentioned above, we decomposed the complex path-planning problems into two phases: the
first for the global abstract path planning and the second for the feasible trajectory planning. In the
first phase, we used SSG to find global abstract paths with low computation costs. In the second phase,
we chose LSPI as the RL method. Then, a feasible trajectory planner based on LSPI took subgoals,
which are cells of abstract paths, as input, and planned collision-free trajectories between subgoals
with kinematic constraints satisfied. Moreover, there were online stages and offline stages in both
phases. Figure 2 shows an overview of this approach.
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Figure 2. Subgoal graphs–reinforcement learning (SG–RL) flowchart.

The main task of the first phase was providing subgoal sequences which began with the start
point and ended with the goal point. During the offline stage, firstly, considering sizes of robots and
user-defined safety distance, we added alert areas into original maps based on the distance map to plan
safe and feasible paths. Then, we used SSG to construct subgoal graphs from modified maps by placing
subgoals at the corners of obstacles and adding edges between related subgoals. During the online
stage, we could use A* to search global abstract paths over the subgoal graph. It was not necessary
to obtain the optimal ground-level paths between subgoals and assemble them into a complete one.
Since basic search methods can hardly generate smooth and feasible solutions, SG–RL passes the task
to the RL phase.

The main task of the second phase was planning feasible trajectories between subgoals. During the
offline stage, firstly, this task can be divided into two sub-tasks which involve approaching subgoals
with kinematic constraints and avoiding initially known or unknown obstacles. By analyzing the key
information abstracted from sub-tasks, two Markov Decision Processes (MDPs), which were built
separately, formally describe an environment for the RL method, LSPI. Next, according to MDPs,
we collected samples arbitrarily from training environments which were smaller than test environments.
Then, by carefully tuning parameters, LSPI could train feasible trajectory planners for robots. During
the online stage, taking subgoal sequences and local sensor data as input, trajectory planners could
choose the best action to generate collision-free and kinematically feasible paths. Note that LSPI uses
the original map as the working environment, since alert areas were built by us, and the robot cannot
recognize alert areas from local sensor data.

The first strength of SG–RL is that the excellent performance of SSG can be fully utilized, and some
limitations of applying LSPI to plan paths in complex environments can be solved by SSG. (1) SSG
uses A* to efficiently plan subgoal sequences over subgoal graphs constructed based on maps with
alert areas, which can eliminate first-move lags. (2) SG–RL does not select subgoals from the optimal
geometrical path according to certain standards [24]; however, it utilizes the intermediate, the abstract
path regarded as subgoal sequences, which greatly increases the speed of providing subgoal sequences.
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Subgoals are placed at the exit of the local minima area, and the adjacent subgoals are direct-h-reachable,
which ensures that all symmetrical paths between them are traversable, so as to eliminate the local
minima trap for LSPI. (3) SG–RL uses SSG to generate subgoal sequences that are the input of LSPI.
Since the distance between adjacent subgoals is shorter than the distance between the start and goal
point, the reward distribution becomes relatively dense, which solves the limitation of sparse reward
for LSPI. In conclusion, SSG used in SG–RL not only meets the first requirement of rational paths,
but also overcomes the two abovementioned limitations of LSPI.

The second strength is that, based on optimal abstract paths over discretized grid maps, LSPI can
train near-optimal feasible trajectory-planning policies which can plan collision-free and smooth
continuous paths, following kinematic equations. Owing to linear-basis-function approximators,
policies can take continuous state spaces as input to deal with continuous environments. Consequently,
SG–RL satisfies the second demand for rational paths.

The third strength is that the SG–RL method can quickly adapt to uncertain environments via the
generalizability of LSPI. When the map changes slightly, SG needs to reconstruct all subgoal graphs and
replan paths. The constructed subgoal graphs cannot be directly applied to changing environments.
Until now, there is no research regarding locally reconstructing subgoal graphs. Therefore, SG–RL
uses the generalizability of LSPI to deal with small changes in environments based on original subgoal
sequences without reconstructing subgoal graphs.

In conclusion, SG–RL not only makes good use of outstanding advantages of SG and RL, but also
overcomes each limitation, allowing it to plan rational paths in continuous and uncertain environments.

3.3. The SG-Based Global Abstract Path Planner

Figure 3 shows the offline work concerning building alert areas and constructing subgoals.
Since paths found by SSG over the original map are close to obstacles, they are not safe for robots to
follow. To tackle this problem, we added alert areas into original-map-based distance maps.
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Figure 3. (a)This is the original map. (b) The Euclidean distance map. Black represents occupied cells.
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signify the direct-h-reachability of adjacent subgoals.

During the phase of building alert areas, the dynamic brushfire algorithm [29] was used to build
the Euclidean distance map (Figure 3b) based on the original map (Figure 3a). Then, the map with alert
areas was constructed based on the Euclidean distance map. The size of alert areas was determined by
the sizes of the robot and user-defined safety distance. One distinctive advantage of using a distance
map to build alert areas is that one distance map can be used to construct various sizes of alert areas.

Then, we used the SG algorithm to find abstract paths on maps with alert areas and provide
subgoal sequences for the feasible trajectory planner. There are three kinds of SG algorithm,
namely simple, two-level, and n-level subgoal graphs [5,20]. We chose SSG as the method at this
phase because, in SSG, all symmetrical paths between adjacent subgoals are not blocked by obstacles,
which can provide better subgoal sequences for the trajectory planner.

First of all, in Reference [5], there are some key definitions.
Heuristic h(s, s′) is the octile distance between cells s and s′.

Definition 1. An unblocked cellsis a subgoal iff there are two perpendicular cardinal directions c1 and c2 such
that s + c1 + c2 is blocked and s + c1 and s + c2 are not blocked.

Definition 2. Two cellssand s′ are h-reachable iff there is a path of length h(s, s′) between them. Two h-reachable
cells are safe-h-reachable iff all shortest paths between them are not blocked by obstacles. Two h-reachable cells s
and s′ are direct-h-reachable iff none of the shortest paths between them contains a subgoal s′′ /∈ {s, s′}.

Definition 3. A subgoal graphGS = (VS, ES) is an undirected graph where VS is the set of subgoals and ES
is the set of edges connecting direct-h-reachable subgoals. The lengths of edges are the octile distances between
subgoals they connect.

In SSG, there are two steps to find the shortest paths from a start cell to a goal cell.
The preprocessing stage abstracts subgoal graphs from the underlying grid maps with alert areas,
by identifying subgoals and checking direct-h-reachability. This sparse space representation can
eliminate the path symmetry with the strict reachability check and generate subgoals which are not
close to each other, as successors. As for the online phase, given the start and goal point, it applies a
connect–search–refine approach to return ground-level paths. For our scenarios, the refinement was



Appl. Sci. 2019, 9, 323 9 of 21

replaced by LSPI to obtain a smooth and collision-free path. Thus, a connect–search method remained,
as shown in Algorithm 1.

Algorithm 1 shows how to find the shortest paths over subgoal graphs. Firstly, the start cell and
the goal cell are regarded as subgoals and are connected to subgoal graphs. Then, A* is used to search
global abstract paths over modified subgoal graphs. As proven in Reference [5], SSG is a complete and
optimal global search algorithm.

In Figure 3d, the grid map with alert areas is 12 × 12. However, the size of VS of the subgoal
graph is 7, and the size of ES is 7. Obviously, the search space of the subgoal graph is smaller
than the grid map’s. Moreover, subgoals are placed at the exit of the box canyon on the left side
of Figure 3d, and adjacent subgoals are direct-h-reachable, which brings greater security for the
trajectory-planning phase.

Algorithm 1 Searching subgoal graphs Pseudo-code of simple subgoal graph (SSG).

function ConnectToGraph(cell s):
if s /∈ VS then

VS = VS ∪ {s};
S← GetDirectHReachable(s);
for all s′ ∈ S do

ES = ES ∪ {(s, s′)};
function FindAbstractPath(cells s, s′):
ConnectToGraph(s)
ConnectToGraph(s′)
Π ← find a shortest path from s to s′ over the modified subgoal graph
return Π;
function FindPath(cells s, s′)
Π ← TryDirectPath(s, s′);
if Π 6= nopath then

return Π;
Π ← FindAbstractPath(s, s′);
return Π;

3.4. The LSPI-Based Feasible Trajectory Planner

3.4.1. LSPI Method

LSPI can deal with continuous state spaces and be more data-efficient and time-efficient than
other conventional temporal-different RL methods. Figure 4 shows the overview of the entire LSPI
framework [18]. It is a completely off-policy and offline algorithm, and can use sample sets collected
arbitrarily from the simulation environment or the real world. At the policy evaluation step, it uses the
linear structure to obtain the approximate state-action value function, which is easy to implement and
use. At the policy improvement stage, it obtains greedy policies by maximizing state-action values,
based on approximate value functions. Furthermore, the transparent inner mechanism is beneficial for
users to see how it works and why failures occur.

Theoretically, samples from any policy can be collected arbitrarily. Even during policy iteration,
samples from the current policy can also be collected and added to train policies. LSPI provides great
flexibility for collecting samples, which brings much convenience in practical uses. However, similar to
using samples to approximate linear or nonlinear functions, the sample distribution in the state
space affects the speed and result of approximating. Therefore, when sample sets are of poor quality,
LSPI causes a worse effect via fitting biased distribution based on the data-efficient feature. To solve
these problems, in this paper, we not only used random policies to collect samples, but we also tried
using random environments to collect samples. Details on how samples are collected are given in
Section 4.1.
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The prominent advantage of LSPI is its ability to deal with continuous or large state spaces,
while tabular RL methods (e.g., Q-learning and Sarsa) cannot solve them, since it is impractical and
computationally expensive to use the table structure to store state-action values, (i.e., Computer Go:
10170 states and Helicopter Control: continuous state spaces). The key of LSPI is that, during the policy
evaluation stage, it uses linear architectures to approximate value functions (i.e., uses Q̂π(s, a; ω) to
approximate Qπ(s, a) via linear basis functions with free parameters ω). Qπ(s, a) is the state-action
function under policy π. The design of basis functions is fundamental work in LSPI. It is popular to use
radial basis functions or polynomial basis functions, and we chose polynomial basis functions, since,
compared with radial basis functions, polynomial basis functions have clear structures for designers.
The definition of Q̂π(s, a; ω) is

Q̂π(s, a; ω) =
k

∑
j=1

ϕj(s, a)ωj, (2)

where ωj is the weight parameter, ϕj(s, a) is the fixed basis function that is linearly independent, s is
the state, a is the action, and k is the number of basis functions.

Two kinds of value-function approximation projections (i.e., Bellman residual minimizing
approximation and least-squares fixed-point approximation) are used to approximate value functions.
Because learning the Bellman approximation requires “doubled” samples [18] which are impossibly
collected from the model-free system, we chose the second approximation that is more practical for the
learning task and evaluates the state-action value more accurately.

In the policy-evaluation step, LSTDQ was used to find the solution of least-squares fixed-point
approximation which is equivalent to learning ω. Since the model was unknown, samples were used
to learn ω in an incremental way [18].

Aω = b, (3)

where matrix A and vector b are

At+1 ≈ Ãt+1 = Ãt + ϕ(st, at)
(

ϕ(st, at)− γ ∗ ϕ
(
s′t, π(s′t

))
)T , (4)

bt+1 ≈ b̃t+1 = b̃t + ϕ(st, at)rt, (5)

where γ is the discounted factor, π is the policy function, and rt is the immediate reward.
As seen in the pseudo-code of LSPI [18] in Algorithm 2, during the policy iteration, the same

sample sets are used in every iteration, and the iteration ends until ω is stable. Since sample sets are
important for LSPI, the collected sample sets should cover the entire state-action space as uniformly as
possible to improve the training effect.
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Algorithm 2 Pseudo-code of Least-Squares Policy Iteration (LSPI).

function LSPI(D, k, ϕ, γ, ε, π0)
// D: set of samples (s, a, r, s′)
// k: The number of basis functions
// ϕ: Basis functions
// γ: Discount factor
// ε: Stopping criterion
// ω0: initial weight parameters
Ã← 0
b̃← 0
ω′ ← ω0

Repeat
ω← ω′

for each (s, a, r, s′) ∈ D
Ã← Ã + ϕ(s, a)(ϕ(s, a)− γ ∗ ϕ(s′, π(s′)))T

b̃← b̃ + ϕ(s, a)r
end

ω′ ← Ã
−1

b̃
until (|ω−ω′| < ε)
returnω

3.4.2. Definitions of Subgoal-Approaching (SA) and Obstacle-Avoiding (OA) MDPs

In the feasible-trajectory-planning phase, to increase training efficiency, we decomposed the
problem of finding feasible trajectories between subgoals into two sub-problems—approaching
subgoals and avoiding obstacles. Since LSPI is used to find a solution to discrete-time MDPs
with continuous state spaces, given as a tuple of states, action, rewards, and next states, (s, a, r, s′),
we separately built two MDPs via abstracting key information from the two sub-problems, to formally
describe environments for LSPI. One MDP, named Subgoal-Approaching (SA), describes the process of
approaching subgoals with kinematic constraints satisfied. The other MDP, named Obstacle-Avoiding
(OA), describes the process of preventing collisions with obstacles. Definitions of SA and OA are
described in Table 1. In these two MDPs, we used kinematic equations to update trajectories of the
robot, so that the trajectories could preserve G1 continuity. Figure 5 shows the process of planning
feasible trajectories. At first, we check the sensor data, and then decide which MDP to execute.

Table 1. Definitions of Subgoal-Approaching (SA) and Obstacle-Avoiding (OA) Markov Decision
Processes (MDPs).

Type of MDP SA MDP OA MDP

States (dg, ag) (S1, S2, S3, S4, S5, S6)

Actions
move forward: (0.5, 0.5) move forward: (0.5, 0.5)

turn left: (0.5, 0) turn left: (0.5, 0)
turn right: (0, 0.5) turn right: (0, 0.5)

Reward
+10 if dg < dn Comparative value reward in

Table 4, where P = 0.9−ãg if ãg > 0

1− d̃g − ãg else
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In the SA MDP, state dg denotes the distance between the robot and the goal, state ag denotes the
angle between the robot’s orientation and the direction from the robot heading to the goal, and the
range of ag is [−π, π]. When the goal is on the left side of the robot’s orientation, the value of ag is
positive. Otherwise, the value is negative. There are three actions (i.e., going forward, turning
left, and turning right) that the robot can execute. Each action corresponds to values of ωl and ωr.
For example, the action of going forward is equal to setting ωl and ωr to 0.5. And the action’s execution
is through the use of kinematic equations to calculate the next positions of the robot via inputting
ωl and ωr (i.e., the angular velocity of left and right tracks). The definition of reward plays an important
role in MDP, which is directly related to the training speed and the validity of the resulting policy.
When arriving into the predefined acceptable area of subgoals, the robot gets a +10 scalar reward; dn is
the goal tolerance. If ãg is more than 0, the reward function is −ãg, where ãg is the absolute value of
normalization of ag. Otherwise, the reward function is 1− d̃g − ãg, where d̃g is the normalization of dg.

In the OA MDP, state Si (i ∈ (1, 2, 3 . . . , 6)) denotes the reading of sensor i. The range of Si is
[0, 5]. The first three sensors belong to left-side sensors and the others belong to right-side sensors.
The setting of action is the same as the SA MDP’s. Because of complexities of the obstacle-avoiding
process, in general, it is tempting to add prior experience into reward functions, but it may not improve
the training effect, which is discussed in Section 3.4.3. To explore the effects of adding prior experience
into reward functions, we designed two kinds of reward functions—concise reward and comparative
value reward. The first is a simple reward function (i.e., colliding with obstacles means receiving −4,
otherwise 0). The comparative value reward adds prior experience about the risk of the current state
based on the concise reward, which is shown in Table 2. Smin = min(S1, S2, . . . , S6). Sli (i ∈ (1, 2, 3))
denotes the i-th minimum reading of left-side sensors. Sri (i ∈ (1, 2, 3)) denotes the i-th minimum
reading of right-side sensors. P is a constant value to tune the reward function. Dur denotes the brake
distance for tracked robots. Dsa denotes the ideal safe distance for tracked robots keeping away from
obstacles. These conditions are checked in order, as shown in Table 2. To increase the performance of
learned policies, an action-changing penalty (i.e., when the current action is different from last one,
the agent obtains −0.2) can be combined with abovementioned reward functions, which is verified in
Section 4.2.1.
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Table 2. Comparative value reward in obstacle-avoiding MDP.

Order Conditions Annotation Reward

1 Smin < Dur
The minimum reading of all sensors is
less than the brake distance. −4

2 Smin > Dsa
The minimum reading of all sensors is
greater than the safe distance. +0

3 Smin < Dsa
Sl1 6= Sr1

The minimum reading of all sensors is
less than the safe distance, and the
minimum reading of left-side sensors is
not equal to the right-side sensor’s
minimum reading.

−P ∗
(Dsa −min(Sl1, Sr1))

4 Smin < Dsa
Sl2 6= Sr2

The minimum reading of all sensors is
less than the safe distance, and the
second minimum reading of left-side
sensors is not equal to the right-side
sensor’s second minimum reading.

−P ∗
(Dsa −min(Sl2, Sr2))

5 Smin < Dsa
The minimum reading of all sensors is
less than the safe distance.

−P ∗
(Dsa −min(Sl3, Sr3))

3.4.3. Improvements of Training with LSPI

To make the proposed feasible trajectory planner more efficient, we focused on the factors
described below, including training environments and reward functions.

Firstly, from the view of input of LSPI, one significant element of successful training is whether
sample sets can cover the entire state-action space. It affects the accuracy of the transition probability
function, P : S× A× S→ R. P denotes given current action a, the probability of transferring current
state s to next state s′.

Sample sets depend on two key factors, which are ways of collecting samples, and training
environments. For better sampling, we use not only random policies to ensure that every action is
selected with the same probability, but also random positions to make all kinds of different situations
happen. When starting the new sampling epoch, the goal position and the robot position are set
randomly. We designed two kinds of training environments including simplified office maps and
maps with random obstacles. In maps with random obstacles, various collected sample sets contribute
to learning the transition probability function, which is proven in Section 4.2.2.

Secondly, scalar reward is important for RL methods. In reinforcement learning, there is a reward
hypothesis: realizing goals means the maximization of the expected value of the cumulative sum of
a received scalar signal (called reward). The hypothesis is described as follows: [12]

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · = ∑∞
k=0 γkRt+k+1. (6)

It is critical that rewards truly indicate what we want agents to achieve, and generating a reward
signal does not depend on knowledge of how the agent chose correct actions. Therefore, the reward
signal is not the place to impart to the agent prior knowledge about how to achieve the goal state.
When we design the reward function, we should model this function from the brain of intelligent
agents, which can realize what designers desire. If environments are well defined, designing the
reward function is simple, such as winning +1 and losing 0 in chess. However, if environments are
unknown and tasks are complex, it is tempting to add prior experience into reward functions and give
the agent a supplemental reward for completing sub-tasks. The reward signal with well-intentioned
supplemental rewards may lead agents to behave very differently from what is intended, and agents
may end up not achieving the overall goal at all [12]. For example, in OA MDP, the comparative value
reward is a reward with well-intentioned supplemental rewards, which is compared with the concise
reward in Section 4.2.1, to show the effects of prior experience in reward functions.
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4. Results

In this section, firstly, we evaluate the performance of SG–RL on static and dynamic maps. Static
maps are constructed by laser sensor data from robots that are deployed with the Robot Operating
System (ROS). Dynamic maps mean that some uncertainties such as unexpected obstacles appear along
the abstract path. Note that unexpected obstacles mean static obstacles which are not known initially
because of errors from sensors or environment models. Secondly, we evaluate the effect of reward
function and different types of training maps in the obstacle-avoiding MDP. This paper implements
the proposed algorithm based on the source code from http://www2.cs.duke.edu/research/AI/LSPI and
http://movingai.com/GPPC. We run experiments on a 3.4-GHz Intel Core i7-6700 (Intel, Santa Clara, CA,
USA) central processing unit (CPU) with 16 GB of random-access memory (RAM).

In the simulation experiments, we exploited numerical methods (i.e., solved equations in small
steps) to calculate trajectories via kinematic equations. If the step approximates zero, the computed
trajectory (a series of discrete trajectory points) will be equivalent to a continuous trajectory computed
by analytical methods. However, small steps require more computational resources and also slow
down the computation speed. Considering our experiment platform, we chose the step of simulation
time as 0.1 s, which is relatively large in order to achieve higher speed and less memory consumption.

4.1. Performance of the SG–RL Method

SG–RL is a method used to find rational paths from a start position to a goal position,
which decomposes complex path-planning problems into two phases: the first for the global abstract
path planning and the second for the feasible trajectory planning.

In the first phase, we used the SSG method to generate subgoal sequences. The time to find
subgoal sequences, called H-time, is a key assessment indicator, which can evaluate the ability to
eliminate first-move lags. SSG has constrained heading changes, which cannot generate smooth paths
for agents moving in continuous environments. By contrast, the proposed hierarchical method, SG–RL,
has free heading changes. We evaluated its ability to deal with continuous environments by comparing
its path lengths of it with those of SSG.

In the second phase, we used a feasible trajectory planner based on LSPI to find safe paths between
subgoals, and all trajectory segments between subgoals could be linked to obtain complete feasible
trajectories from the start position to the goal position. In the LSPI method, some parameter values
came from Reference [18] and others came from trials. The discounted factor γ was 0.9. Basis function
ϕ was polynomial. In OA MDP, the order of basis function ϕ was 3, and in SA MDP, the order was 4.
The subgoal tolerance was 1.5 and the final goal tolerance was 0.5. The subgoal tolerance was bigger
since subgoals only play auxiliary roles in the trajectory planner. The time interval of action choice
was 0.5 s. The way of collecting samples was to choose actions randomly per second. If robots collided
with obstacles or boundaries, this sampling epoch ended and robots started from random positions.

Action-switching frequency is a significant factor which can evaluate the performance of planned
trajectories. Its definition is the ratio of the sum of the current action that is different from the last
action to all actions. For robots, it cannot be high because of limitations of hardware systems and
network latency. Realizing fast and frequent responses requires more precise chassis gears and more
energy. Meanwhile, in areas with signal interference, network latency is relatively high.

4.1.1. Performance on Static Maps

We evaluated the SG–RL method with four maps described in Figure 6. We trained the robot to
learn to avoid obstacles with LSPI in Figure 6a. The three maps for navigation tasks (Figure 6b–d) were
between 250 and 521 times larger than the training map. Since the resolution of these three original
maps (i.e., 2.5 cm per pixel) was too high for doing experiments on them, a down-sampling method
was used to compress them. These original maps were composed of grayscale information, and we

http://www2.cs.duke.edu/research/AI/LSPI
http://movingai.com/GPPC
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transformed them into grid maps (if there existed an obstacle in a cell, then the value of this cell was
set to 1, otherwise 0).
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Figure 6. (a) Training environment—50 by 50. The training environment was a simplified office.
(b–d) Given the start position and the goal position, the blue line is the path planned by the simple
subgoal graph (SSG), and the black line is the trajectory planned by SG–RL. The dark-gray region is
unpassable while the light-gray region is traversable for robots. Red regions deemed close to obstacles
denote alert areas. (b) Building 1—820 by 820, (c) Building 2—1142 by 1142, (d) Building 3—792 by 792.

Table 3 shows the action-switching frequency of the robot completing the whole path on different
maps. Since the learned policy was deterministic, this indicator was also fixed given the same start–goal
location pair. All these values were below 10%, which indicates that the robot maneuvered by SG–RL
can work well in large and realistic environments with low action-switching frequencies. In Table 4
the path length of SG–RL in Building 1 was almost equal to that in Building 3; however, in Table 3,
the action-switching frequency of Building 3 was larger than that of Building 1, since there were more
narrow passages in Building 3, where the robot needed to quickly change its actions for adapting
to the complex environment (i.e., the robot changed its action to traverse many left and right turns).
As a consequence, as the complexity of test maps increased, the action changes that were essential
for the environment accordingly increased in number, which finally, increased the action-switching
frequency. Action-switching frequency is also related to the performance of learned policy. If the
performance of learned policies improves, the evaluation factor will decrease. Therefore, in Section 4.2,
we present two ways to improve the performance of learned policies (i.e., by modifying reward
functions and by choosing suitable training maps).
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Table 3. Action-switching frequency of SG-RL.

Method Building 1 Building 2 Building 3

SG-RL 0.0492 0.0849 0.0827

Table 4. Path length of SSG and SG–RL.

Method Building 1 Building 2 Building 3

SSG 563.23 958.72 587.58
SG–RL 558.18 931.38 574.68

As shown in Table 4, although SSG could obtain an optimal path over the grid map which was the
discretization of continuous environments, SG–RL could plan even shorter paths, showing that SG–RL
can deal with continuous environments and plan trajectories following kinematical equations. Briefly,
SG–RL without constrained heading changes can work well in continuous environments, which is
suitable for robots navigating in the real world.

Table 5 shows, given the start position and the goal, the average value of H-time of A* and SG–RL
on different maps. The H-time of A* is 195 times that of SG–RL on the Building 2 map and 107 times
that of SG–RL on the Building 3 map. The H-time of SG–RL was below 1 millisecond on large-scale
maps, which can meet the practical requirements and eliminate first-move lag. SG–RL used SSG
with great success to obtain subgoal sequences, which benefitted from reducing the search space by
abstracting topological structures of maps.

Table 5. H-time of A* and SG–RL.

Method Building 1 (ms) Building 2 (ms) Building 3 (ms)

SG–RL 0.117 0.541 0.371
A* 20.828 105.582 39.860

4.1.2. Performance on Dynamic Maps

To evaluate SG–RL’s ability to deal with uncertainties in environments, we added some
random shapes of obstacles along the subgoal sequence. Certainly, by reconstructing the subgoal
graphs and replanning abstract paths, SG–RL could still cope with the new environment.
However, the preprocessing stage plus the path replanning needs some time, which is not suitable for
use online. To tackle the problem elegantly, SG–RL continues using the initial subgoal sequence, but
deals locally with unexpected situations. Owing to the capacity of generalizability, SG–RL behaves
well enough in uncertain environments, as demonstrated in Figure 7. Even though there were
some obstacles blocked in the path between subgoals, the robot controlled by SG–RL could achieve
non-collision moves.
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Figure 7. (a,b) The blue line is the path planned by SSG based on the map without unexpected
obstacles. The black line is the trajectory planned by SG–RL without replanning the subgoal sequence.
The dark-gray region is unpassable, while the light-gray region is traversable for robots. Red regions
deemed close to obstacles denote alert areas. (a) Simplified office map with unexpected obstacles,
(b) real office map with unexpected obstacles; (c,d) Two magnified details. (c) Magnified detail 1,
(d) Magnified detail 2.

4.2. Influence Factors of the Obstacle-Avoiding MDP

During the second phase, SG–RL formalizes the problem of finding smooth and collision-free
trajectories into two MDPs. OA MDP is an important part of the feasible trajectory planner, and it
is difficult to train this MDP since it needs to deal with complex states. Therefore, it is essential to
research its influence factors like reward functions and training environments.

4.2.1. Reward Functions

Firstly, to explore the effects of prior experience in reward functions, we compared the
concise reward with the comparative value reward. The comparative value reward consists of the
concise reward and some supplemental rewards concerning the risk of the current state. Secondly,
to reduce action-switching frequencies, we added action-changing punishment into the original
reward functions.

To reduce the randomness of training, we trained 100 times and randomly collected 60,000 samples
each time. To evaluate the learned obstacle-avoiding policy, we let the robot move from the start
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position to the finish line on the test map (Figure 8). If the robot collided with obstacles, the policy was
considered as a failure, otherwise it was considered a success.
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Figure 8. This is a successful sample of one robot with learned obstacle-avoiding policy completing the
test. The red square is the start position, and the pink dotted line is the finish line. The green square is
the position that the robot arrived at the finish line.

As seen in Table 6, the ratio of successful OA policies with the concise reward is five times
higher than that with the comparative value reward. The other evaluation indicator of concise reward
is over five times higher than that of the comparative value reward. Obviously, training with the
concise reward can more easily get an obstacle avoidance policy than training with the comparative
value reward. The comparative value reward including prior experience makes rewards dense;
however, meanwhile, it brings difficulties for training. Therefore, training with the concise reward can
perform better, and adding prior experience into reward functions may bring some negative effects on
training. The better place to impart to the agent prior experience may be the initialization.

Table 6. Comparison of concise reward and comparative value reward.

Reward Function Ratio of Successful OA
Policies

Ratio of Policies with Action-Switching
Frequency Below 30%

concise reward 45% 38%
comparative value reward 9% 7%

As seen in Table 6, the learned policies did not perform well in the aspect of action-switching
frequencies; thus, we brought the punishment concerning action changes into reward functions to
reduce action-switching frequencies while avoiding obstacles.

The punishment concerning action changes suggests that when current action is different from last
one, the agent obtains a value of−0.2. Then, the entire combined reward has “strong” requirements (i.e.,
avoid obstacles) and “weak” requirements (i.e., reduce action changes) which means that, after “strong”
requirements are satisfied, “weak” requirements can be satisfied as much as possible.

Shown in Table 7, the evaluation factor is the ratio of policies with action-switching frequency
below 30%. Obviously, original reward functions with action-changing punishment can increase
this evaluation factor. Therefore, action-changing punishment does a great favor to both the concise
reward and the comparative value reward, reducing the action-switching frequency by increasing the
performance of learned policies, thereby also demonstrating that the combined rewards work better
than separate ones.



Appl. Sci. 2019, 9, 323 19 of 21

Table 7. Effect of adding action-changing punishment.

Reward Function Without Action-Changing
Punishment

With Action-Changing
Punishment

concise reward 38% 49%
comparative value reward 7% 14%

4.2.2. Different Types of Training Maps

In this section, there are two types of training maps. The first type is the simplified office map
(Figure 7a). The second type is the map with random obstacles, whose size is the same as the simplified
office map. To build the second-type map, we firstly set 0.05 as the ratio of obstacles in the whole
map. We randomly set cells as obstacles one by one under the same probability until the ratio of
obstacles reached 0.05. Random obstacles were uniformly distributed in the space represented in the
map. The test map was the same as the first type. The reward function we used was a concise reward
with action-changing punishment.

As shown in Table 8, using the second type of map can more easily obtain obstacle-avoiding
policies than using the first type. On the map with random obstacles, the robot chose action randomly,
which realized not only randomness in action selection, but also in training environments. It can
be seen that sample sets collected from the second-type map could cover more state-action spaces
than sample sets from the first type, which could help LSPI to converge useful policies. Applying the
second-type map could decrease the action-switching frequency as a whole. Using the second type
meant fewer iteration numbers, which could speed up the training process. The experimental result
shows that using the second type of environment could not only collect more different sample sets,
but could also increase the accuracy of the learned transition probability function, so as to increase the
performance of learned policies and decrease the action-switching frequency.

Table 8. Comparison of different types of training maps.

Reward Function Ratio of Successful
OA Policies

Ratio of Policies with Action-Switching
Frequency Below 30%

Average Iteration
Numbers of LSPI

simplified office map 53% 48% 7.94
map with random obstacles 89% 57% 6.01

5. Conclusions

In this paper, we proposed a hierarchical path-planning framework called SG–RL in continuous
and uncertain environments. By “rational”, we mean (1) efficient path planning to eliminate first-move
lag; (2) collision-free and smooth for agents with kinematic constraints satisfied. SG–RL plans
rational paths in a two-phase manner (i.e., the first phase for global abstract path planning and
the second for feasible trajectory planning). In the first phase, SG–RL uses SSG to generate subgoal
sequences efficiently for eliminating first-move lag, and overcome sparse reward and local minima
trap for LSPI. In the second phase, following kinematical equations, SG–RL uses LSPI to plan
feasible trajectories for agents between adjacent subgoals, and handles unexpected obstacles without
replanning subgoal sequences.

In simulation experiments, firstly, SG–RL was evaluated on realistic and large-scale maps
constructed by laser sensor data. The action-switching frequency was below 10% and the time to
obtain subgoal sequences was between 195 times and 107 times faster than A* on grid maps. The path
length of SG–RL was shorter than that of SSG. Secondly, evaluated on dynamic maps, SG–RL can deal
with uncertainties based on original subgoal sequences without reconstructing subgoal graphs from
the changed map.

We demonstrated that the design of reward functions and the type of training environment are
important factors for learning feasible policies. A concise reward with action-changing punishment
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achieved the best results in the obstacle-avoiding MDP, which means that reward functions with prior
experience may bring difficulties for agents to learn effective policies. The map with random obstacles
increased the accuracy of the learned transition probability function, whose ratio of getting an effective
obstacle avoidance policy was 89%. SG–RL, as a hierarchical path-planning method, combines the
strengths of SSG and LSPI to overcome their limitations, greatly improving the efficiency of finding
rational paths.

In future work, continuous action spaces can be taken into consideration. Specifically, the range
of angular velocity can be [−0.5, 0.5], which means that robots can do more free and complex actions,
such as going backward. In the second phase of SG–RL, if the number of state-action pairs is not huge,
LSPI can keep the relative size of Q-value for every state-action pair to ensure the right action choice.
However, since adding continuous action space will greatly increase the state-action space, it is difficult
for linear basis functions to evaluate the Q-value precisely. Inspired by the idea of asynchronous
advantage Actor-Critic [30], we can use an artificial neural network to approximate state-action value
functions, and use another network to approximate policy functions, which can increase the accuracy
of evaluating the Q-value.
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