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Abstract: With the rapid development of smart handheld devices, wireless communication, and
positioning technologies, location-based service (LBS) has been gaining tremendous popularity in
mobile social networks (MSN). Users’ daily lives are facilitated by the applications of LBS, but users’
privacy leaking hinders the further development of LBS. In order to solve this problem, techniques
such as k-anonymity and l-diversity have been widely adopted. However, most papers that combine
with k-anonymity and l-diversity focus on the security of users’ privacy with little consideration of
service efficiency. In this paper, we firstly treat the relationship between k-anonymity and l-diversity
in the clustering process from a dynamic and global perspective. Then a service category table based
algorithm (SCTB) is designed to identify and calculate l-diversity securely and efficiently, which
promotes the cooperative efficiency of users in LBS query, especially when the preference privacy that
users request in the clustering process have similarities. Finally, theoretical performance analysis and
extensive experimental studies are performed to validate the effectiveness of our SCTB algorithm.

Keywords: location-based service (LBS); k-anonymity; l-diversity; preference privacy

1. Introduction

Due to the rapid advance of mobile communication technologies and modern smart mobiles,
location-based service (LBS) has become ubiquitous in recent years. With positioning technologies
and applications loaded on smart mobiles, users could query location-based service providers (LBSP)
for personalized services according to their locations, such as finding the nearest restaurant, getting a
travel guide, or searching for a nearby market, etc.

Although location-based service brings convenience to users and plays an increasingly important
role in daily life, people are also aware that their private information may be revealed along with
the services provided by LBSP. Hence, the problem of privacy leakage has become a main factor that
hinders the further development of LBS. Therefore, how to protect users’ privacy information while
providing conventional services to users has become a topic of major interest.

Generally speaking, current popular applications on smart phones can be roughly divided into
two categories. One is to hide the “who” aspect completely for LBSP, and just uses the service with
“what” and “where”, such as AMAP. Another is not to hide the “who” for LBSP, and uses the service
with “who”, “what”, and “where”, such as Dianping. Here, “who” means the identity of a user,
“where” means the location of a user, and “what” means the preference of a user. For the wide
application of LBS, users’ sensitive information (i.e., “who”, “where”, “what”) should be protected
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well while interacting with LBSP. For the aspect of “who”, security techniques such as pseudo-ID [1]
and pseudonym are usually used to make users’ real identity indistinguishable, but it is insufficient
to protect users’ sensitive information [2]. For the aspect of “what”, exposure of a user’s preference
may result in the leakage of his sensitive information. For example, if Bob often sends some requests
about the knowledge of coronary disease to LBSP, then LBSP or adversary could infer that Bob or
his family members may have a health problem of coronary disease. For the aspect of “where”,
if Bob often reveals his locations close to a hospital when sending his requests to LBSP, adversary or
LBSP may also infer that Bob may have some health problems. If this sensitive information is leaked,
some commercial organizations or adversary may send drug ads to Bob frequently. To address the
problem of leaking users’ privacy caused by location information, k-anonymity as a classic scheme
was proposed. k-anonymity is an anonymity set which is composed of users with different locations,
and makes one user’s location indistinguishable from the locations of at least k-1 other users at some
point [3]. For example, there are k users simultaneously requesting LBSP.

But k-anonymity is insufficient to guarantee users’ preference privacy when they request the
same preference service in LBS query. There are at least two attacks, the Homogeneity Attack and
Background Knowledge Attack, that can be used to compromise a anonymity set [4]. In order to
overcome this deficiency, the concept of l-diversity, which ensures at least l well-represented values in
each equivalence class, was proposed to protect users’ privacy. Figure 1 shows the way to protect users’
privacy by k-anonymity and l-diversity. There are 6 users (i.e., k = 6) who are distributed in different
locations requesting 4 different services (i.e., l = 4), and LBSP cannot link a specific service to a specific
user. There are many studies adopt both k-anonymity and l-diversity to protect personal privacy in
LBS query. For example, the authors [5] proposed a Dummy-Location-Selection (DLS) algorithm to
protect location privacy and preference privacy. The paper [6] used Snet-Hierarchy to protect personal
privacy by k-anonymity and l-diversity. A personalized spatial cloaking scheme named TTcloak was
proposed in paper [7], users’ location privacy and preference privacy were protected by k-anonymity
and l-diversity respectively in Mobile Social Networks.

Figure 1. Privacy preservation by k-anonymity and l-diversity.

Currently, most of the existing works concerning the LBS query mainly focus on the security of
users’ privacy with little consideration of service efficiency. Based on k-anonymity and l-diversity,
some current research work, such as paper [8], solved the problem that how to calculate the number of
l-diversity without a trusted anonymizer server under a distributed architecture. But the algorithm,
proposed to protect preference privacy in the clustering process, has a high degree of complexity.
The authors [9] mentioned that users’ service should be classified to different service categories, but did
not consider how to identify the classified service categories, and it is inevitable to incur a huge time
cost if using the way of semantic recognition. Therefore, under the system of distributed architecture,
how to identify and calculate l-diversity securely and efficiently in the clustering process is still a
challenge. As far as we know, there is no research on this problem. Furthermore, in real applications,
it is unreasonable to judge the attribute of a user’s location in LBS query from a traditional and static
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viewpoint. For example, restaurants and schools are often seen as sensitive or dense locations because
of the dense population from the traditional point of view [5,9]. However, as we all know, if the time is
not for meal or school day, it is unreasonable for restaurants and schools to be classified as sensitive or
dense locations. Thus, the schemes based on the static viewpoint are not very practical.

In this paper, aiming at addressing the above challenges, we propose service category table
based (SCTB) algorithm to improve clustering efficiency while protecting users’ preference privacy.
Therefore, under the system of distributed architecture, we rigorously explore the calculation procedure
of l-diversity in LBS query, and introduce the service category table into our SCTB algorithm to make
SCTB algorithm not only suitable for a single request but also for continuous request. Different from
previous solutions based on the straightforward static scenario (e.g., a restaurant is unified as sensitive
or dense locations), the scheme in this paper focuses on the process of security and efficient clustering
from a dynamic and global perspective. The main contributions of this paper are as follows.

1. To overcome the vulnerabilities of preference privacy in LBS query, we introduce the service
category table to represent different kinds of preference privacy so that the process of identifying the
kinds of l-diversity can be fast, secure, and computationally inexpensive.

2. Unlike previous works that focus on location privacy and preference privacy independently,
we firstly study the relationships between k and l in the clustering process. Then based on the
relationships, the concepts of relatively dense scenario and relatively sparse scenario from a dynamic
perspective are proposed. Finally, according to different scenarios mentioned above, we give the
corresponding algorithm to improve the success rate of clustering from a global perspective.

3. We propose service category table based (SCTB) algorithm which includes request aggregation
protocol, variety judgment protocol, filtering aggregation protocol, and representative aggregation
protocol to reduce the time cost of clustering process and improve the success rate of clustering groups
while protecting preference privacy of users. We also study the circumstance when users’ preferences
in the clustering process have similarities.

4. We carry out extensive simulations to evaluate the performance of our SCTB algorithm.

2. Related Work

In this section, we mainly focus on the current situation of LBS privacy protection. There have
been many kinds of research focus on how to deal with LBS privacy protection, and we interpret them
from three aspects: Technology, architecture, and continuity.

2.1. Technologies of LBS Privacy Preservation

From the perspective of technologies that most recent works proposed for protecting privacy
in LBS, they can be roughly classified into two main categories: Obfuscation-based approach and
cryptographic-based approach. Obfuscation-based approach is mainly used to confuse LBSP. For this
purpose, one way is to distort information based on the original and real users themselves [10–12],
such as adding noise in the contents of users’ requests or expanding the area of users’ real
locations. Another way is to use some methods to confuse LBSP through a combination with other
users, such as Mix zone [13], spatial cloaking [3], temporal cloaking [14,15], and Dummy [16,17].
Cryptographic-based approach is mainly used to make users’ information (include location, preference,
etc.) invisible for adversaries when users send requests to LBSP. Recently, Homomorphic Encryption
for privacy protection is a research hotspot, which can prevent the disclosure of users’ information
and achieve a more stringent privacy protection. For example, in paper [18], the POI (i.e., the point of
interest) could be calculated by LBSP without actually knowing users’ locations. The BV Homomorphic
Encryption (BVHE) was used in paper [8] to calculate users’ request service vector in aggregation
process. However, though a stringent privacy protection can be provide by BVHE, service efficiency
cannot be ignored. Thus, how to improve service efficiency while protecting users’ privacy (i.e.,
location privacy, preference privacy) is still an important problem that needs to be addressed.
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2.2. Architectures of LBS Privacy Preservation

There are two main categories proposed by most recent works for protecting privacy in LBS
from the perspective of the system architecture: TTP-based approach [19] and TTP-free approach [20].
TTP-based approach takes an anonymizer as a trusted third part (TTP), and the anonymizer usually
plays a role to confuse LBSP. The anonymizer often adopts some technologies, such as Cloaking
and Dummy, to protect users’ information before sending the requests to LBSP [21,22]. TTP-free
approach does not rely on a trusted third part, users usually adopt some methods, such as P2P [23,24]
or encounter scheme [5,25], to achieve k-anonymity, and users’ information is often exchanged
to confuse LBSP. It is really hard to say which of the two approaches mentioned above is better.
TTP-based approach can be applied to almost all scenarios no matter users’ distribution. However,
the disadvantage is also obvious, that is the third part can be the single point of failure and the
bottleneck of the whole system. The amount of private information exposed to a third part can be
decreased by adopting TTP-free approach. However, due to the limitation of communication range
of users’ mobile devices, TTP-free approach may not satisfy the requirement for every mobile user.
But with the development of smart mobile and communication technology, the application of TTP-free
approach would be more extensive due to the advantages of distributed architecture.

2.3. Continuity of LBS Privacy Preservation

Sporadic privacy protection [8] and continuous privacy protection [26,27] are two important
research respects. Sporadic privacy protection is often used for the case that users do not frequently
use LBS services for a period of time. The schemes of sporadic privacy protection mainly focus on
users’ single process of privacy protection with LBSP, and apply to the situations when the degree of
association between the two requests is low. Such as paper [28], a scheme named precision-based LPPM
was proposed to reduce the precision of users’ locations sent to LBSP. Continuous privacy protection
is represented by trajectory privacy protection, which treats the problem of privacy protection from
the view of users’ trajectory [29]. The schemes of continuous privacy protection usually take a user’s
locations of a certain period as the object of protection, thus an adversary could use the spatial and
temporal correlations on users’ locations to infer their private information.

3. Preliminaries

In this section, we give the basic concepts and meaning of symbols.

3.1. BV Homomorphic Encryption

BV homomorphic encryption (BVHE) is based on the Ring Learning With Errors (RLWE)
problem [30], and supports both additive homomorphisms and multiplicative homomorphisms.
The main algorithms of BVHE include key generation (KEYGEN), encryption (ENC), evaluate (EVAL),
and decryption (DEC). The details are as follows.

• KEYGEN: For some given parameters n, prime q, error parameter δ, and f (x) = xn + 1 . n is the
power of 2, and q ≡ 1 mod 2n . The Ring R = Z[X]/〈 f (x)〉 and the Ring Rq = Zq[x]/〈 f (x)〉 can
be selected by using n, q and f (x). A discrete Gaussian error distribution χ = DZn ,δ can be defined
by taking δ as the variance, where the integer D > 0 . The message space Rt = Zt[x]/〈 f (x)〉 can
also be defined by choosing prime t ∈ Z∗q . Under the setting above, a public-private key pair
(pk, sk) can be generated by randomly choosing (si, ei) from χ and a1 from Rq, where ski = si, pki
= (a0, a1), and a0 = −(a1si + tei).

• ENC: For a plaintext m ∈ Rq that needs to be encrypted, the encryption process (i.e., C = Epk(m) )
is as follows: The ciphertext C = (c0, c1) can be calculated by choosing samples u← χ, and f , g←
χ, where c0 = a0u + tg + m and c1 = a1u + t f .
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• EVAL: Taking additive homomorphisms as an example. For some given plaintexts m1, m2,
and m3. If m3 = m1 + m2, then the Formula (1) is hold.

DEC(ENC(m3)) = DEC(ENC(m1) + ENC(m2)). (1)

• DEC: For a ciphertext m that needs to be decrypted, the decryption process (i.e., m = Dsk(C)) is
as follows: The corresponding plaintext of m can be calculated by m = (c0 + c1 × si) mod t.

3.2. Service Category

In this paper, the service requests of users are classified into different kinds of service category.
These different kinds of service category are distinct and have no semantic relationship, which
means they are not semantically similar [31]. Such as banking, restaurant, bus station, post office,
and supermarket, etc. But different from the paper [8,9] and others, we use the service category table
to denote the various kinds of service category. The details of the service category table are as follows.

One kind of service category, which is symbolized by Li in this paper, is represented by a binary
number of M bits. According to the kinds of service category, the binary number of M bits are divided
into different units, which is symbolized by CU. Each CU is composed of B bits, in which the last
bit is 1, and the other bits are 0. Under the setting above, the total kinds of service category, which
is symbolized by L, can be represented in a service category table, and L also can be computed as
L = M/B. B must be divisible by M, which means L must be an integer, and the relation between
L and B should meet the condition that 2B > L. Note that L is usually used to represent a unified
threshold of l-diversity (i.e., thl) in a region. For example, when the total kinds of service category
L = 7, it can be represented by a service category table as shown in Figure 2.

Figure 2. Service Category Table when L = 7.

The CU in the service category table above is 001, which is composed of 3-bit binary numbers.
The maximum value of the CU is 111, which means the redundancy of the CU is 7, and it allows 7 of
the same kinds of service category to add. Of course, when the total kinds of service category that need
to be represented are bigger than 7, which means the unified threshold thl > 7 in a region. We only
need to redefine the table structure according to the nature of binary numbers. For example, if L = 10,
then the corresponding CU of this service category table is 0001. Obviously, the CU of this service
category table could be 00001 or 000001 and so on, but we follow the principle of minimization.

3.3. Calculation of Service Categories

Under the setting above, we explain how to figure out the different kinds of service category.
Here, we also take the total kinds of service category L = 7 as an example.

When all bits of a CU are 1, it represents the arithmetic element of a Li. The arithmetic element is
symbolized by AEi in this paper. Figure 3 shows the corresponding AE1 of L1 when L = 7.

Figure 3. AE1 of L1 when L = 7.
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Assume that a random sum SLi = ∑k
i=1 Li, which is obtained by adding some different Li together

when L = 7. As shown in Figure 4.

Figure 4. A random sum of Li when L = 7.

Then, we can know whether there is an ith kind of service category by SCi = SLi
⋂

AEi. If the
bits in the SCi are all 0, it means there is no ith kind of service category in SLi. Otherwise, the count
number, which is symbolized by NSC and used for counting the kinds of service category, should be
added by 1. Of course, the initial value of NSC is 0. Though the final result of NSC, we can figure out
how many different kinds of service category in SLi. From the Figure 4, we can know the final result
of NSC is 6, which means there are 6 kinds of service category (i.e., l = 6). Note that, the number of
different Li can also be figured out from Figure 4, which is 14. Therefore, in sporadic privacy protection,
under the premise that one user sends one kind of service category in a clustering process, we could
compare the number of Li with the number of users in a clustering group, then whether there is an
occurrence of overflow can be determined (i.e., the number of Li equals the number of users normally).

3.4. The Relationship of k and l

As we all know, k-anonymity and l-diversity are classical techniques used to protect privacy in
LBS. Many studies and privacy approaches were proposed based on k-anonymity and l-diversity in
sporadic privacy protection. The combination of k-anonymity and l-diversity is to ensure that k users
request at least l services in a clustering process of LBS query, which is shown as Figure 5. But the
relationships between k and l are needed to be rigorously explored.

Theorem 1. In a clustering process, the number of diversity is not more than the number of anonymity: l ≤ k.

Proof of Theorem 1. In sporadic privacy protection, with the premise that one user sends one kind
of service category in a clustering process. As shown in Figure 5. One user corresponds to one
kind of service category, and some users may have the same kind of service category. Therefore,
the number of diversity is not more than the number of anonymity (i.e., the number of users) in a
clustering group.

Theorem 2. In a clustering process, k-anonymity is easier to be satisfied than l-diversity.

Proof of Theorem 2. In sporadic privacy protection, with the premise that one user sends one kind
of service category in a clustering process. Under the system architecture of TTP-free, assume that
there already has a clustering group which does not yet achieve the conditions of clustering success
(i.e., k < thk and l < thl). The condition thk is easier to be satisfied than the condition thl , the reason is
that finding a new user is easier than finding a new user who must be with a different kind of service
category (i.e., different l) from that clustering group.

Theorem 3. Under the same condition thk, bigger thl can provide better protection in LBS query.

Proof of Theorem 3. By comparing Figures 5 and 6, we can see that the condition thk is both 5,
the condition thl of Figure 5 is 3, and the condition thl of Figure 6 is 4. Assume that the kinds of service
category la, lb, lc are the same in Figures 5 and 6, if an attacker owns some background knowledge, and
he can ensure Alice absolutely not request la and lb. Then the attacker may deduce which is Alice from
Figure 5 by using his background knowledge. But under the same setting, he cannot ensure which is
Alice from Figure 6.
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Figure 5. thk = 5 and thl = 3.

Figure 6. thk = 5 and thl = 4.

4. Motivation and System Model

4.1. Motivation

As we all know, according to the characteristic of homomorphic encryption, if there are too many
multiplications on ciphertext, the computational complexity will be high and the accuracy of the
original message will be affected by the noise generated during multiplications process. Different from
paper [8], which adopted multiplicative homomorphism to calculate the kinds of service category
in the clustering process. In this paper, we adopt additive homomorphism to calculate the kinds of
service category, the noise as well as the computational complexity can be reduced.

In real applications, under the condition of specific time and space, users usually have common
characteristics about interests or demands, so the kinds of service category that users request for LBS
may be similar or even identical. For example, suppose that the site is an office building and the period
is just off work time, the kinds of service category that users request are more likely as a restaurant
or a supermarket rather than a post office or a bank (i.e., these departments or places are no longer
within normal working hours). In addition, there is almost not only one clustering group in a region
under normal circumstances. From a global perspective, the clustering process should be selective to
improve the whole success rate of clustering in this region. The followings are two different scenarios
that often appear.

Scenario 1: As shown in Figure 7, assume that there are many clustering groups in region LA0,
the thk is 6 and the thl is 4. If the clustering group CP1 already contains 6 users and the kinds of service
category are 3, which means k ≥ thk but l < thl . When the new user Ua wants to participate in the
clustering process of CP1, Ua’s kind of service category is the same as one of those kinds of service
category in CP1. We can know that the participating of Ua cannot help CP1 to complete clustering,
on the contrary, it just increases the load of CP1 and influences the success rate of other clustering
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groups in region LA0. This scenario is what we define as a relatively dense scenario, which is more
likely happen in a region with a dense population of specific time and space, rather than in an area
with dense population inevitably.

Figure 7. Scenario 1.

Scenario 2: As shown in Figure 8. Assume that there are two clustering groups in region LA1,
the thk is 4 and the thl is 3. We also assume that the user Ua is the initiator of the clustering group
CP1, which contains 3 users, and the kinds of service category are 2. The user Ud is the initiator of
the clustering group CP2, which contains 2 users, and the kinds of service category are 2. If there
are no other users who want to join in the two clustering groups above (i.e., CP1 and CP2) within
a certain period of time (i.e., the waiting time before the termination time), both the two clustering
process cannot complete clustering, and only wait for the termination time of the two clustering
groups. This scenario is what we define as a relatively sparse scenario, which is more likely happen
in an area with a sparse population of specific time and space, rather than in an area with sparse
population inevitably.

Figure 8. Scenario 2.

4.2. System Model

The system model of this paper is mainly composed of three parts: Service Category Server,
Mobile Users, and Location-Based Service Provider. The framework is shown as Figure 9. The system
architecture we adopt in this paper is TTP-free, which means there is no trusted anonymizer as an
intermediary in our system model, and users can communicate with each other within a distance of
communication. The details of our model are as follows.

4.2.1. Service Category Server (SCS)

It has four missions in this paper. Firstly, SCS should compute and prepare pseudo-IDs PIDi
= {PID1, PID2, ...} for users registration, the details can be referred to the paper [8]. Secondly,
SCS generates the parameters (n, q, δ, R, Rq) of BVHE, which enable users to generate a public-private
key pair (pk, sk). Thirdly, according to the different thl in different regions, SCS generates the
corresponding service category table. Fourthly, SCS regularly updates the corresponding relationship
between the kind of service category and binary number in the table, and users’ preference privacy can



Appl. Sci. 2019, 9, 316 9 of 23

be well protected in LBS query by this way. Note that how to make reasonable value thl in different
regions is out of our discussion, the reasonable value thl in a region may be obtained from the analysis
of big data or other approaches, but in this paper, we should make sure that there are only one pair
thresholds (i.e., thk, thl) in one region.

Figure 9. System model.

4.2.2. Mobile Users

If a user wants to obtain service from the LBSP in a region, he must register himself to the SCS,
and there are also three missions for the user. Firstly, he gets his pseudo-ID PIDi from SCS, and the
pseudo-ID PIDi is unique and different from other users. Secondly, according to the BVHE parameters
(n, q, δ, R, Rq), the user generates his own public-private key pair (pki, ski) as explained in Section 3.1.
Thirdly, the user should ask for the corresponding kind of service category according to his preference
from SCS at this moment. Note that, in this paper, there is not an anonymizer as a trusted intermediary
who passes information between users and LBSP, and no dummy in the clustering process. Therefore,
if a user wants to obtain service from the LBSP, he should firstly aggregate other users’ requests to
meet the conditions of k-anonymity and l-diversity. Then these requests would be sent together to the
LBSP by their representative. In the clustering process of these users, when the clustering group finally
achieves the condition of success (i.e., k ≥ thk and l ≥ thl), the representative of the clustering group
firstly will inform these users to prepare their request packets. Then he will repackage their packets as
an aggregated package. Finally, he will send the aggregated package to the LBSP of this region.

4.2.3. Location Based Service Provider (LBSP)

Without loss of generality, the main role of LBSP is to process users’ request packets and return
a list of results to users. Note that there are two main ways to return the results back to these users.
One way is to return the results to the representative user, then he distributes the results to his member
users. The other way is to return the results to his member users directly by their pseudo-IDs, which is
adopted in this paper to reduce the load of the representative user.

In our system model, all roles must follow the relevant regulations and agreements in the LBS
system, which means they are all honest− but− curious. For LBSP, it is curious and wants to deduce
users’ locations and preferences (i.e., their kinds of service category). For a user, he also has curiosity
and hopes to deduce other users’ request contents including their locations and preferences. But the
collusion among users and the collusion between users and LBSP are out of the scope of discussion in
this paper.

5. Algorithm Design

In this section, we firstly describe the scheme of SCTB. Then SCTB proposed in this paper
is explained, which includes request aggregation protocol, variety judgment protocol, filtering
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aggregation protocol, and representative aggregation protocol. Lastly, we make a summary of our
service category table based (SCTB) algorithm.

5.1. The Algorithm Scheme

For the security parameters thk and thl in a region, the service category server bootstraps the
LBS system and initializes it. If a user wants to obtain service from the LBS system, he must register
himself to the LBS system. Before sending a request to the LBSP, he should firstly unite with other
k − 1 users to become a clustering group by using the request aggregation protocol. Then the kinds
of service category l in the clustering group can be calculated by the variety judgment protocol.
The representative user of the clustering group firstly should judge the relationship between l and
thl . If l ≥ thl , the representative user will judge the relationship between k and thk. Then there will be
two results: If k ≥ thk, which means the clustering group has met the conditions of clustering success,
the clustering process is ended. If k < thk, which means the clustering group has not met the condition
of clustering success, the clustering group will wait for new users to join to meet the condition (i.e.,
k ≥ thk) until timeout. If l < thl , which means the clustering group has not met the condition of
clustering success, the representative user will choose filtering aggregation protocol or representative
aggregation protocol by judging the relationship between k and thk for improving the success rate of
clustering. Note that, if a clustering group does not meet the conditions (i.e., k ≥ thk and l ≥ thl) and
runs into a timeout, the clustering process of this group is a failure, and no service request will be sent
to LBSP. The scheme of our SCTB algorithm is shown as Figure 10.

5.2. Request Aggregation Protocol

Generally speaking, assume that a user U1 is not in a clustering group of other users and wants to
launch a request to the LBSP in his region. U1 should unite with other k− 1 users to form a clustering
group. Algorithm 1 describes the pseudo code of the request aggregation protocol. The detailed
explanation is as follows.

User U1 firstly broadcasts the request aggregating message and sets the termination time T, and
T starts counting down. If there are some users who want to join in the clustering process of U1,
these users should return their pseudo-IDs to U1. Then U1 will count the number k of users who have
responded. If the number (include U1 himself) k ≥ 2, U1 takes himself as the representative of the
clustering group, which is symbolized by PIDR

1 , he names the clustering group as PIDCP1
1 . When

the number of sums SLi is obtained by one clustering group (i.e., this sum is obtained only from
PIDCP1

1 ), the number of groups NCGPIDR
1
= 1. After the setting above, PIDR

1 firstly uses his public

key pk1 to encrypt his kind of service category L1
i . Then PIDR

1 gives his pk1 and pk1(L1
i ) to members

of this clustering group. Finally, the members use pk1 to encrypt their kinds of service category and
return the result pk1(SLi) = pk1(L1

i ) + pk1(L2
i ) + ... + pk1(Lk

i ) = pk1(L1
i + L2

i + ... + Lk
i ) to U1, where

SLi = ∑k
n=1 Ln

i , 1 ≤ i ≤ thl . PIDR
1 names this result of the clustering group as pk1(SLi)

CP1, which is
the encrypted sum of kinds of service category in PIDCP1

1 . PIDR
1 firstly uses his private key sk1 to

decrypt pk1(SLi) and gets SLi. Then PIDR
1 uses variety judgment protocol to calculate the kinds of

service category l in PIDCP1
1 . Note that here the kinds of service category l ≥ 2. Otherwise, U1 would

know other users’ kinds of service category in the current clustering group. There will be four cases as
follows, and here assume that T > 0.



Appl. Sci. 2019, 9, 316 11 of 23

Figure 10. The scheme of service category table based algorithm (SCTB).

Case 1: k ≥ thk and l ≥ thl . U1 firstly notifies the members in PIDCP1
1 to prepare their inputs

based on their kinds of service category. Then he repackages their packets and gets an aggregated
package, which is symbolized by Ag. As the respective, U1 sends Ag to the LBSP.

Case 2: k < thk and l ≥ thl . As explained in Section 3.4, k-anonymity is easier to be satisfied than
l-diversity. So waiting for new users to join is a better choice for PIDCP1

1 . Under this situation, U1 does
not need to judge new users’ kinds of service category, and just wait for new users’ joining to meet the
condition thk.

Case 3: k ≥ thk and l < thl . We know this case is the same as scenario 1, the filtering aggregation
protocol will be carried out. The reasons why we choose it will be explained when we describe it.

Case 4: k < thk and l < thl . We know this case is the same as scenario 2, the representative
aggregation protocol will be carried out. The reasons why we choose it will be also explained when
we describe it.
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Algorithm 1 Requests aggregation

Input: Initiator, Service category table, Users
Output: Representative, l, k
1: Initiator U1 broadcasts the request aggregating message, and sets the termination time T;
2: if T > 0 then

3: {PID1,PID2,...,PIDk}→ U1;
4: U1 gets the number of users k;
5: if k ≥ 2 then

6: The representative = PIDR
1 , the group name = PIDCP1

1 , NCGPIDR
1
= 1;

7: else

8: The clustering process is a failure;
9: end if

10: pk1 and pk1(L1
i )→ PID2

pk1 and pk1(L1
i ) + pk1(L2

i )→ PID3

...

finally pk1(SLi)→ PIDR
1 ;

11: PIDR
1 names pk1(SLi) as pk1(SLi)

CP1, and uses sk1 to get SLi;
12: PIDR

1 uses variety judgment protocol, and gets l;
13: if l ≥ 2 then

14: if k ≥ thk and l ≥ thl then

15: The clustering process is a success, the remaining work will be performed;
16: end if
17: if k < thk and l ≥ thl then

18: Waiting for new users to join;
19: end if
20: if k ≥ thk and l < thl then

21: Filtering aggregation protocol is adopted;
22: end if
23: if k < thk and l < thl then

24: Representative aggregation protocol is adopted;
25: end if
26: else

27: The clustering process is a failure;
28: end if
29: end if

5.3. Variety Judgment Protocol

The purpose of this variety judgment protocol is to figure out the kinds of service category l in the
clustering process. When there is only one sum SLi in a clustering group, we know the NCGPIDR

1
= 1

just as the illustration in request aggregation protocol. After PIDR
1 gets SLi from PIDCP1

1 , he would
use the way as explained in Section 3.3 to figure out the result of NSC, which represents the kinds of
service category l in the clustering process of PIDCP1

1 at this moment. When there is not only one sum
SLi in this clustering group, such as two sums, then the representative sets NCGPIDR

1
= 2, and this

case will be explained in representative aggregation protocol. After PIDR
1 gets the combined sum SLi

from two clustering groups, he also uses the way as explained in Section 3.3 to figure out the result of
NSC. Algorithm 2 describes the pseudo code of the variety judgment protocol.
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Algorithm 2 Variety judgment

Input: PIDR
1 ,PIDCP1

1 , SLi, NCGPIDR
1

,
Output: l
1: if NCGPIDR

1
= 1 then

2: PIDR
1 figures out the result of NSC from SLi in PIDCP1

1 ;
3: end if
4: if NCGPIDR

1
> 1 then

5: PIDR
1 figures out the result of NSC from combined sum SLi;

6: end if

5.4. Filtering Aggregation Protocol

According to the given security parameters thk and thl in a region, when a clustering group
has already met the condition thk but not met thl . If the success of this clustering group (i.e., meet
the conditions thk and thl) needs to be promoted, the clustering group should make the new users
who want to join in the clustering group have different kinds of service category rather than those
kinds of service category that the clustering group already has. Therefore, the purpose of our filtering
aggregation protocol is to choose new users selectively. There are two reasons for adopting this method:
Firstly, it is no use for increasing the success probability of the clustering group when the new users
have the same kinds of service category as the clustering group already has, on the contrary, it just
increases the load of the clustering group. For example, suppose that the thk = 8 and thl = 5 in
a region, and a clustering group now under the conditions that k = 8 and l = 3. Assume that the
clustering group meets the conditions thk and thl finally, k = 15 and l = 5 may be the final result of the
clustering group, which obviously generates more traffic and computation load than the result k = 10
and l = 5 by using our filtering aggregation protocol. And it is more effective especially when users’
kinds of service category in LBS query are similar or even identical under a certain time and space,
which will be proved in the Section 6. Secondly, it will influence the global success rate of clustering
groups in this region. In the condition of the same thk and thl , if a clustering group contains too many
users, obviously, other clustering groups cannot cluster successfully due to lack of users.

From the variety judgment protocol, we can know the number of l and k in PIDCP1
1 . Assume that

the case is k ≥ thk and l < thl , when a new user PIDnew wants to join in PIDCP1
1 . The representative

PIDR
1 firstly gives his pk1 and pk1(SLi) to PIDnew. Then PIDnew uses pk1 to encrypt his kind of service

category Lnew
i and obtains the intermediate result pkinter

1 (SLi) = pk1(SLi) + pk1(Lnew
i ). Finally, PIDnew

returns pkinter
1 (SLi) to PIDR

1 , and PIDR
1 recalculates the current value of NSC, which is symbolized by

NSCinter. If NSCinter > NSC, we know the new user’s kind of service category is different from the
kinds of service category that PIDCP1

1 already has, and it is helpful to promote the success of PIDCP1
1 .

Therefore, the representative PIDR
1 allows the new user PIDnew to join. Otherwise, PIDR

1 refuses
PIDnew. Finally, if the current l ≥ thl , the clustering process is a success, or else PIDCP1

1 waits for more
new users to join. Algorithm 3 describes the pseudo code of the filtering aggregation protocol.

Security analysis: It will be explained from two sides in the clustering process.

1. From the perspective of the single newly-joining user who wants to join in PIDCP1
1 : Because

PIDR
1 sends the encrypted result pk1(SLi) to the single newly-joining user PIDnew, PIDnew

cannot infer the existing kinds of service category contained in PIDR
1 unless he can decrypt

pk1(SLi).
2. From the perspective of the clustering group: If the user PIDnew submits the kind of service

category which is different from those kinds of service category that PIDCP1
1 already has (i.e.,

NSCinter > NSC), the representative U1 cannot know the exact kind of service category because
of the different Li.
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If the user PIDnew submits the kind of service category which is the same as one of these kinds
of service category that the PIDCP1

1 already has (i.e., NSCinter = NSC), there will be two cases
as follows.

(a) If the kind of service category of user PIDnew is same as the representative U1, U1 will know
the kind of service category of user PIDnew because of the same Li;

(b) If the kind of service category of user PIDnew is not the same as the representative U1, which
means it is the same as one of other users in PIDCP1

1 , the representative U1 cannot know the
exact kind of service category of user PIDnew because of the different Li.

But due to the regulation of the filtering aggregation protocol, if NSCinter = NSC,
the representative U1 has to refuse PIDnew. Therefore, he cannot do further exploration for
user PIDnew. Because the corresponding relationship between the kind of service category and
binary number is not unchangeable, although the representative U1 has deduced the meaning of
Li of PIDnew in this clustering process, he cannot make sure that the meaning of Li is the same as
previous or subsequent clustering process.

Algorithm 3 Filtering aggregation

Input: New users, pk1(SLi)
Output: New l
1: while T > 0 and l < thl do

2: PIDR
1 continue broadcasting the request aggregating message, the new user PIDnew wants to

join;
3: pk1 and pk1(SLi)→ PIDnew

pkinter
1 (SLi)→ PIDR

1 ;
4: if NSCinter > NSC then

5: The join of PIDnew is agreed;
6: else

7: The join of PIDnew is refused;
8: end if
9: end while

5.5. Representative Aggregation Protocol

According to the given security parameters thk and thl in a region, both thk and thl are not met in
an original clustering group. If the success of this clustering group needs to be promoted, the method
is to combine with other clustering groups that have the same conditions (i.e., k < thk, l < thl).
The reason is that the cooperation among clustering groups could have a higher success probability to
promote the success of the original clustering group than just waiting for new users to join. Besides,
if other clustering groups nearby are found finally, the time cost of clustering will also be reduced.
When the users’ kinds of service category are similar or even identical in a certain time and space, for
the original clustering group, newly-joining users are more likely to contribute to the value of k rather
than the value of l. Note that our method is not to prevent new users from joining, but to find other
clustering groups as the first choice.

From the variety judgment protocol, we can know the number of l and k in PIDCP1
1 . Assume

that the case is k < thk and l < thl . PIDR
1 begins to broadcast the representative aggregating message,

but different from request aggregating message, the representative aggregating message can only
be responded by representatives. Suppose that there is a clustering group PIDCP2

b with the same
conditions (i.e., k < thk, l < thl) as PIDCP1

1 , and its representative PIDR
b responds to PIDR

1 . Firstly,
PIDR

1 will send his pk1 to PIDR
b , then PIDR

b sends his current set of pseudo-IDs and encrypted
sum pk1(SLi) back to PIDR

1 . Note that this SLi is from decrypted pkb(SLi)
CP2. Then, PIDR

1 will
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set NCGPIDR
1
= 2 and recalculate the value of NSC. Finally, the current NSC is figured out by the

combined sum which is obtained by adding SLi of PIDCP1
1 and SLi of PIDCP2

b . According to the
relationship of current k and l between thk and thl , PIDR

1 chooses the different protocol mentioned
above to finish the subsequent process. Algorithm 4 describes the pseudo code of the representative
aggregation protocol.

Algorithm 4 Representative aggregation

Input: New clustering groups, pk1(SLi)
Output: New l, New k
1: while T > 0 , k < thk and l < thl do

2: PIDR
1 broadcasts the representative aggregating message, then the PIDR

b responds;
3: pk1 → PIDR

b
4: The pseudo-IDs set of PIDR

b and pk1(SLi)→ PIDR
1 ;

5: NCGPIDR
1
= 2, and PIDR

1 gets current k and l from combined sum SLi;
6: if k ≥ thk and l ≥ thl then

7: The clustering process is a success, the remaining work will be performed;
8: end if
9: if k < thk and l ≥ thl then

10: Waiting for new users to join;
11: end if
12: if k ≥ thk and l < thl then

13: Filtering aggregation protocol is adopted;
14: end if
15: if k < thk and l < thl then

16: Representative aggregation protocol is adopted;
17: end if
18: end while

5.6. Service Category Table Based Algorithm

Algorithm 5 summarizes the strategies of the service category table based (SCTB) algorithm in this
paper. If the user Ui wants to send a request to the LBSP. Firstly, he should aggregate other k− 1 users
by using the request aggregation protocol. If there are some users who agree to form a clustering group
together with the user Ui, he will become the representative. Secondly, the representative uses variety
judgment protocol to figure out the kinds of service category in the clustering group. Finally, from the
comparison between (k,l) and (thk,thl), Ui chooses different strategies according to the following four
kinds of situations:

(i) k ≥ thk and l ≥ thl , the clustering process is a success;
(ii) k < thk and l ≥ thl , waiting for new users to join;
(iii) k ≥ thk and l < thl ; using filtering aggregation protocol for the subsequent processing;
(iv) k < thk and l < thl , using representative aggregation protocol for the subsequent processing.
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Algorithm 5 Service Category Table Based (SCTB) algorithm

1: Broadcast the aggregating message;
2: Aggregate uers’ requests by using request aggregation protocol;
3: Figure out the current k and l by using variety judgment protocol;
4: if k ≥ thk and l ≥ thl then

5: The clustering process is a a success, the remaining work will be performed;
6: end if
7: while T > 0 do

8: if k < thk and l ≥ thl then

9: Waiting for new users to join;
10: end if
11: if k ≥ thk and l < thl then

12: Filtering aggregation protocol is adopted;
13: end if
14: if k < thk and l < thl then

15: Representative aggregation protocol is adopted;
16: end if
17: end while

6. Evaluation

In this section, the efficiency and effectiveness of our SCTB algorithm are experimentally evaluated.
Firstly, we analyze the computational cost of the PLAM [8] and our SCTB on figuring out the kinds of
service category in the clustering process. Then we describe the simulation environment and give the
simulation results.

6.1. Performance Analysis

Assume that there is a clustering process which contains kc users and a data-pool which contains
lc different kinds of service category, kc and lc are both random constant. Because PLAM, LLB, and our
SCTB adopt the system architecture of TTP-free, and the kinds of service category in a clustering group
are both figured out by the representative of the clustering group, the two algorithms (i.e., PLAM and
LLB algorithm) are used for comparison. We assume that all conditions are the same and meet the
premise that one user sends one kind of service category in a clustering process. For example, user Bob
only sends one request about finding a restaurant in one clustering process, but he cannot send the
request that contains both finding a restaurant and a hospital at the same time. We now give the
computational cost of our SCTB and PLAM about the process of identifying and calculating l-diversity.

Claim 1. In a clustering process, ignoring the computational complexity of decryption, the computational
complexity of SCTB on figuring out l-diversity is O(kcE) + O(lc).

Proof of Claim 1. Firstly, the kc users should add together to form pk1(SLi), and pk1 is the public
key of the representative. We can know the computational complexity is O(kcE) [32]. Then we
decrypt pk1(SLi) and get SLi, the NSC can be figured out by SCi = SLi

⋂
AEi. Because the

number of AEi is equal to lc, and lc is the total kinds of service category that can be represented.
Therefore, the computational complexity is O(lc). Ignoring the computational complexity of decryption,
the computational complexity of this process is O(kcE) + O(lc).

Claim 2. In a clustering process, ignoring the computational complexity of decryption, the computational
complexity of PLAM on figuring out l-diversity is kcO(lc) + lcO(kcEkc).
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Proof of Claim 2. Under the same settings as above. PLAM adopts a set ai = (ai1, ai2, ..., ain) to
denote different kinds of service category that available to a useri, and the set also means the
total kinds of service category that can be represented is n, where the number n is equivalent to
lc. Firstly, the representative should calculate pk(āi) = (pk(1− ai1), pk(1− ai2), ..., pk(1− ain)), and
we know the computational complexity is kcO(lc). Then users cooperatively exchange pk(āi) and

calculate
kc
∏
i=1

pk(āi) = (
kc
∏
i=1

pk(1− ai1), ...,
kc
∏
i=1

pk(1− ain)), and we know the computational complexity

of
kc
∏
i=1

pk(1 − ai1)is O(kcEkc). Therefore, the computational complexity of
kc
∏
i=1

pk(āi) is lcO(kcEkc).

Ignoring the computational complexity of decryption, the computational complexity of this process is
kcO(lc) + lcO(kcEkc).

According to above-mentioned analysis, we can know that the computational complexity of our
SCTB is smaller than the PLAM. Therefore, it is helpful to finish the clustering process as well as reduce
the communication overhead among users.

6.2. Performance Metrics

In order to evaluate the performance and effectiveness of the proposed algorithm, some metrics
of this paper are explained in this subsection.

Clustering e f f iciency is a comprehensive evaluation for clustering groups in a region, and it is
mainly composed of response time and success rate in this paper.

Response time is used to measure the time taken for a clustering group from initiating clustering
to meet the conditions of k-anonymity and l-diversity (i.e., thk and thl ) in a region. The smaller the
response time, the more efficiency of a clustering group. It also means the faster a clustering group can
send the aggregated package to LBSP.

Success rate is used to measure the ratio of the number of clustering groups that meet the
conditions thk and thl to the number of all clustering groups in a region [3]. The higher the success
rate, the more efficiency of cluster groups. It also means more users’ requests can be sent to LBSP.

6.3. Simulation and Results

The essence of the SCTB algorithm is to improve clustering efficiency while protecting privacy.
Therefore, the extensive simulations are conducted for evaluating the performance of our algorithm.
In this section, we describe the details of our simulation environment, then give the simulation results
and analysis.

6.3.1. Simulation Setup

We use Matlab R2018a to conduct our simulations, and run all algorithms on a local machine with
an Intel Core-i5 2.5 GHz, 6 GB RAM, and Microsoft Windows 7 OS. Assume that there is a region A of
size 10 km× 10 km with 100× 100 locations. We construct a full-mesh network consisting of 100× 100
nodes to simulate the locations in region A. To evaluate the effectiveness of our SCTB algorithm, we
introduce the concept of service category similarity, which is symbolized by LS in this paper. Suppose
that under normal circumstances, the kind of service category of user A is not related to the kind of
service category of user B, then the service category similarity between user A and user B is LS = 0.
Assume that under certain space-time conditions, the probability of user A’s kind of service category is
half the same as user B’s, then we denote the service category similarity between user A and user B is
LS = 0.5. We perform the simulation in the following four different scenarios and average performance
results were obtained for running each scenario for 30 min.

Scenario-1: There are 50× 100 users with transmission radius of tr = 50 m randomly distributed
in region A. Assume that the total kinds of service category in the data-pool are 16. All users should
join in the clustering process, if a user Ua receives a request aggregating massage when he wants a LBS
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query, he will response for it and join in that clustering group. Otherwise, Ua will broadcast the request
aggregating message as an initiator, and wait for other users to join. A certain number of users who
send requests at a time interval. The ratio of the certain number of users to the total number of users
is 1/10, and the time interval is 0.1s. The rate of thl to thk is thl = thk/2. We set the service category
similarity LS = 0, which means the probability of service category similarity among users is 0%.

Scenario-2: We set the service category similarity LS = 0.5, which means the probability of service
category similarity among users is 50%. The rest of the conditions are the same as Scenario-1.

Scenario-3: We set the service category similarity LS = 0.75, which means the probability of
service category similarity among users is 75%. The rest of the conditions are the same as Scenario-1.

Scenario-4: Users move independently with the same velocity v = 1m/s, and a representative Ua

sends clustering requests continuously in the 60s under different LS. The rest of the conditions are the
same as Scenario-1.

6.3.2. Simulation Results

We compare the other two algorithms (i.e., PLAM algorithm and LLB algorithm) with our SCTB
algorithm. Figure 11a shows the simulation results of response time under Scenario-1. It can be
seen that with the number of users in a clustering group increases, the response time increases no
matter which kind of algorithm is used. It is because more user leads more time to be spent. It can
also be known that the response time of our SCTB is less than PLAM and LLB. That is because the
computational complexity of our SCTB is smaller than PLAM and LLB. The reason why the response
time of LLB is less than PLAM is the combination of some clustering groups when some certain
condition is satisfied. And the condition is as follows: When the number of users in clustering group
A is less than thk/2, the clustering group A can join in another clustering group B if and only if the
clustering group B is within the communication range of A and the number of users in B is bigger than
thk/2 [9].

Figure 11b presents the relationship between the number of users and the success rate under
Scenario-1. It can be seen that the success rate of our SCTB algorithm is higher than PLAM and LLB.
That is because our SCTB algorithm leads the clustering process to choose new users selectively, and
makes the clustering groups more reasonable by using the filtering aggregation protocol as analyzed
in Section 5.4. Besides, the representative aggregation protocol promotes the success of clustering
groups as well. The reason why the success rate of LLB is higher than PLAM is also the combination of
some clustering groups. From Figure 11b, it also can be known that no matter which kind of algorithm
mentioned above is used in the clustering process, the success rate decreases as the number of users
in a clustering group increases. The reason is that with the number of users in a clustering group
increases (i.e., thk), the clustering group has to spend more time to find users to meet the condition thk,
which leads to the decrease of the success rate.

(a) The response time (b) The success rate

Figure 11. The simulation results for Scenario-1.
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Figures 12 and 13 show the simulation results under Scenario-2 and Scenario-3 respectively.
Figures 12a and 13a present the response time under Scenario-2 and Scenario-3 respectively. It can be
seen that Figures 12a and 13a reflect a trend similar to Figure 11a, that is, the response time increases
with the number of users in a clustering group increases. The response time of PLAM algorithm and
LLB algorithm have almost the same performance in Scenario-1 and Scenario-2, which is influenced
by the set ratio thl = thk/2. However, in Figure 13a, with the number of users in a clustering group
increases, the response time of PLAM and LLB increases faster than Figures 11a and 12a. The reason is,
for a clustering group, the higher service category similarity of users leads a clustering group has to
find more users to meet the condition thl , which will lead more time to be spent.

Figures 12b and 13b present the success rate under Scenario-2 and Scenario-3 respectively. It can be
seen that Figures 12b and 13b show a trend similar to Figure 11b, that is, the success rate decreases as the
number of users in a clustering group increases. The success rate of PLAM algorithm and LLB algorithm
nearly has the same performance in Scenario-1 and Scenario-2 due to the ratio thl = thk/2. However, as
can be seen from Figure 13b, with the higher service category similarity of users, our SCTB still has
a better performance than PLAM and LLB. This is because our SCTB chooses new users selectively
during the clustering process, and makes the clustering groups more reasonable in a region.

(a) The response time (b) The success rate

Figure 12. The simulation results for Scenario-2.

(a) The response time (b) The success rate

Figure 13. The simulation results for Scenario-3.

Figure 14 shows the performance of the SCTB under Scenario-1, Scenario-2, and Scenario-3.
Figure 14a shows the response time of SCTB under different scenarios. It can be seen that the response
time increases with the number of users in a clustering group increases. In the case of the same thk,
the higher the service category similarity, the longer the response time. Figure 14b presents the success
rate of SCTB algorithm under different scenarios. It can be seen that the success rate decreases with
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the number of users in a clustering group increases. In the case of the same thk, the higher the service
category similarity, the lower the success rate.

(a) The response time (b) The success rate

Figure 14. The simulation results of SCTB algorithm under different scenarios.

Figure 15 shows the number of clustering times when thk = 10 under Scenario-4. It can be seen
that the representative Ua could complete more number of clustering times by using our SCTB than
PLAM and LLB. The reason is that the computational complexity of our SCTB is smaller than PLAM
and LLB when Ua calculates the kinds of service category (i.e., l) in a clustering group. Therefore, it can
allow Ua to spend less time to complete more clustering times. Figure 15 also shows that with the
increase of service category similarity, no matter which algorithm mentioned above is used, the number
of clustering times decreases. This is because the higher service category similarity means more users
are needed to meet the condition thl . Therefore, more time will be spent. However, we can see that our
SCTB algorithm is still has a better performance than other two algorithms, so it is also useful in the
scenario of a continuous request.

Figure 15. The simulation results for Scenario-4.

6.4. Limitations of Current Work

There are some limitations of our current work. Firstly, limitations of our simulation. We assume
that the mobile devices of users have sufficient computing resources to complete calculations and
communications, and the factors such as communication delays among devices are not considered as
well. Secondly, limitations of our SCTB algorithm. In our paper, we assume that the kinds of service
category are distinct and semantically dissimilar, which means they have no semantic relationship.
Therefore, how to apply our approach to semantically similar scenarios more practically is still a
challenge. However, our simulations prove that our algorithm is useful for the clustering process.
Besides, the results match to theoretical development which was presented between Sections 3 and 6.
Testing those algorithms (i.e., PLAM, LLB, and our SCTB) in a real environment is still a challenge.
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That is because there are many uncertain factors, such as the strength of the network, different user
habits, and different social conventions may cause different results.

7. Conclusions and Future Work

In this paper, we use k-anonymity and l-diversity in the distributed architecture of LBS system
to study the problem of preference privacy and service efficiency. Different from previous studies,
we take the relationship between k and l in the clustering process as the basis for judging users in a
relatively dense scenario or relatively spare scenario. To promote the cooperative efficiency of users
in the clustering process, especially when users’ kinds of service category (i.e., users’ preferences)
have similarity in certain space-time conditions, we proposed a service category table based (SCTB)
algorithm which contains four key protocols: request aggregation protocol, variety judgment protocol,
filtering aggregation protocol, and representative aggregation protocol. The extensive simulation
experiments are performed to evaluate the effectiveness of our SCTB algorithm and existing algorithms,
and theoretical analysis and the simulation results show that our work is useful to improve the
efficiency of clustering process while protecting users’ privacy in LBS query.

In future work, we plan to study how to efficiently identify and calculate the kinds of l-diversity
when users’ kinds of service category are semantically similar in the clustering process, so as to expand
the scope of application of our SCTB algorithm. Besides, we will test our approach in the real world
environment to further increase our contributions.
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