
applied  
sciences

Article

Correlation of Intensity Fluctuations for Scattering of
a Partially Coherent Plane-Wave Pulse

Yongtao Zhang 1 , Chaoliang Ding 1, Liuzhan Pan 1,* and Yangjian Cai 2,3,*
1 College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation

and Detection, Luoyang Normal University, Luoyang 471000, China; yongtaook@outlook.com (Y.Z.);
dingchaoliang2006@126.com (C.D.)

2 Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key
Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University,
Jinan 250014, China

3 College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science
and Technology, Soochow University, Suzhou 215006, China

* Correspondence: panliuzhan@263.net (L.P.); yangjiancai@suda.edu.cn (Y.C.);
Tel.: +86-139-4920-9776 (L.P.); +86-150-5015-7963 (Y.C.)

Received: 3 December 2018; Accepted: 8 January 2019; Published: 10 January 2019
����������
�������

Abstract: We derived analytical expressions for the correlation of intensity fluctuations of a partially
coherent Gaussian Schell-model plane-wave pulse scattered by deterministic and random media.
Our results extend the study of correlation of intensity fluctuations at two space points for scattered
stationary fields to that at two time points for scattered non-stationary fields.
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1. Introduction

Scattering is of great importance in physics, astronomy, chemistry, meteorology, biology, and in
other fields. Scattering of electromagnetic fields from a medium which fluctuates both in space and in
time has been studied extensively in recent years [1–9]. The scattering medium may be deterministic
or random, continuous or discrete. The inverse problem, i.e., the problem of finding the properties of
the object from the statistical properties of the scattered field, is of considerable interest [10–13].

Non-stationary light fields, also named stochastic optical pulses or partially coherent pulses,
exhibit partial coherence spectrally and temporally, and have attracted much attention due to their
important roles in optical telecommunications, optical imaging, fiber optics, etc. The study of
partially coherent pulses has been developed from conventional Gaussian correlation function to
nonconventional correlation functions. There has been substantial work on the propagation and
scattering of partially coherent pulses [14–18].

Correlation of intensity fluctuations, i.e., the Hanbury Brown-Twiss effect, was first introduced
to determine the angular diameter of radio stars [19]. Recently, there have been several attempts to
study the correlation of intensity fluctuations at two space points of the scattered field, and it was
found that information about the scattering potentials of deterministic and random media may be
obtained from the measurement of the correlation of intensity fluctuations [20–22]. In the present
paper, we considered correlation of intensity fluctuations at two time points of the scattered field for a
partially coherent Gaussian Schell-model plane-wave pulse. We derive analytical expressions for the
correlation of intensity fluctuations of a partially coherent Gaussian Schell-model plane-wave pulse
scattered by deterministic and quasi-homogeneous random media.
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2. Correlation of Intensity Fluctuations

We begin with a brief review of correlation of intensity fluctuations in the space-time domain
at two space-time points, say (r1, t1) and (r2, t2) [23,24]. The intensity fluctuations are defined by
the formula:

〈∆I(rj, tj)〉 = I(rj, tj)− 〈I(rj, tj)〉 (j= 1, 2), (1)

where:
I(rj, tj) = E∗(rj, tj)E(rj, tj), (2)

is the instantaneous intensity of the field E(rj, tj). The asterisk denotes the complex conjugate and the
angular bracket denotes the ensemble average. Then the correlation of intensity fluctuations at two
space-time points (r1, t1) and (r2, t2) has the form:

〈∆I(r1, t1)∆I(r2, t2)〉 = 〈I(r1, t1)I(r2, t2)〉 − 〈I(r1, t1)〉〈I(r2, t2)〉. (3)

We note that the first term on the right-hand side of Equation (3) is the fourth-order correlation
function. Assuming that the field fluctuations obey Gaussian statistics and the first moment of the
field E(rj, tj) is zero, the fourth-order correlation function can be expressed in terms of second-order
moments by the Gaussian moment theorem:

〈I(r1, t1)I(r2, t2)〉 = 〈E∗(r1, t1)E(r1, t1)〉〈E∗(r2, t2)E(r2, t2)〉
+〈E∗(r1, t1)E(r2, t2)〉〈E∗(r2, t2)E(r1, t1)〉
= 〈I(r1, t1)〉〈I(r2, t2)〉+ |Γ(r1, r2, t1, t2)|2.

(4)

On substituting from Equation (4) into Equation (3) we obtain for the correlation of intensity
fluctuations the formula:

〈∆I(r1, t1)∆I(r2, t2)〉 = |Γ(r1, r2, t1, t2)|2, (5)

where Γ(r1, t1, r2, t2) is the mutual coherence function of the field. Its normalized version:

Γ(r1, r2, t1, t2)√
Γ(r1, r1, t1, t1)

√
Γ(r2, r2, t2, t2)

=
Γ(r1, r2, t1, t2)√
〈I(r1, t1)〉〈I(r2, t2)〉

= γ(r1, r2, t1, t2), (6)

is the complex degree of coherence of the field. From Equations (5) and (6) it follows that:

〈∆I(r1, t1)∆I(r2, t2)〉
〈I(r1, t1)〉〈I(r2, t2)〉

= |γ(r1, r2, t1, t2)|2. (7)

The term on the left-hand side of Equation (7) may be defined as the normalized correlation of
intensity fluctuations of the field. This formula shows that the normalized correlation of intensity
fluctuations is equal to the squared modulus of the degree of coherence at two space-time points (r1,t1)
and (r2,t2).

3. Correlation of Intensity Fluctuations of a Partially Coherent Plane-Wave Pulse Scattered by
Deterministic and Random Media

We began by considering a temporally partially coherent Gaussian Schell-model plane-wave
pulse incident upon a linear scatterer, which occupies a finite domain D. In the space-time domain,
the temporal coherence function of the pulses takes the form [14,15]:

Γ(t1, t2) = Γ0 exp[−
t2
1 + t2

2
2T2 − (t1 − t2)

2

2T2
c

− iω0(t1 − t2)], (8)

where ω0 is the central frequency of the pulse, T denotes the pulse duration, and Tc describes the
temporal coherence length of the pulse. The cross-spectral density function of the pulses in the
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space-frequency domain can be readily determined by employing the Fourier transform [14,15], which
yields:

W(ω1, ω2) = W0 exp[− (ω1 −ω0)
2 + (ω2 −ω0)

2

2Ω2 − (ω1 −ω2)
2

2Ω2
c

], (9)

where W0 = Γ0T/2πΩ and the spectral width Ω and the spectral coherence width Ωc of the pulses are
connected to the temporal parameters by the equations Ω2 = 1/T2 + 2/T2

c and Ωc = TcΩ/T.
Suppose that the incident pulses propagate in a direction specified by a real unit vector s0 (as

shown in Figure 1), the cross-spectral density function of the incident light at a pair of points, specified
by position vectors r1 and r2, is given by the formula:

W(i)(r′1, r′2, ω1, ω2) = W0 exp[− (ω1−ω0)
2+(ω2−ω0)

2

2Ω2 − (ω1−ω2)
2

2Ω2
c

]

× exp[i(k2s0 · r′2 − k1s0 · r′1)],
(10)

with ki = ωi/ci (i = 1, 2) and c being the speed of light in vacuum.
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Figure 1. Scattering problem geometry. s0 and s represent the incident and scattering directions,
respectively. θ is the scattering angle, and D is the domain the scatterer occupies.

We assumed that the medium is a weak scatterer, so that the scattering may be analyzed within
the accuracy of the first-order Born approximation. The scattering potential of the medium, at a
point specified by a position vector r′i within the scatterer, is characterized by F(r′i, ωi). The resonance
frequencies of the medium, i.e., the frequencies of its atomic or molecular transitions, were assumed
not to lie within the spectral brand of the incident light. Thus, over the effective frequency range of the
incident light, the scattering potential may be approximated by F(r′i, ω0).

For a deterministic medium, the scattering potential F(r′i, ω0) is a well-defined function of position.
The cross-spectral density function of the scattered light in the far zone, at two points specified by
position vectors rs1 and rs2, is given by the approximate far-zone formula

W(s)(rs1, rs2, ω1, ω2) =
∫
D

∫
D

W(i)(r′1, r′2, ω1, ω2)F∗(r′1, ω0)F(r′2, ω0)

× 1
r2 exp[ir(k2 − k1)− i(k2s2 · r′2 − k1s1 · r′1)]d3r′1d3r′2.

(11)

For a random medium, the scattering potential is, of course, a random function of position.
The correlation function of the scattering potential at a pair of points, specified by position vectors r′1
and r′2 in the scattering medium, is defined by the formula:

CF(r′1, r′2, ω0) = 〈F∗(r′1, ω0)F(r′2, ω0)〉, (12)
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where the angle brackets denote the average value taken over the ensemble of random medium
realizations. We then obtain the formula:

W(s)(rs1, rs2, ω1, ω2) =
∫
D

∫
D

W(i)(r′1, r′2, ω1, ω2)CF(r′1, r′2, ω0)

× 1
r2 exp[ir(k2 − k1)− i(k2s2 · r′2 − k1s1 · r′1)]d3r′1d3r′2.

(13)

The mutual coherence function of the scattered field is obtained by taking the inverse Fourier
transform of the cross-spectral density function, which gives:

Γ(s)(rs1, rs2, ω1, ω2) =
∫ ∫ +∞
−∞ W(s)(rs1, rs2, ω1, ω2)

× exp[i(ω1t1 −ω2t2)dω1dω2.
(14)

We now illustrate our analysis by two examples. Suppose first that the pulse is incident on a
deterministic spherical scatterer centered at the point rc = (0,0,d), occupying a finite domain D, with a
three-dimensional (soft) Gaussian potential:

F(r, ω0) = C0 exp[− x2 + y2 + (z− d)2

2σ2 ], (15)

where C0 and σ are positive constants, which are independent of position but may depend upon ω.
Given the properties of the scatterer and those of the incident field, we may use Equations (7), (10),
(11), (14), and (15) to give the following expressions for the intensity statistics. The average intensity of
the scattered field is:

〈I(s)(rs, t)〉
=

(2π)3C2
0 σ6Γ0T

r2
√
(1+4σ2 sin2 θ

2 (1/T2+2/T2
c )/c2)(T2+4σ2 sin2 θ

2 /c2)

× exp
[
− (t−(2d sin2 θ

2+r)/c)
2

T2+4σ2 sin2 θ
2 /c2 −

ω2
0

[c2/(4σ2 sin2 θ
2 )+(1/T2+2/T2

c )]

]
,

(16)

and the normalized correlation of intensity fluctuations (NCIF) has the form:

〈∆I(s)(rs,t1)∆I(s)(rs,t2)〉
〈I(s)(rs,t1)〉〈I(s)(rs,t2)〉

= exp

[
− (t1−t2)

2

T2
c

T2 [1+4σ2 sin2 θ
2 (1/T2+2/T2

c )/c2][T2+4σ2 sin2 θ
2 /c2]

]
,

(17)

where θ is the angle between the observation direction and the incident direction, i.e., s·s0 = cos θ.
Equations (16) and (17) give the analytical expressions for the average intensity and NCIF of the
scattered field. The simple relationships make it easy to derive σ of the medium if we get the
intensity, or the correlation of intensity fluctuations which can be performed by Hanbury Brown-Twiss
measurements. We calculated in Figures 2 and 3 the normalized intensity and the NCIF of the
scattered partially coherent Gaussian Schell-model plane-wave pulses for different values of σ of the
deterministic spherical scatterer, respectively. The calculation parameters are T = 15 fs, Tc = 10 fs,
λ = 800 nm, ω0 = 2.36 rad/fs and t = r

c . One finds from Figures 2 and 3 that the normalized intensity
and the NCIF of the scattered partially coherent Gaussian Schell-model plane-wave pulse are closely
related to σ of the deterministic spherical scatterer, which may be useful in studying the inverse
problem. Figure 2 shows that the scattering becomes more directional when σ increases. And Figure 3
shows that the NCIF increases with the increase of σ.
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Figure 3. The normalized correlation of intensity fluctuations (NCIF) of the scattered partially coherent
Gaussian Schell-model plane-wave pulse versus td = t2− t1 for different values of σ of the deterministic
spherical scatterer with θ = 0.5.

Next, let us suppose that the pulse is incident on a quasi-homogeneous random medium.
The correlation function of the scattering potential of such a medium has the form:

CF(r′1, r′2, ω0) = CR(R′, ω0)Cr(r′, ω0) = C0 exp

[
− (R′)2

2σ2
R
− (r′)2

2σ2
r

]
, (18)

where C0, σR, and σr are positive constants with σR � σr. The function CR(R′, ω0) varies much more
slowly with R′ = (r′1 + r′2)/2 than the function Cr(r′, ω0) varies with r′ = r′2 − r′1. It follows from
Equations (7), (10), (13), (14), and (18) that the average intensity and the NCIF of the scattered field are
given by the expressions:

〈I(s)(rs, t)〉
= (2πσRσr)

3C0Γ0T√
(T2+8σ2

R sin2 θ
2 /c2)(1+2σ2

r sin2 θ
2 (1/T2+2/T2

c )/c2)

× exp
[
− (t−r/c)2

(T2+8σ2
R sin2 θ

2 /c2)
2

+
ω2

0
(1/T2+2/T2

c )(1+2(1/T2+2/T2
c )σ

2
r sin2 θ

2 /c2)

]
,

(19)
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〈∆I(s)(rs,t1)∆I(s)(rs,t2)〉
〈I(s)(rs,t1)〉〈I(s)(rs,t2)〉

= exp

− (t1−t2)
2

(T2+8σ2
R sin2 θ

2 /c2)(1/(1/T2+2/T2
c )+2σ2

r sin2 θ
2 /c2)

(T4/(T2
c +2T2)+(4σ2

R−σ2
r ) sin2 θ

2 /c2)

.
(20)

It follows from the analytical expressions Equations (19) and (20) that for a quasi-homogeneous
random medium, one can also derive σR and σr from both the average intensity and the NCIF of the
scattered field. Figures 4 and 5 illustrate the normalized intensity and the NCIF of the scattered partially
coherent Gaussian Schell-model plane-wave for different values of σR and σr of the quasi-homogeneous
random medium separately. Other calculation parameters are the same as those in Figures 2 and 3.
It is shown that σR and σr of the quasi-homogeneous random medium determine both the average
intensity and the NCIF together; however, the effect of σr is more apparent than that of σR. Figure 4
shows that the scattering becomes more directional when σR or σr increases. Figure 5 shows that the
NCIF increases as σr increases or σR decreases. In applications, the troposphere and confined plasmas
sometimes can be modeled as quasi-homogeneous random media.
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4. Summary

We have derived analytical formulas for the average intensity and the normalized correlation of
intensity fluctuations for the scattered field of a partially coherent Gaussian Schell-model plane-wave
pulse. We considered two typical scattering objects, a deterministic spherical scatterer and a
quasi-homogeneous random medium. Our study extended the research of correlation of intensity
fluctuations at two space points of the scattered stationary fields to that at two time points of scattered
non-stationary fields.
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