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Abstract: Data-driven public security networking and computer systems are always under threat
from malicious codes known as malware; therefore, a large amount of research and development is
taking place to find effective countermeasures. These countermeasures are mainly based on dynamic
and statistical analysis. Because of the obfuscation techniques used by the malware authors, security
researchers and the anti-virus industry are facing a colossal issue regarding the extraction of hidden
payloads within packed executable extraction. Based on this understanding, we first propose a
method to de-obfuscate and unpack the malware samples. Additional, cross-method-based big data
analysis to dynamically and statistically extract features from malware has been proposed. The
Application Programming Interface (API) call sequences that reflect the malware behavior of its code
have been used to detect behavior such as network traffic, modifying a file, writing to stderr or stdout,
modifying a registry value, creating a process. Furthermore, we include a similarity analysis and
machine learning algorithms to profile and classify malware behaviors. The experimental results
of the proposed method show that malware detection accuracy is very useful to discover potential
threats and can help the decision-maker to deploy appropriate countermeasures.

Keywords: malware classification; behavior analysis; machine learning; feature selection; API; static
analysis; dynamic analysis

1. Introduction

Cybersecurity threats are growing and rapidly adapt to new opportunities in cyberspace. The
inter-connectivity of devices and services via high internet speeds make it easy for cybercriminals
to operate remotely from overseas and remain unidentified online. In this context, it is, therefore,
challenging to identify and trace the malware origin of such crime. Moreover, with the social networks
rapid development, the spread of malware by hackers is more frequent than before as they widely use
various kinds of social networks [1].

By its definition, malware [2], also known as “malicious software”, is a software created by an
attacker to compromise the security of a system or privacy of a victim. Malware includes computer
viruses, worms, Trojan horses, spyware. Additionally, the quantity and types of malware [3] have
increased, and they are challenging cybersecurity experts, law, and forensics examiners [4–7]. To launch
and spread these attacks, some technologies facilitate them and can avoid security systems. The Onion
Router (the ability to apply multiple proxy routing that inhibits the ability to trace-back), Obfuscation (a
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term used to describe the modification of a program to disguise its purpose), Dynamic Domain Name
System (DDNS or DynDNS), and Virtual Private Network (VPN) services are all capable of facilitating
cybercrime. These methods employed by the cybercriminals, enable them to deepen their criminal
activities without being easily intercepted by network security and traffic analysis. Furthermore,
they take advantage of advanced technology to develop new malware or variants that give them
more power to effectively achieve the propagation of malware and stay anonymous online as long as
possible. In the case of attacks or a successfully committed cybercrime, it is laborious to investigate
such malicious activities. When performing an investigation on cybercrime [8], it is mandatory to raise
“5 Ws and 1H” basic questions. When, Where, What, What, Who, and Why should be asked during
the investigation. Where and when was the crime committed? What technologies were used? Who
was behind the crime and why was the crime committed? How was the crime committed?

Signature-based detections such an antivirus (e.g., Avast, Symantec, etc.) and anomaly-based are
the two main techniques used for malware detection systems. For the first method, experts in InfoSec
have daily tasks to generate signatures to be used by anti-virus engines to detect known malware.
Nevertheless, the signature-based detection is not able to detect unknown threats and, thereafter, is
not effective against “zero-day attack” [9]. Additionally, there is another security challenge caused
by packed or obfuscated malware [10] making it difficult for digital forensic examiners to express the
true purpose of malware, thus affecting the detection accuracy. For this reason, the anti-virus method
suffers from two hindrances; first, high false positive and second, high false negative. Technically,
it identifies benign files as malware in the former case and it fails to detect malware in the latter
case [11,12].

Therefore, in our research, we focus on both methods and thus, we can overcome the problem
of unknown malware detection. In this case, features extraction such as Application Programming
Interface (API) call sequences and code obfuscation features will be used to study the behavior of the
sample execution and malware such as file operations creation and deletion of process. This method is
based on dynamic analysis to classify the malware variants with a similar behavior context. The API
sequence methods give good feature selection to use to compute the similitude or similarity of two
malware variants because they represent the behavioral features of malware. In this paper, we opt to
use an API call sequence to compute the similarity and classify the files into malware and benign.

The novelty of this paper is based on the use of a machine learning algorithm while computing the
similarity to classify the malware in addition to an algorithm of API frequency and sequence for making
a dataset made of feature selections. At first, we use the static method, which consists of software of
malicious code analysis without execution. To overcome obfuscated malware, we have used IDA Pro
and PEid. Second, we use the dynamic analysis where we set up a virtual environment to run the
samples. In the course of the experiment, we implemented a process to remove redundant sequences
and expand on the design of the feature selection database. Finally, we calculate the similarity for
classifying the malware using an API sequence and the Microsoft Developer Network (MSDN). The
experimental results of the proposed method show that malware detection accuracy is very useful to
discover potential threats and can help the decision-maker to deploy appropriate countermeasures.
The dataset used in our experiment is given in Table 1 while Table 2 gives the summary about the
malware categories and the results are reported in Tables 3–6.

The rest of the paper is organized as follows: Section 2 presents the research literature on malware
analysis and detection methods. Our method and implementation are detailed in Section 3. The
experimental procedure and results are reported in Section 4 before concluding our work in Section 5.

2. Related Work

Extensive research has been proposed and new research is still performed regarding the provision
of solutions for malware detection systems [13,14]. For instance, in the case of known malware,
content signatures-based methods that map samples of activities against known malware have been
proposed [15,16]. Nevertheless, these methods have weaknesses when presented with obfuscated
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malware, metamorphic or polymorphic techniques to hide malware, and unknown malware. However,
different solutions have been proposed to overcome such techniques [17–20].

Moreover, dynamic analysis [21] was proposed to observe dynamic behaviors and features for
packed malware. In this context, a virtual environment is used to monitor the real-time execution
of malicious code and dynamically analyze the behavior of extracted features such as system calls,
memory usage, and network behavior. The detection of unknown malware that shows similar behavior
is also possible using this method [22]. The API call analysis and control flow are the two major dynamic
analysis methods [23,24]. Both static and dynamic methods can be used to extract API calls information
that reveals how malware behaves. From the executable malware, the Portable Executable (PE) format
is the essential element used to extract the API list using a static approach [25–28]. By running the
executable files in a sandbox, the called API can be observed with dynamic methodology [29–33].
The main difference between existing works and ours, is that our approach combines both static
and dynamic analysis methods in order to increase the detection rate and overcome static analysis
weakness. Furthermore, our approach includes a similarity analysis to classify the files between benign
and malware files.

3. Proposed Method and Implementation

In this section, we describe the method used for malware classification based on API call lists
made from dynamic and static analysis, as shown in Figure 1, where the dash arrow line gives the
direction to the data as input into Cuckoo S-Box and the thin and thick arrows lines show different
directions from a given component to another. The proposed framework mainly consists of three
modules: a database of malware and the PE file, modules of static and dynamic analysis, and a module
of classification by similarity analysis. The module concerns all datasets used as input to the static and
dynamic modules. The static analysis consists of the de-obfuscation of packed malware in order to
know the packers names and the contribution level of each of them. For this, a simple python code
have been used and one of the codes (to identify malware samples which are related to one another)
used in this research is given in Appendix B. In addition, IDA Pro and PeStudio are used to enhance
the de-obfuscation steps. These tools are mainly used in the reverse engineering of malware. They
help us to identify logic and arithmetic and address manipulation and flow control features from
malware as opcodes. A dynamic analysis module consists of a virtual environment set up by Cuckoo
Sand-Box to run the executable files of malware without infecting the rest of the system. The API call
list database is obtained from the network behavior and other important features. The final module
concerns the malware classification process using Machine Learning algorithms. In our research, we
have used a similarity analysis based on API sequence, which includes benign and malware files. The
comprehensive API reference, which is the Microsoft Developer Network (MSDN), is used to operate
a match and classify files between malware and benign.
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3.1. Dataset and Preprocess

The dataset used in our experiment was built using a VirusShare source [34] with an approximate
number of 78,568 executables files. Among them, 61,354 are different malware (78% of the total
number). The rest of the data were are identified as benign (12% of the number) from different sources.
Some of the malware samples were obfuscated while others were not or unknown. The preprocessing
step is to overcome the packed or obfuscated malware. Solutions from known tools such as IDA
Pro (By Hex-Rays sa, Liege, Belgium), PEiD (PEiD is a small application which is used to detect
common packers, cryptors and compilers), and PeStudio (PEStudio is a network protocol analysis
and security auditing tool for Windows which allows you to apply scripts to winsock calls it is used
by Computer Emergency Response Teams (CERT) and Labs worldwide in order to perform Malware
Initial Assessment.) have been used to unpack the malware samples. The advantage of de-obfuscation
is that the statistical analysis is performed accurately. A summary of the dataset is given in Table 1.

Table 1. Summary of dataset created as per VirusTotal.

Type Source Quantity Percentage

Malware VirusShare 61,354 78%
Benign Various locations and made from our lab 17,214 12%

3.2. Static Analysis Process

The static analysis consists of software for malicious code analysis without execution in order to
determine the pattern attack of the malicious program and its capabilities to harm the system. This
process helps us to identify the byte-sequence n-grams, a syntactic library call, control flow graph,
and all types of non-executable and executable files. However, the static analysis has limitations
due to packed or obfuscated malware. Similar methods have been proposed such as Dynamically
Generated and Obfuscated Malicious Code (DOME) which is a host-based technique for detecting
several general classes of malicious code in software executables [35]; however, it was unable to handle
packed malware.

In this research, to overcome the challenge of packed malware, we have used the dissembler tools
such as IDA Pro (IDA is the Interactive DisAssembler: the world’s smartest and most feature-full
disassembler, which many software security specialists are familiar with) [36] and PeStudio [37].
Figure 2 shows the distribution of the packers names from our dataset.

The experiment has been conducted over 61,354 malware files, and we used the IDA Pro to
translate a program into its equivalent high-level-language program given the content of the binary
and PEid [38], a specialized software to unpack the malware. As given in Figure 2, the result is that 43%
of these malware programs are unpacked identified as “nothing”, with the other identifiers accounting
for approximately 57%of the total percent. From the result, we can understand that the malicious
code has the ability to evade the detection system by changing their byte sequence with the aid of
obfuscation techniques. The SQLite (SQLite is a C-language library that implements a small, fast,
self-contained, high-reliability, full-featured, SQL database engine) [39] has been used to construct our
API call lists after dissembling the malware. It is a library used by IDA Pro to allow security analysts
to create plug-ins to be performed by IDA Pro.
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In addition, it implements an independent transactional SQL DB engine in order to generate the
database (.db). During this process, by using the SQLite plugin (SQLite is a C-language library that
implements a small, fast, self-contained, high-reliability, full-featured, SQL database engine) we have
generated 16 tables; however, we list only eight tables as follows: Expression, modules, instructions,
metainformation, callgraph, function, segments, and basic blocks. Different information from the
tables regarding the binary content has been observed. The Stacks table contains the function address,
the stack name, and the start and end addresses. The Function table contains all the recognizable
API system calls, non-recognizable function names, and the length (start and the end location of each
function). The Segments table contains information that describes each segment in an executable file,
segment name (Code, Data, BSS, idata, tls, rdata, reloc, andrsrc), and the segment length. The operation
code (OP) and their addresses and block addresses are contained in the instructions table. The API
calls have been extracted using the function table. To operate a match and identify the windows API,
we have used the reference from the Microsoft Developer Network (MSDN) which is a comprehensive
API reference for working with Microsoft tools, services, and technologies. Figure 3 is a snapshot of
IDA Pro in action.
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3.3. Dynamic Analysis Process

This method is mainly based on the analysis of the behavior of the malware and it is different
to the static method in the fact that a simulated environment is set up (virtual machine, sandbox,
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simulator, etc.) to run the malware in order to extract different malware behaviors. Dynamic analysis is
more effective compared to static analysis and does not require the executable file to be disassembled.
It discloses the malware programs’ natural behavior that is more resilient to static analysis.

A dynamic analysis method to detect malicious software has been developed by Shabtai et al. [40].
Their system detects malware by observing the network patterns of applications and the same research
claims that there is pattern similarity of network traffic patterns of different applications with the same
functions. A web-based android malware detection and classification system has been proposed [41]
where they developed an auto-trigger view identification in addition to a droidbox structure. Android
malicious software detection is outside the scope of this paper. In this research, Cuckoo SandBox has
been used as it provides information on the file system, registry keys, and network traffic monitoring
in a controlled environment and produces a well-formed report from Jason format. For the API call
list from the malware analysis behavior, the call sequence has been considered using e-behaviors, i.e.,
file behavior, registry behavior, process behavior, and network behaviors. The Windows application
programming interface (API) from the Microsoft Developer Network (MSDN) has been used to map
and operate a match.

3.4. Similarity Analysis Process

Similarity analysis has been performed for malware classification carried out by implementing
a distance measure in python. Different measuring techniques are used in this research such as
Minkowski Distance, Cosine Similarity, Containment Broder, Canberra distance, and Longest Common
Subsequence (LCS). More details are described in Section 4.3 to estimate the maliciousness of a code.
However, in [42], the authors raise a problem of a “malware variant” such as Win32.Evol which has
multiple variants from the same sample due to packer methods used by malware coders. However, to
overcome this difficulty, different approaches based on similitude detection are available to verify if
the variant is the child or grandchild of the sample. In this paper, we have used a five-methods-based
distance that possessed a vector function for analyzing the similarity between two-paired vectors.
More details are provided in Section 4.

4. Experiments and Results

This section describes the experimental procedure and results of our research. We set up a virtual
environment to run and monitor any suspicious behavior from the executable programs. The malware
dataset was prepared using VirusShare source with a total of 78,568 executables files. Among them,
61,354 are different malware programs. The rest of the dataset were identified as benign and from
different sources. Some of the malware programs were obfuscated.

4.1. Environment Set Up

In order to collect information and extract the most important API functions, a virtual environment
has been established. In our experiments, we have used Ubuntu 18.04 on the host machine where
the Cuckoo Sandbox is also installed in addition to python scripts we have developed for the project.
We set up two virtual machines using VirtualBox and installed Windows XP to analyze the malware.
The IDA Pro and PEid have been installed on a 3rd virtual machine under Windows 7 and additional
tools have been installed on virtual machines for malware analysis. Cuckoo submits files for analysis
to Windows XP virtual machines, collects activity traces of a file, and generates different reports.
Reports consist of, a dump of network traffic and csv reports which includes API functions used by file.
Figure 4 gives an overview of our experiment set up where three virtual machines have been installed
on Ubuntu as the host OS.
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Figure 4. The main component of the experimental environment.

Malware detection was performed at runtime using the cuckoo sandbox [43] tool because it
provides a safe environment to execute malware without infecting the whole system. A laptop with
an Intel Core i7-6700HQ processor (it is a quad-core processor based on the Skylake architecture)
and 16 GB RAM with 1 TB of HDD was used to carry out the experiments. The Ubuntu 18.04 and
the Cuckoo Sandbox were installed along with additional Python scripts developed to extract all the
information we need to perform the experiments. Windows 7 and Windows XP have been installed
as the guest OS using the VirtualBox program where Cuckoo Sandbox submits files for analysis and
retrieves different reports in JSON format. The virtual machine with Windows 7 has been mostly used
for static analysis by IDA Pro and PEid to study the malware and retrieve the API call list. The purpose
of this environment is to identify a group of API from malware and benign files and make a feature
selection to be used for similarity to classify the given program as malicious or benign. Table 2 gives a
summary of the dataset used in our experiments where the class column indicates whether the sample
is benign or malware, the Quantity column gives the total number of each class, and the remaining
two columns detail the distribution in terms of percentage and size (kilobyte).

Table 2. Dataset of malware and benign used in our experiment.

Type or Class Quantity Percentage Maximum Size (KB)

Benign 17,214 21.91 122,154
Trojan 16,146 20.55 18,547
Virus 19,821 25.23 784
Worm 13,541 17.23 16,000

Rootkit 357 0.45 789
Backdoor 8541 10.87 2054
Flooder 1424 1.81 39,785
Exploit 1524 1.94 29,431

4.2. API Call Frequency and Sequence of Occurrence

From static and dynamic analysis, we capture the API function from malware and benign files
and it is expressed as API call sequence. Let V denote the dataset that contains M as malware, PE as
portable executable files, and BF as benign files, V = {M, PE, BF}. The frequency of every function is
then computed in order to have the most significant API functions list. Let fmi = {m1, m2, m3, . . . , mn}
be the frequencies of functions in the M and fpi

=
{

p1, p2, p3, . . . , pn
}

be the frequencies in the PE, and
fbi = {b1, b2, b3, . . . , bn} frequencies in the BF. Finally, let us denote the API function as A. Algorithm 1
describes the main steps used in our method.
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Definition 1. For each API function A, from M, PE, and BF datasets, there is a frequency f for each A denoted
mi ∈ M; pi ∈ PE ∧ bi ∈ BF which measures the number of times that A occurs in V dataset. The computation
of the frequencies is satisfied as follows:

fmi =
∑ mi

∑ M
(1)

fpi =
∑ pi

∑ PE
(2)

fbi
=

∑ bi

∑ BF
(3)

Algorithm 1: API Call List Frequency and Sequence—Computation Process

Input: V = {M, PE, BF}
Output:
f = {mi, pi, bi} // Set of frequencies representing all A occurrence in V

1. Run V in Win 7 // Static Analysis by IDA Pro and PEid
2. Create report from IDA Pro and PEid // Preliminary database about API Function List
3. Query on the preliminary DB
4. Verity if the database = Ø // Empty database
5. If yes, abort
6. Otherwise,
7. For each A in the database,
8. Compute fmi , fpi , fbi

9. Insert ( fmi , fpi , fbi
) to API Sequence

10. End for
11. Run V in Windows XP // Cuckoo Sandbox for dynamic analysis
12. Repeat 2 to 10
13. Duplicates removal: API_Sequence, Max_Length_Repeat
14. Database = API Sequence
15. Init: SeqIndex← 0;
16. While true do:
17. If SeqIndex = Length_Sequence then
18. break;
19. Else
20. for i← 1 to Max_Length_Repeat do
21. if found_repeat = true, then
22. break;
23. End
24. Found_repeat← remove (API_Sequence, SeqIndex, i);
25. SeqIndex +=i; // Update the API Sequence Database
26. End
27. End
28. End

4.3. Similarity Analysis and Classification

The cross method proposed in this research is based on static and dynamic analysis, where
the executable malware is disassembled. Hereafter, the similarity analysis is performed for each
dissembled executable (β), which represents the vector of functions m, n where

(
β′
)

is the variant
malware of the original executable (β). Each function is represented as an array of vectors of functions.
Therefore, we use (β) and

(
β′
)

to compute the similarity which gives us a measure as a reference for
the similarity of coefficients with values between 0 and 1. Should the two vectors be similar, the value
is 0 while should they not be similar, the value is 1. The obtained value is then compared to a given
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threshold value (e.g., 0.5, 0.6, or 0.7). The threshold of similarity (δ) was chosen for the purpose of the
empirical result [44–47].

In this research, different methods have been tested for similarity analysis:

• Minkowski Distance: The Minkowski distance between two n-dimension vectors A and B is given by:

D(A, B) =

(
i

n

∑
i=1
|Ai − Bi|p

)1/p

(4)

The Minkowski Distance can be considered as a generalization of both the Euclidean distance
and the Manhattan distance. When p = 1, it corresponds to the Manhattan distance and when p = 2, it
corresponds to the Euclidean distance.

• Cosine Similarity: Cosine similarity is a measure of similarity between two vectors based on the
cosine of the angle between them. The vectors A and B are usually the term frequency vectors.
The Cosine similarity between vectors A and B is given by:

similarity = Cos(θ) =
A.B

||A||||B|| =

n
∑

i=1
AixBi√√√√ n

∑
i=1

(Ai)
2

√
n
∑

i=1
(Bi)

2

(5)

The resulting similarity ranges from −1 meaning exactly opposite, to 1 meaning exactly the
same, with 0 indicating orthogonality or decorrelation, while in-between values indicate intermediate
similarity or dissimilarity.

• Containment Broder: Containment border defines the containment for comparing two
documents. The function f () computes sets of features from two documents, h and i, such
as fingerprints of “shingles”. The containment(h, i) of h within i is defined as:

containment(h, i) =
| f (h) ∩ f (i)|
| f (h)| (6)

• Canberra Distance: The Canberra distance is a weighted version of the Manhattan distance,
introduced and refined in 1967 by Lance, Williams, and Adkins [48]. It is often used for data
scattered around an origin, as it is biased for measures around the origin and very sensitive for
values close to zero.

D =
∑i|ui − vi|
∑i|ui + vi|

(7)

• Longest Common Subsequence (LCS): The LCS is used to find the longest subsequence common
to all sequences in any two given strings P. To extract the common API call sequence pattern
among malware, the longest common subsequences (LCSs) is used. The formula is shown in
(8). In the formula, Pi and Qi represent the ith character of sequences P and Q, respectively. For
example, the LCSs of TKMN and TMK are TK and TM:

LCS
(

Pi, Qj
)
=


∅ i f i = 0 or j = 0
LCS

(
Pi−1, Qj−1

)
i f pi = qj

longest
(

LCS
(

Pi, Qj−1
)
, LCS

(
Pi−1, Qj

))
i f pi 6= qj

(8)
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4.4. Experiments Results

Table 3 shows the mean values of each of the methods to measure the similarity between malware.
The mean values are then compared with the threshold value of 0.5; the threshold was chosen for
empirical results. In this case, if a value of similarity exceeds the threshold, the malware under
investigation is considered as a variant and therefore malicious. The Minkowisk distance shows a good
result as it combines two methods: Manhattan and Euclidian distance, we have used Manhattan as it
has been proven to have the best performance within the malware domain [34,35]. The measures of
the similarity give a value range between 0 and 1, which means that the compared malware programs
are similar if the value is 0, or dissimilar if the value is 1. Table 4 shows the result of a benign program
without low or high values. However, in the case of Tables 5 and 6, we can see that there is a high
similarity/low distance between malware variants. For more analysis, we have computed the mean
of those distances. Furthermore, in the signature database, a value of each signature is computed
and hence generates a report of similarity. Thereafter, the highest similarities are indexed, which
indicated the most likely distinct malware variant or family. Finally, a decision is made as to whether
the unknown executable is a variant or not.

Deep analysis on the similarity of two malware families (Banload and DyFuCa) are shown in
Tables 5 and 6. We have selected Banload malware variants because its infection channel is based
on the files downloaded from the internet by users when visiting malicious sites. For DyFuCa, it is
essentially an intrusive adware or spyware that is hiddenly downloaded and installed on a computer.
The highlighted cells in Tables 4–6 reveal that a malware variant is defined as having a distance less
than or equal to 0.5. As shown, the entire cell in Table 5 can be detected as a variant of the original
malware Win32.Bonload. For more details about the features, we have provided an explainable table
in Appendix A.

Table 3. Similarity analysis mean matrix result [j × i].

Method Malware to Benign Malware to Malware Benign to Benign
Minkowski Distance 168.32 101.14 198.04

Cosine Similarity 54.452 21.458 12.142
Containment Broader 86.652 45.256 10.254

Canberra Distance 10.845 9.154 7.501
Longest Common

Subsequence 98.141 112.08 86.145

Table 4. Matrix of similarity for non-similar benign.

Features txt ms msgr skype ffing xlxs msppt dialer
txt 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ms 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00

msgr 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00
skype 1.00 1.00 1.00 0.00 1.00 1.00 0.99 0.99
ffing 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00
xlxs 1.00 0.98 1.00 1.00 1.00 0.00 1.00 1.00

msppt 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00
dialer 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.00
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Table 5. Similarity matrix of the Trojan: Win32/Banload.A family.

Features .texdt .rdas .rscf .reloe .kkng .ipfi .usere .icon
.texdt 0.00 0.14 0.24 0.10 0.10 0.10 0.10 0.10
.rdas 0.10 0.00 0.12 0.00 0.12 0.12 0.11 0.23
.rscf 0.21 0.23 0.00 0.25 0.22 0.21 1.00 0.28

.reloe 0.13 0.00 0.22 0.00 0.23 0.00 0.25 0.23

.kkng 0.13 0.16 0.21 0.26 0.00 0.00 0.00 0.21
.ipfi 0.13 0.16 0.22 0.26 0.00 0.00 0.00 0.16

.usere 0.14 0.16 0.28 0.26 0.00 0.00 0.00 0.16
.icon 0.14 0.15 0.21 0.26 0.19 023 0.21 0.00

Table 6. Matrix of similarity for the DyFuCa virus.

Features .jalr .bgtz .syscall .fprem .mrob .ivtl .usere .srvbw
.jalr 0.00 0.21 0.00 0.17 1.00 1.00 0.23 0.23
.bgtz 0.25 0.00 0.21 0.05 1.00 1.00 1.00 1.00

.syscall 0.21 0.15 0.00 1.00 1.00 1.00 1.00 0.09
.fprem 0.15 1.00 1.00 0.00 1.00 1.00 0.99 0.24
.mrob 0.21 1.00 1.00 1.00 0.00 1.00 1.00 0.07
.ivtl 1.00 0.98 0. 1.00 1.00 0.00 1.00 1.00

.usere 1.00 0.28 0.11 0.18 1.00 1.00 0.00 0.05
.srvbw 1.00 0.18 0.11 0.18 0.05 0.00

From the above result, the malware variants within the same family present a high similarity
while the experiments show that there is no similarity among the benign files, as is both expected and
logical. Last but not least, it can be observed that there is a low similarity between the malware dataset
and the benign dataset. For that reason, we can be assured that the proposed method is able to make a
distinction between malware and benign datasets clearly. In conclusion, a similarity test can be applied
to detect malware mutants and hence the use of such distance malware can be classified.

5. Conclusions

In this research, we showed that malware detection is possible using static and dynamic methods.
In this paper, we proposed a method to classify malware based on an API call that reflects the behavior
of a piece of malicious code. Furthermore, we introduced a method to construct features based on API
sequence from the result of the static and dynamic analysis. Furthermore, the extracted features were
correctly assigned by a computation of similarity-based machine learning algorithms and statistics
methods to profile and classify the program files as benign or malware. Finally, the experimental
results of the similarity analysis of malware based on API call and the frequency of appearance of
executable files reveal that this technique is effective in the detection and classification malware even if
obfuscation methods are applied on the malware. For future work, we plan to perform research on
Windows 8 and 10 as these are the latest Operating Systems of Microsoft Windows. We also plan to
target where to apply our research, such as Financial Institutions as they are more targeted by malware
makers. Our main goal is to conduct research on malware and their variants that are specific to banks.
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Appendix A. Description of Feature Selection from Tables 4–6

Opcode Name Description Opcode Name Description

Txt Set of Instruction for text file .rdas Library
Ms Set of Instruction for Microsoft Word .rscf Library

Msgr
Set of Instruction on Messenger

Application
.releo Return Load Execution

Skype
Set of Instruction on Skype

application
.kkng Library

Ffing Set of Instruction on this application .ipfi Library
xlxs Set of Instruction on Excel .usere Driver

msppt Set of Instruction on Power Point icon Driver
dialer Set of Instruction on Dialer jalr Jump Instruction
.textdt Library bgtz Branch Instruction
Syscall Fast System Call fprem Partial Reminder
Mrob Move Result Object ivtl Invoke Virtual
Usere Driver srvbw Store Value Bytes

Appendix B. Source Code in Python to Computer Similarly between Malware

To identify malware samples which are related to one another, we have edited and used python
code to compute the import hash called “imphash”. The imphash can also be used to identify similar
samples created by a certain threat group. The code is given as is. For our experiment, we have editedit
to customize it according to our dataset

import sys,os

import pefile

import hashlib

import xlsxwriter

if __name__ == "__main__":

#Identify specified folder with suspect files

dir_path = sys.argv[1]

#Create a list of files with full path

file_list = []

for folder, subfolder, files in os.walk (dir_path):

for f in files:

full_path = os.path.join (folder, f)

file_list.append (full_path)

#Open XLSX file for writing

#CSV can be also use to output

#file_name = "pefilename-csv" // Uncomment this line if you don't want

#to use XLSX and edit the other lines

file_name = "filename_output.xlsx"

workbook = xlsxwriter.Workbook (file_name)

bold = workbook.add_format ({'bold':True})

worksheet = workbook.add_worksheet ()

#Write column headings

row = 0

worksheet.write ('A1', 'SHA256', bold)

worksheet.write ('B1', 'Imphash', bold)

row += 1
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#Iterate through file_list to compute imphash and sha256 file hash

for item in file_list:

#Get sha256

fh = open (item, "rb")

data = fh.read ()

fh.close ()

sha256 = hashlib.sha256 (data).hexdigest ()

#Get import table hash

pe = pefile.PE (item)

ihash = pe.get_imphash ()

#Write hashes to doc

worksheet.write (row, 0, sha256)

worksheet.write (row, 1, ihash)

row + = 1

#Autofilter the xlsx file for easy viewing/sorting

worksheet.autofilter (0, 0, row, 2)

workbook.close ()
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