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Abstract: Fluid-filled polyethylene (PE) pipelines have a wide range of applications in, for example,
water supply and gas distribution systems, and it is therefore important to understand the
characteristics of acoustic propagation in such pipelines in order to detect and prevent pipe ruptures
caused by vibration and noise. In this paper, using the appropriate wall parameters, the frequencies
of normal waves in a fluid-filled PE pipeline are calculated, and the axial and radial dependences
of sound fields are analyzed. An experimental system for investigating acoustic propagation in a
fluid-filled PE pipeline is constructed and is used to verify the theoretical results. Both acoustic and
mechanical excitation methods are used. According to the numerical calculation, the first-, second-,
and third-order cutoff frequencies are 4.6, 10.4, and 16.3 kHz, which are close to the experimentally
determined values of 4.7, 10.6, and 16 kHz. Sound above a cutoff frequency is able to propagate in the
axial direction, whereas sound below this frequency is attenuated exponentially in the axial direction
but can propagate along the wall in the form of vibrations. The results presented here can provide
some basis for noise control in fluid-filled PE pipelines.

Keywords: fluid-filled polyethylene (PE) pipeline; noise control; acoustic propagation; cutoff
phenomenon

1. Introduction

In pipeline systems, a number of different materials can be used for the pipe walls, with the most
common being steel and thermoplastics such as polyethylene (PE). PE pipelines have a wide range of
applications, including transportation of liquids on ships and aircraft, long-distance transportation of
natural gas, storage and transportation of liquids in the chemical industry, and urban water supply.
They are of particular importance in the last of these applications owing to their advantages of high
strength, high resistance to corrosion and wear, good stability over a wide range of temperatures,
and lack of toxicity [1]. However, fluid-filled PE pipelines often suffer from problems caused by
excessive vibration and noise [2,3]. Vibration can cause long-term fatigue damage to the pipeline
system, while noise not only reduces the stability and safety of the entire pipeline system, but can also
have a deleterious effect on the environment for people in the vicinity of the pipeline. Burst water
supply pipelines not only result in losses of large amounts of water and consequent serious disruption
to daily life, but can also lead to secondary consequences such as traffic jams and even disasters such
as landslides if they are not repaired rapidly. Therefore, it is of great importance to investigate the
acoustic transmission characteristics of fluid-filled PE pipelines and to develop methods to control the
noise and vibration that are generated in these systems.
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Before investigating acoustic propagation in fluid-filled pipelines, it is useful to consider the
problem of elastic vibrations of a cylindrical shell. In the nineteenth century, Rayleigh [4] investigated
the vibration of cylindrical shells and obtained the free-vibration frequency of an infinite cylindrical
shell in vacuum. More recently, the dispersion characteristics of pipelines have been extensively
investigated [5–9]. Junger [10–12] and Muggeridge [13] investigated vibration problems for cylindrical
shells in liquids. The first to investigate acoustic propagation in a fluid-filled pipeline was Lamb [14],
who came to the conclusion that this propagation is influenced by the strength of longitudinal waves in
the wall compared with that of bending waves. Later, Lin and Morgan [15] investigated the dispersion
properties of a sound field in a fluid-filled pipeline, and analyzed the first four normal modes of waves
in an axisymmetric rigid pipeline.

Using a short-pulse signal, Kwun et al. [16] experimentally investigated the dispersion of longitudinal
waves in a liquid-filled cylindrical shell and found that the liquid in the pipeline slightly reduced the
group velocity and cutoff frequency of the longitudinal mode in the tube wall. Horne et al. [17] conducted
an experimental investigation of acoustic propagation in a liquid-filled pipeline, examining the effects
of different pipe-wall materials on the sound field in the pipe. However, their experiment suffered from
the limitations that the end of the pipeline was not muffled and the sound pressure was measured at
only one point at a given time. Pan et al. [18] investigated acoustic propagation in a fluid-filled pipeline
both experimentally and numerically. In their experiment, sound field measurements could not be
obtained throughout the fluid, because they used only two PZT (Lead zirconate titanate piezoelectric
ceramic) circular transducers mounted on the pipe wall, one at the transmitting end and the other at
the receiving end. Lafleur [19], Aristegui et al. [20] and Baik et al. [21] conducted systematic theoretical
and experimental investigations of acoustic propagation in liquid-filled elastic pipelines, but their
experimental methods and equipment were not very different from those used in previous studies.
To date, there have been few theoretical and experimental studies focusing on sound below the cutoff
frequency. Many engineers are not aware of the low-frequency cutoff effect and the propagation path
of low-frequency noise. Most pipeline mufflers are limited to liquid noise reduction alone, and do not
deal with wall vibration [22,23], which is a serious omission.

There have been a number of systematic investigations of acoustic propagation in gas-filled
pipelines [24,25], and the results obtained on noise in such systems can provide some guidance for
studies of noise in liquid-filled pipelines. However, these results cannot be carried over completely
to the liquid case because of the differences in the characteristic impedance and speed of motion of
the respective media [26,27]. There have also been a few theoretical studies of noise generated in
fluid-filled elastic pipelines by supersonic flow [28], wall vibration [29], and bubble oscillations [30],
but there is a lack of corresponding experimental investigations.

The present study aims to improve on the results of previous work by taking full account of the
existence of a low-frequency cut-off phenomenon in a fluid-filled pipeline such that sound below a
cut-off frequency is mainly propagated through the pipeline wall. It thereby also aims to remedy some
shortcomings of previous attempts at pipeline noise reduction. Both theoretical and experimental
investigations of acoustic propagation in a fluid-filled PE pipeline are conducted. The remainder of
the paper is organized as follows. In Section 2, the eigenequation for the sound field in an elastic PE
pipeline is obtained from a theoretical analysis, and the cutoff frequencies of a normal wave in the PE
tube are calculated. Section 3 describes the experimental system and the scheme for determining the
acoustic propagation characteristics of the fluid-filled PE pipeline. Section 4 discusses the experimental
results. The general distribution law of the sound field and the propagation path of noise in the
fluid-filled PE pipeline are analyzed. Finally, Section 5 presents the conclusions of this study.
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2. Theoretical Analysis

2.1. Eigenequation in the Pipeline

It should first be noted that although calculations in pipe acoustics have generally been performed
under the assumption of absolute soft or absolute hard boundary conditions, the characteristic
impedance of a liquid is large compared with that of air, and cannot be ignored, and so ideal boundary
conditions are no longer applicable.

The infinitely long straight pipeline considered here has outer diameter a and inner diameter b,
as shown in Figure 1 [31].
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In the following, the displacement scalar potential function is denoted by φ, the vector potential

function by
→
Ψ, the longitudinal-wave velocity in the wall by cl , the shear-wave velocity by cs, the shear

modulus of the pipe wall material by µ, the wave velocity in the liquid in the pipe by c0, and the
liquid density in the pipe by ρ1. Some previous studies have assumed an axisymmetric source in a
plate [32] or in a pipe, using a cylindrical coordinate system [33], while some have assumed a point
source [34,35]. In the present study, the assumption of axisymmetric excitation is an important one.

Under axisymmetric excitation, with
→
Ψ = (0, ψθ , 0), the wave equation in the wall can be represented

by the following equations for two scalar potential functions:

∇2φ = 1
c2

l

∂2φ

∂t2 ,(
∇2 − 1

r2

)
ψθ = 1

c2
s

∂2ψθ

∂t2 ,
(1)

where

∇2 =
∂2

∂r2 +
1
r

∂

∂r
+

∂2

∂z2 .

The radial and axial components of the displacement are

ur =
∂φ
∂r −

∂ψθ
∂z ,

uz =
∂φ
∂z + 1

r
∂(rψθ)

∂r ,
(2)

where ur is the radial components of the displacement in the wall, uz is the axial components of the
displacement in the wall, and the normal and tangential components of the stress are

δrr = λ∆ + 2µ ∂ur
∂r ,

δrz = µ
(

∂ur
∂z + ∂uz

∂r

)
,

(3)

where δrr is the normal component of the stress in the wall, δrz is the tangential components of the
stressin the wall, λ and µ are the Lame coefficients.
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Under the assumption of a simple harmonic vibration in the z direction, the displacement potential
function can be expressed as

φ = Φei(kzz−ωt), ψθ = Ψei(kzz−ωt).

With the time dependence ignored, by substitution of these expressions into the wave equation,
the relationship between the displacement potential function and the displacement and stress in the
pipe wall can be obtained.

When b ≤ r ≤ a, the formal solution for the potential function in the wall is

φ(r, z) = [AJ0(klr) + BY0(klr)]eikzz, k2
l + k2

z = (ω/cl)
2,

ψθ(r, z) = [CJ0(ktr) + DY0(ktr)]eikzz, k2
t + k2

z = (ω/cs)
2,

(4)

where A, B, C, and D are constants.
The wave equation satisfied by the water potential function is

∇2φ1 =
1
c2

0

∂2φ1

∂t2 . (5)

The radial and axial components of the displacement in the water are

ur f =
∂φ1
∂r ,

uz f =
∂φ1
∂z ,

(6)

where ur f is the radial component of the displacement in the water, urr is the axial component of the
displacement in the water.

The normal stress in the water is
δrr f = ρ1ω2φ1, (7)

where δrr f is the normal stress in the water.
Similarly, under the assumption of a simple harmonic vibration in the z direction, the displacement

potential function can be expressed as

φ1 = Φ1ei(kzz−ωt).

With the time dependence ignored, on substitution of these expressions into the wave equation,
the relationship between the displacement potential function and the displacement and stress in the
water can be obtained.

When 0 ≤ r ≤ b, the formal solution for the potential function in the water is

φ1(r, z) = EJ0(krr)eikzz, k2
r + k2

z = (ω/c0)
2, (8)

where E is a constant. The boundary conditions are
δrr|b = δrr f

∣∣∣
b
,

δrz|b = 0,

ur|b = ur f

∣∣∣
b
,

{
δrr|a = 0,
δrz|a = 0.

(9)
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Substitution of the formal solutions from Equations (4) and (10) into the expressions for the stress
and displacement, and substitution into the boundary conditions (9), then gives the eigenequation

P(a) Q(a) R(a) S(a) 0

P(b) Q(b) R(b) S(b) − ρ1ω2

2µ J0(krb)
MJ1(kla) MY1(kla) GJ1(kta) GY1(kta) 0
MJ1(klb) MY1(klb) GJ1(ktb) GY1(ktb) 0
kl J1(klb) klY1(klb) ikzkt J1(ktb) ikzktY1(ktb) kr J1(krb)




A
B
C
D
E

 = 0, (10)

where 
P(r) = −TJ0(klr) +

kl
r J1(klr), R(r) = N

[
J0(ktr)− 1

ktr
J1(ktr)

]
,

Q(r) = −TY0(klr) +
kl
r Y1(klr), S(r) = N

[
Y0(ktr)− 1

ktr
Y1(ktr)

]
,

T = 1
2
(
k2

t − k2
z
)
, G = kt

(
k2

t − k2
z
)
, N = −ikzk2

t , M = 2ikzkl .

2.2. Calculation of the Normal Frequency

For Equation (10) to have a nonzero solution, the determinant of the coefficient matrix must
vanish, i.e., ∣∣∣∣∣∣∣∣∣∣∣∣

P(a) Q(a) R(a) S(a) 0

P(b) Q(b) R(b) S(b) − ρ1ω2

2µ J0(krb)
MJ1(kla) MY1(kla) GJ1(kta) GY1(kta) 0
MJ1(klb) MY1(klb) GJ1(ktb) GY1(ktb) 0
kl J1(klb) klY1(klb) ikzkt J1(ktb) ikzktY1(ktb) kr J1(krb)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (11)

This equation is the dispersion relation.
If kz = 0, then kr = (ω/c0)

2, kl = (ω/cl)
2, and kt = (ω/cs)

2, and there is no sound propagation in
the axial direction of the pipeline. Then, ω can be obtained by substituting these values of kr, kl , and kt

into Equation (11), and the corresponding frequency is the normal frequency of the corresponding
order of vibration of the fluid-filled elastic pipeline.

Table 1 shows an example of the normal frequencies of the first four orders of vibration calculated
using Newton’s iterative method with the wall parameters of the experimental liquid-filled PE pipeline
(also shown in the table).

Table 1. Wall material parameters of the experimental polyethylene (PE) pipeline and an example of
the numerically calculated normal frequencies.

Wall Material Parameters

a (m) b (m) ρ0 (kg/m3) ρ1 (kg/m3)

0.125 0.116 1000 940

c0 (m/s) c1 (m/s) µ (GPa)

1470 1640 0.377

Numerically calculated values of the normal frequency

First order (kHz) Second order (kHz) Third order (kHz) Fourth order (kHz)

4.6 10.4 16.3 22.2
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2.3. Axial and Radial Dependence of the Sound Field

The sound field in the tube can be analyzed in terms of the formal solution in Equation (8) for
the displacement potential function in the water. If the radial wavenumber kr is negligible, then only
the axial dependence of the wave needs be considered. When kz is real, eikzz is a periodic function,
and the sound wave is able to propagate for long distances along the axial direction. When kz is
imaginary, eikzz is an exponential function, and the normal wave is transformed into a nonuniform
wave attenuated according to an exponential law along the axial direction, and thus has very little
influence on the sound field far from the pipeline axis: The sound wave cannot propagate for long
distances in the pipeline.

If the axial wavenumber kz is negligible, then only the radial dependence of the wave needs be
considered. It can be seen that this is given by the zeroth-order Bessel function J0(krr), and so the
sound pressure is greatest close to the axis.

3. Experimental Apparatus and Procedure

To verify the theoretical results, experiments were carried out using the system shown in Figure 2.
These experiments focused on the distribution of the sound field and the acoustic propagation
behavior in the pipeline for different excitation sources when the liquid in the pipeline was stationary.
The experimental conditions are listed in Table 2, and photographs of the experimental conditions and
experiment apparatus are shown in Figure 3.

Table 2. Experimental conditions.

Working Condition Source Frequency (kHz) Remarks

1 White noise signal 0–20

2 Single-frequency
acoustic signal 1 4.2 Single-frequency signal below the

cutoff frequency

3 Single-frequency
acoustic signal 2 5.2 Single-frequency signal above the

cutoff frequency

4 Single-frequency
mechanical signal 1 4.2 The excitation point is outside the tube

wall, directly below the sound source

5 Single-frequency
mechanical signal 2 5.2 The excitation point is outside the tube

wall, directly below the sound source

Normal waves in the pipeline can be analyzed under white noise conditions. The white noise
frequency range was selected as 0–20 kHz according to the sampling frequency of the collector and the
theoretically calculated normal frequency. The variation of the sound field along the axial direction in
the pipeline can be analyzed under a single-frequency-signal condition. The two frequencies below
and above the cutoff frequency were selected in experimental conditions 2 and 3, respectively, to verify
the cutoff effect of the sound in the pipeline. Single-frequency mechanical excitation corresponds to
the acoustic signal experimental conditions, and the propagation path of the sound was analyzed
along the axial direction, and therefore experimental conditions 4 and 5 involved transmission of two
single-frequency mechanical force signals of the same frequency as the sound source.

The maximum sampling rate of the B&K pulse collector was 131,072 Hz. The sensors used in this
experiment were a B&K8103 hydrophone and B&K4371 vibration sensor. Their specifications are given
in Table 3.
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Table 3. Specifications of sensors.

Hydrophone (B&K 8103)

Voltage sensitivity Frequency range Maximum operating static pressure

30 µV/Pa 0.1–180 kHz 4 × 106 Pa

Vibration sensor (B&K 4371)

Charge sensitivity Frequency range Maximum operational level

1 pC/ms2 0.1–25 200 Hz 6000g
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As mentioned in references [10–13], there have been many experimental investigations of acoustic
propagation in fluid-filled elastic pipelines; however, these pipelines were rather short, and there was
no special treatment of the end of the pipeline other than, in some cases, the simple addition of a
flange, which caused inverse superposition of the sound field in the axial direction. These previous
experiments used a single hydrophone, measuring the sound pressure spectrum at a single point only,
and therefore it was not possible to obtain the distribution of the sound field along the entire pipeline.

To avoid the above problems, in the present experiment, an 18-m-long PE pipeline with two layers
of anechoic tips of different lengths installed at the end was used, which completely eliminated echo
and prevented inverse superposition of the sound field in the axial direction. As the source, a piston
transducer was mounted on the front of the pipe through a flange, and vibration isolation material
was interposed between the flange and the pipeline, thereby preventing direct excitation of the pipe
wall. The wall parameters were the same as those used in the theoretical calculations (see Table 1).
Five slots, each of length 1 m, in the axial direction were cut in the pipe wall at a distance of 1 m from
the transducer, with a 1 m gap between them (see Figure 4).
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Figure 4. Slots of the pipeline.

Four 8103 hydrophones were mounted on a bracket, and so the sound pressure at four different
radial positions could be measured at the same time, as shown in Figure 2. The hydrophone bracket
was made from polyvinyl chloride (PVC), which has characteristic impedance similar to that of water,
greatly reducing the scattering of sound waves as they passed through the bracket. Three other
hydrophones measured the near-field signal at 0, 0.05, 0.1, and 0.15 m from the axial center of the
transducer. After the pipeline was filled with water, it was allowed to stand for more than 30 h to
eliminate the effect of bubbles on the experiment.

After the fluid column (water) was excited by the transducer, the hydrophones were moved along
the axial slots away from the source, and recordings were taken at 10 cm intervals; thus, each slot
had 9 or 10 recording points. The use of the hydrophone bracket ensured that the radial positions of
the hydrophones remained unchanged when the axial position was changed. In this way, the sound
pressure distributions of the fluid column along both the axial and radial directions were measured.

The analysis bandwidth of the collector was set to 0–25 600 Hz, in accordance with the theoretical
normal frequencies, and the corresponding sampling frequency was set to 65,536 Hz by the Nyquist
law, with a sampling time of 10 s. The power spectrum of the corresponding working condition was
obtained through fast Fourier transform (FFT) processing of the time-domain signal. To determine the
propagation path of the sound in the experimental system and compare it with the acoustic signal of
the fluid in the pipeline at the same time, the vibration of the wall was also measured in this experiment.
There were three rows of vibration sensors encircling the outside of the wall, each with four sensors,
with a separation of 0.33 m between each row.

The deployment of the hydrophones and vibration sensors and the corresponding labels are
shown in Figure 5.
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4.1. Behavior of Normal Waves in the Pipeline

For working condition 1, the transmitting voltage level response of the transducer is shown
in Figure 6. The measurement results from the hydrophones at different positions along the axial
direction in the pipeline are shown in Figure 7. It can be seen that the acoustic signal in the pipeline
exhibits a significant cutoff phenomenon, with a cutoff frequency of 4.7 kHz, which is close to the
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Figure 7. Measurement results from hydrophones at different positions along the axial direction under
white noise excitation: (a) 0.05, 0.1, and 0.15 m from the source; (b) 1.1 m from the source; (c) 5.95 m
from the source; (d) 0.1, 5, 6, and 7 m from the source.

The sound energy of the far field can be divided into four intervals from the spectrum: (1) Below
4.7 kHz; (2) 4.7–10.6 kHz; (3) 10.6–16 kHz; (4) 16 kHz and above. The boundary points of these
intervals are the frequencies of the normal wave in the pipeline, which are basically consistent with
the calculated frequencies of the corresponding orders, as shown in Table 4.

Table 4. Comparison of calculated and experimental normal frequencies.

Order 1 2 3

Calculated frequency (kHz) 4.6 10.4 16.3

Experimental frequency (kHz) 4.7 10.6 16

Relative error (%) 2.17 1.92 1.84

As mentioned before, the experimental pipeline is slotted. PE is not a very rigid material and, as a
result of the slotting process, the tube is deformed radially. This is the main reason for the error between
the actual measured frequency and the theoretically calculated frequency. In addition, the parameters
in Table 1 are the material elastic parameters of standard high-density PE, which are not necessarily
exactly the same as those of the wall of the experimental pipeline, which also leads to an error between
the theoretical and experimental results.

In interval (1), the curve of the power spectrum is very close to the background noise. Close to
4.7 kHz, however, the curve suddenly rises, exhibiting a cutoff phenomenon. Then, in interval (2),
the curve changes relatively gently, which is basically consistent with the corresponding frequency band
of the transmitting transducer frequency response curve. As the distance between the measurement
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points and the source becomes greater, it can be seen that the curve decreases monotonically; in interval
(3), the curve changes more sharply, and many resonance peaks appear. As the frequency increases,
the distance between adjacent peaks also increases, and the appearance of the curve in interval (4) is
similar to that in interval (3).

In terms of the behavior of the normal wave, interval (1) is below the cutoff frequency, and the
normal wave is attenuated exponentially in the axial direction. The curve of the power spectrum in this
frequency band is basically the same as the background, and it can be seen that the power spectrum
decays exponentially with frequency in the near field.

Interval (2) lies between the first-order and second-order normal wave frequencies; only the
first-order normal wave can propagate, and the curve of the power spectrum hardly changes with
frequency. The trend in this section of the curve is related to the transmitting response of the source,
with the curve monotonically decreasing along the axial direction as a result of absorption of sound
waves by the tube wall.

The first and second orders of the normal wave propagate simultaneously in interval (3), and the
first, second, and third orders propagate in interval (4), where there is strong interference leading to
large fluctuations in the curve and to the appearance of many resonant peaks.

The results of the vibration signal measurements are shown in Figure 8. The frequency response of
the vibration signal is similar to that of the acoustic signal in its overall trend, with a cutoff phenomenon,
and the division of the modal frequencies of each order is obvious. The vibration signal in the frequency
band above the cutoff frequency is transmitted from the acoustic signal in the water.
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Figure 8. Measurement results from vibration sensors on the outside of the pipeline wall: (a) 2 m from
the source; (b) 3 m from the source.

4.2. Variation of the Sound Field along the Axial Direction

The variation of the sound field along the axial direction can be seen more clearly from analysis of
the response to a single-frequency source compared with the response to the white noise in working
condition 1. In working conditions 2 and 3, two representative single-frequency signals were used,
4.2 and 5.2 kHz, which are respectively below and above the cutoff frequency. The main frequency
power spectrum was obtained as an average of the measurements by the four hydrophones on the
bracket, and its variation along the axial distance is shown in Figure 9. It can be seen from Figure 9a
that for a source frequency below the cutoff frequency, the power spectrum of the main frequency is
attenuated very rapidly, indeed exponentially, as the distance increases. Acoustic signals below the
cutoff frequency cannot propagate axially over long distances in the pipeline. For a source frequency
above the cutoff frequency, as shown in Figure 9b, the power spectrum of the main frequency hardly
changes with distance. There is only 4 dB attenuation from 3 to 10 m, and this attenuation is a result of
acoustic absorption by the pipeline wall.
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4.3. Variation of the Sound Field along the Radial Direction

To explore the variation of the sound field in the radial direction, measurements were performed
before and after the hydrophone bracket was raised by 1.5 cm, as shown schematically in Figure 10.
The results of these measurements are shown in Figure 11.Appl. Sci. 2018, 8, x FOR PEER REVIEW  13 of 18 
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Figure 10. Raising of hydrophone bracket.
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Figure 11. Results of hydrophone measurements at different depths 5.05 m from the source: (a) Before
and (b) after lifting of hydrophone bracket.

The frequency band between the first- and second-order normal frequencies was analyzed. Before
lifting, the 2# and 3# hydrophones were at the same distance from the axis, and similarly for the
1# and 4# hydrophones. Therefore, in Figure 11a, the curves of the power spectra from the 2# and
3# hydrophones are the same, as are those from the 1# and 4# hydrophones. After lifting, the 3#
hydrophone is nearest to the axis, followed in order by the 2#, 4#, and 1# hydrophones, which is
consistent with the increasing strengths of the respective power spectra. This is in accordance with the
theoretical radial dependence on the Bessel function J0(krr) in Equation (8).

The following is a quantitative analysis of the radial distribution. The distance between each
pair of hydrophones is 50 mm, and the hydrophone bracket is initially at the radial center position.
After lifting, the distances of the 3#, 2#, 4#, and 1# hydrophones from the axis are 10, 40, 60, and 90 mm,
respectively. At the cutoff frequency, kr = k0, depending on the distance r from the axis, the theoretical
differences between the sound pressure self-spectrum measured by the 3# hydrophone and those
measured by the other three hydrophones can be calculated, and the results are compared with the
experimental measurements in Table 5. For convenience of exposition, the distance between the 3#
hydrophone and the axis is set as r0, and the differences between the sound pressure power spectrum
of the 1#, 2#, and 4# hydrophones and the 3# hydrophone as X1, X2, and X3, respectively.

Table 5. Comparison of hydrophone measurements and theoretical values at different radial locations.

Power Spectral
Difference

Difference between r0
and r

Theoretical Power Spectral
Difference (dB)

Experimental Power
Spectral Difference (dB)

X1 80 12.1 11.1

X2 30 1.6 2

X3 40 3.8 3.3

There is good agreement between theory and experiment, and the radial distribution of the
normal wave in the tube is quantitatively confirmed to follow the Bessel function behavior.

The reasons for the error are as follows. In the experiment, the magnitude of the lifting was
controlled manually, and not very accurately, which is the main source of error: If the lifting range were
slightly larger, and the 3# and 4# hydrophones closer to the axis, the amplitude would be higher. If the
1# and 2# hydrophones were further away from the axis, the amplitude would be smaller, which would
lead to an increase in X2; according to the properties of the Bessel function, the closer the value of
the function is to the axis, the slower is its rate of change. Therefore, the power spectrum at the 4#
hydrophone would increase more if it were lifted, so the value of X3 would be reduced. If the 1#
hydrophone were closer to the upper slot and the outside medium were air (which can be regarded as
an absolutely soft boundary), the sound would be totally reflected, so the amplitude would become
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higher, leading to a decrease in X1. In addition, the radial deformation of the pipeline due to slotting,
scattering by the hydrophone bracket, and the fact that the orientation of the hydrophone was not
strictly in the axial direction are all possible sources of error.

4.4. Measurements under Mechanical Excitation

Working conditions 4 and 5 use mechanical force excitation from outside the pipeline wall in
a position directly under that of the sound source in the previous working conditions, as shown in
Figure 12. Corresponding to working conditions 2 and 3, the single frequencies of excitation applied
in working conditions 4 and 5 are 4.2 and 5.2 kHz, respectively. The measurement results from the
hydrophones and vibration sensors are shown in Figures 13–16. In contrast to the response of the
acoustic signal, the excitation of the exciter to the pipe wall was a single-point excitation. Therefore,
when the sound propagated mainly along the wall, the sound source excitation and the exciter
excitation had completely different radial distribution laws. When the sound propagated mainly along
the liquid in the tube, both had the same radial distribution. This is an important basis for judging the
propagation path of sound in a pipeline.
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Figure 13. Mechanical excitation at a single frequency of 4.2 kHz. Measurement results from
hydrophones at different distances from the excitation point: (a) 1.1 m; (b) 5.1 m.

Even if the pipeline wall is excited by a mechanical force, an acoustic signal below the cutoff
frequency cannot propagate a long distance in the case of weak excitation. It can be seen from
Figure 13b that the hydrophones 5.1 m from the excitation point have difficulty in picking up a signal.
In Figure 13a, the acoustic signal at the main frequency exhibits a radial dependence that is different
from the Bessel function: The hydrophone near the lower outer wall close to the excitation point
receives a stronger signal.
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Figure 14. Mechanical excitation at a single frequency of 4.2 kHz. Measurement results from vibration
sensors at different distances from the excitation point: (a) 1.3 m; (b) 5.3 m.

From the vibration measurement results in Figure 14, it can be seen that a vibration signal at the
main frequency can still be measured on the wall at 5.3 m, but it is attenuated compared with the
measurement from the sensor at 1.3 m, and the hydrophones in the pipeline are unable to detect any
signal at 5.3 m. It can be deduced that the signal at 4.2 kHz is propagated mainly through the pipe
wall in the form of vibrations. The second and third peaks in Figure 14 result from frequency doubling.
The exciter generates frequency doubling when transmitting a single-frequency signal, which is a
consequence of its own physical structure and has no effect on the results of this experiment.Appl. Sci. 2018, 8, x FOR PEER REVIEW  16 of 18 
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Figure 15. Mechanical excitation at a single frequency of 5.2 kHz. Measurement results from
hydrophones at different distances from the excitation point: (a) 1.1 m; (b) 1.1 m (local); (c) 5.1 m;
(d) 5.1 m (local).
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Figure 16. Mechanical excitation at a single frequency of 5.2 kHz. Measurement results from vibration
sensors at different distances from the excitation point: (a) 1.3 m; (b) 5.1 m.

For excitation at 5.2 kHz, which is above the cutoff frequency, Figure 15a,b shows the measurement
results from hydrophones 1.1 m from the excitation point, and Figure 15c,d those from hydrophones
5.1 m from the excitation point, with Figure 15b,d being partial displays of the frequency band near
the main frequency shown in Figure 15a,c, respectively. Figure 16 shows the measurement results from
the wall vibration sensors 1.3 and 5.3 m from the excitation point.

The sound power at the main frequency suffers almost no attenuation in the axial direction from
1.1 to 5.1 m, and conforms to the Bessel function dependence in the radial direction. It can be deduced
that the signal at 5.2 kHz is propagated mainly in the form of sound through the fluid in the pipeline.

5. Conclusions

The first four orders of normal frequencies in a fluid-filled PE pipeline were calculated, and the
distributions of sound in the axial and radial directions were analyzed. The acoustic propagation
characteristics of such a pipeline were also studied in an experimental system.

Both the theoretical and experimental investigations have revealed the following:

1. Sound in a fluid-filled PE pipeline propagates through the pipeline with the normal frequency at
each order.

2. Sound above a certain cutoff frequency can propagate in the axial direction of the pipeline for
long distances, whereas sound below the cutoff frequency is attenuated exponentially in the axial
direction and cannot propagate over long distances.

3. In the fluid in the pipeline, the sound power is highest at the axial center and decreases with
radial distance from the axial center according to a Bessel function dependence J0(krr).

4. Sound above the cutoff frequency is propagated mainly through the fluid, while sound below the
cutoff frequency propagates in the form of vibrations along the pipe wall.

5. Controlling and reducing the vibration of the pipe wall is the most effective way to reduce
low-frequency noise in a fluid-filled pipeline system.
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