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Abstract: With the rising awareness on environmental issues and the increasing risks through
industrial development, clean up remediation measures have become the need of the hour.
Bioremediation has become increasingly popular owing to its environmentally friendly approaches
and cost effectiveness. Polychlorinated biphenyls (PCBs) are an alarming threat to human welfare
as well as the environment. They top the list of hazardous xenobiotics. The multiple effects these
compounds render to the niche is not unassessed. Bioremediation does appear promising, with myco
remediation having a clear edge over bacterial remediation. In the following review, the inputs of
white-rot fungi in PCB remediation are examined and the lacunae in the practical application of this
versatile technology highlighted. The unique abilities of Pleurotus ostreatus and its deliverables with
respect to removal of PCBs are presented. The need for improvising P. ostreatus-mediated remediation
is emphasized.
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1. Introduction

The synthetic compounds obtained through chlorination of biphenyls are called polychlorinated
biphenyls (PCBs), which are composed of a biphenyl molecule (two benzene rings linked by a C–C bond)
that carries one to ten chlorine atoms. PCBs as mixtures are commercialized with trade names Aroclor,
Clophen, Delor, etc. These commercialized PCBs consist of a mixture of congeners distinguished
based on the number and position of chlorines on the biphenyl nucleus. PCBs find place in numerous
industrial applications, such as heat transfer fluids, dielectric fluids, hydraulic fluids, flame-retardants,
solvent extenders, and organic diluents.

The use of PCBs is expanding and widespread these days, and these compounds are contributing
more than enough damage to the environment with their percolation into soil and sedimenting, as there
are inadequacies in their waste disposal [1,2]. According to a recent finding, traces of PCBs were still
detected in places where production was carried on decades before, in spite of their restricted application
then—and this does not even take into account the situation now with large-scale production, of late,
to meet the large-scale applications. Currently, PCBs are considered as one of the most hazardous
contaminants in the world, and hence, they are the topmost public health concern [3]. The teratogenic,
carcinogenic, and endocrine-disrupting aspects of these xenobiotics have been well documented [4–9].
The most alarming adverse property of PCBs is their tendency toward bioaccumulation in lipid tissues
and organic components of the soil and adipose tissue of animals and humans [10].
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This review briefly dwells on the available bioremediation-based technologies for decontamination
of PCBs with special focus on white-rot fungi and more so with Pleurotus ostreatus. The milestones
achieved so far with P. ostreatus and their future prospects are presented.

2. Bioremediation of PCBs

With all the raising environmental considerations, the clean-up of PCB-contaminated sites
has drawn everybody’s attention and has become a top priority. Among the many remediation
approaches that are available, the use of biological systems represents an effective, cost-competitive,
and environmentally friendly alternative to the more commonly used thermal and physicochemical
technologies [11]. The most prevalent existing practice in the removal of PCBs from contaminated
materials is by incineration at high temperatures. In this procedure, the limitations to be faced are that it
is expensive, brings additional risk of producing toxic chlorinated dioxins by combustion under lower
temperatures, and has inherent volume limits. Therefore, studies on PCB biodegradation by microbes
for the decontamination of water and soil systems have been gaining popularity. Decontamination of
soil systems with respect to bioremediation has been well established compared to decontamination in
water systems. With key advantages such as cost effectiveness and environmental friendliness gaining
emphasis (as with any bioremediation system), bioremediation has received much acceptance.

Bacteria plays a key role in PCB biodegradation processes, it has been found. In addition, aerobes
and anaerobes have also been reported to participate in their own way in the process. Highly chlorinated
biphenyls can be used by anaerobes as electron acceptors, and it is possible to convert them into less
chlorinated congeners. Aerobic microorganisms, on the other hand, can deal and co-metabolize lower
chlorinated biphenyls [12–14]. Thus, both anaerobic–aerobic treatments are required to completely
mineralize these xenobiotics. Bacterial PCB biodegradation in natural compartments is also well
documented [15,16]. PCB congeners with four or more chlorine atoms undergo bacterial anaerobic
reductive dechlorination, while the lower chlorinated PCB congeners are subjected to co-metabolic
aerobic oxidation mediated by dioxygenases, encoded by the bphA gene family [17].

The process of PCB biodegradation mediated by fungi is also well established. Fungi’s capacity to
transform several PCB congeners in liquid medium have been described [18–36]. A few studies established
the successful fungal transformation capacity in soils [18–24]. Unlike bacteria, ligninolytic cultures of
Phanerochaete chrysosporium, a white-rot fungus, can mineralize tetrachloro- and hexachloro-substituted
PCB congeners as well as Aroclor 1254 [37,38]. Other studies have proven that P. chrysosporium degrades
higher levels (10 ppm) of Aroclor 1242, 1254, and 1260 [39].

Fungi, mostly wood-degrading basidiomycetes, are well established for PCB removal [40].
The elaborate fungal hyphae can easily penetrate into the polluted matrix. Additionally, the extracellular
oxidative enzymes can scavenge even scarcely bioavailable contaminants by nonspecific radical-based
reactions. Thus, comparing bacteria and fungi, the latter are said to be more acceptable and recognized
for their inputs towards PCB removal. White-rot fungi (WRF) are the most active degraders of lignin
to CO2 in plants [41–44]. Earlier reports by Bumpus et al. [45] and Eaton [46] indicated that the
white-rot fungus P. chrysosporium degrades dioxins, polychlorinated biphenyls (PCBs), and other
chloroorganics. P. chrysosporium is the most extensively studied of the ligninolytic white-rot fungi that
mineralizes xenobiotics [47–50]. Several white-rot fungi were tested for their ability to decompose
PCBs [51]. Numerous studies have confirmed that white-rot fungi including P. chrysosporium [52],
Trametes versicolor [53], Lentinus edodes [22], Phlebia brevispora [54], Irpex lacteus, Bjerkanderaadusta,
Pycnoporus cinnabarinus, Phanerochaete magnoliae [55], and particularly Pleurotus ostreatus [28,55] could
successfully orchestrate PCB removal [1]. However, only a relatively small number of white-rot species
have been tested on real PCB-contaminated soil [29], although P. ostreatus is, thus far, likely the most
efficient known PCB-degrading organism [28].
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3. P. ostreatus Based Degradation of PCBs: Milestones Achieved

The oyster mushroom, P. ostreatus, is a common mushroom, first cultivated as a subsistence
measure during World War I. Now grown commercially around the world for food, oyster mushrooms
have been found more useful in industries, i.e., for mycoremediation purposes. As established by
earlier researchers, P. ostreatus is the one that is now accepted to be highly promising for removal of
PCBs. The state-of-the-art contribution of P. ostreatus in this area of bioremediation of PCBs is briefly
presented below.

Zeddel et al., 1993 [26], demonstrated that P. ostreatus selectively removed PCBs from soil
homogenized with wood chips. P. ostreatus was successfully applied at contaminant concentrations
ranging from 100 to 650 ppm for single isomers and 2500 ppm for all PCBs. However, P. chrysosporium
could not degrade any PCB except mono- and dichlorbiphenyl in a solid-state system under normal
oxygen levels. However, with this limitation, P. chrysosporium was still reported to be the most versatile
of the WRF to degrade Aroclor 1242, 1254, and 1260 [1]. However, with respect to bioremediation
of PCB in soil, other WRFs like Bjerkandera adusta, P. ostreatus, and T. versicolor exhibited higher
biodegradation than P. chrysosporium. Kubátová et al. [28], studied six strains of white-rot fungi for
their biodegradation ability of low chlorinated polychlorinated biphenyl (PCB) in real soil system.
Phanerochaete chrysosporium and Trametes versicolor did not show any ability to degrade PCBs in soil. By
contrast, four strains of P. ostreatus were able to remove about 40% of Delor 103 in two months. All
P. ostreatus strains decomposed PCBs selectively with the preference for congeners with chlorine atoms
at ortho > meta > para positions. This study confirms P. ostreatus’ unequivocal ability to perform in
real world soil environments more efficiently compared to the others (who were all reported to be well
accomplished laboratory scale achievers).

P. ostreatus produces ligninolytic enzymes which are able to interact with a plethora of waste
substrates [33–35], including PCBs [36]. This mushroom’s industrial cultivation faces a problem: the
huge turnover of spent mushroom substrate (SMS), a lignocellulosic matrix, that has to be disposed
of [56]. With this as the choke, the exploration of new applications for re-utilization of SMS became
desirable. SMS is reported to contain high levels of residual extracellular oxidoreductases produced
by the still metabolically active mycelium. It is the niche for active microbial community composed
of fungi and bacteria [57,58]. Thus, application of SMS in bioremediation processes has been probed,
and the ability of the SMS and its inherent microbiota to transform different contaminants has been
reported [59–61]. SMS from P. ostreatus was previously validated as a low-cost organic substrate
for remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil [62,63]. Moreover,
lignosulfonate, an inducer of lignolytic activity, was found to possess no effect on the degradation
of PCBs with P. ostreatus or Trametes versicolor. An oxygen concentration of 10% inside the substrate
combined with 10% CO2 also had no influence on the degradation potential of P. ostreatus. Monika
et al. [64] carried out an experiment using a mixture of substrate/SMS and sandy soil with PCBs.
The results indicated that degradation was dependent on substrate/SMS addition, the concentration of
PCBs, and time of incubation. The degree of degradation of a single PCB after 12 weeks of incubation
for Agaricus bisporus ranged from 31.32 ± 1.52 to 83.91 ± 1.07%, while for P. ostreatus, it was between
37.88 ± 2.54 and 78.29 ± 1.41% [65].

4. Mechanism of Bioremediation by P. ostreatus

It is known that extracts from WRF or their laccases catalyze the degradation of hydroxylated
PCBs. However, as it stands, little is known about the in vivo mechanisms of PCB degradation [24,66].
Laccases degrade isolated PCBs congeners [67] or PCBs in commercial mixes such as Delor 103, Delor
106, and Arochlors 1242, 1254, and 1260 [1,58], but the limitation was that higher chlorination levels
reduced the degradation efficiency. Most of these studies have been applied on low PCB concentrations
only (1–2000 ppm). Canales et al., 2012 [36], determined the correlation of P. ostreatus laccase activity
through their conformation on its transcript expression with the removal of high concentrations
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(7100 ppm) of PCBs from Arochlor 1242 in liquid culture. This ability of P. ostreatus was significantly
marked in that it was not influenced by the chlorination levels.

P. ostreatus, in the presence of a fungal growth substrate (e.g., lignocellulosic matrices), could
transform PCBs in spiked and actually contaminated soils [26,27]. Myco-augmentation of contaminated
matrices by this fungus is operational via substrate-unspecific extracellular and intracellular oxido
reductases, laccases, and Mn-dependent and -independent peroxidases [28–30], enabling them to
transform PCBs [24]. Additionally, P. ostreatus produces ligninolytic enzymes, which is an added
asset, whereby it orchestrates the transformation of a plethora of waste substrates [31–33] including
PCBs [34–36]. The exact mechanism whereby P. ostreatus degrades PCB is not worked out, but with the
rich reservoirs of enzymes such as Lignin Peroxidases, managanese peroxidases, and laccases, there is
no doubt that these enzymes will play a synergistic role, if not for individual contributions (Figure 1).
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5. P. ostreatus-Based Degradation of PCBs: Future Prospects

As surmised in an earlier section, P. ostreatus does have an unequivocal edge over other WRFs
when it comes to bioremediation of PCBs. The future prospects of this fungus towards the removal
of PCBs are thus highly promising. In recent times, bioremediation processes more and more
often employ immobilization methods. Immobilization is defined as limiting the mobility of the
microbial cells or their enzymes with a simultaneous preservation of their viability and catalytic
functions [68–72]. There are five main techniques of immobilization: adsorption, binding on a surface
(electrostatic or covalent), flocculation (natural or artificial), entrapment, and encapsulation. This
review identifies that no incorporation of such upgraded techniques available for preparing fungal
masses for bioremediation protocols has been implanted for P. ostreatus-based degradation of PCBs.
Since the fact that P. ostreatus can deliver much when it comes to PCBs remains unquestioned, it is now
necessary that the biotechnological innovations are put to use for preparing this fungal biomass in the
most efficient form. Most of the studies demonstrated on removal of PCBs using P. ostreatus merely
use the hyphae as it is. More research on how the fungi can best be prepared for maximizing the PCB
recovery is the need of the hour.
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Immobilization of hyphae in columns as micro or nanobeads will enhance the surface-active area;
further, incorporation of hyphae in polymer matrices as well as nanomaterials could significantly
enhance the bioremediation aspects of P. ostreatus with respect to PCBs. Anna et al. recently presented
an exhaustive list of options of natural carriers for bioremediation ranging from naturally occurring
materials to nanopolymers [73]. With such options and advancements available, we strongly suggest
some amount of improvisation into the routines to harness the best that this fungus has to offer toward
bioremediation of PCBs. The SMS of P. ostreatus as explained in the previous section, which showed
extensive PAH removal activity, is an area worth developing on with respect to PCBs. The SMS of
P. ostreatus has been limited to a single study [64] for PCB degradation. This study showed that the
differences between PCB degradation by substrate and SMS of P. ostreatus were very weak; hence, they
suggested that it is possible to use SMS for the decontamination of PCB polluted soil. The Council
Directive 1999/31/EC declared that each European Union country should reduce the amount of organic
refuse by 50% by 2050 [74]. Poland, Korea, and China are the biggest producers of P. ostreatus, annually
generating over a thousand tons of spent mushroom substrate. The proper channelizing of the SMS of
this mushroom towards PCB remediation could solve the problem of disposal of this mushroom’s
refuse. Additionally, the use of the SMS allows for standardization of the exact dose requirement
with respect to specific PCB concentrations or environmental conditions. Furthermore, SMS not only
decontaminates the soil but is also a high value fertilizer. Further, every technology projection is
weighed for its versatility and usefulness based on its cost effectiveness, with the SMS of this fungi
showing degradation ability on par with the substrate/mycelium. In this direction, we are certainly
talking of a major advantage in terms of cost-effectiveness while using the spent mushroom waste
and not the mushroom itself. There is a high prospect that this venture could be highly prospective
and cost-effective.

6. Conclusions

Only scattered reports and research are available in the direction of PCB degradation using
P. ostreatus. This review hopes to enthuse researchers working on these lines to extend their
biotechnological novelty aspects to this application, in order to harness the best that P. ostreatus
could offer towards bioremediation of PCBs and other organopollutants. The utilization of SMS of
this fungus, which would prove to be highly cost-effective, ideally needs to be entertained, and more
real-time applications realized are emphasized.
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