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Abstract: A green procedure is described for supporting Pd nanoparticles on hydroxyapatite (HAP),
which serves as a highly-stable heterogeneous catalyst displaying excellent activity for the aqueous
expeditious reduction of nitroaromatics to the corresponding amines with sodium borohydride, and
oxidation of primary and secondary alcohols by hydrogen peroxide with high yields and selectivities.
The structural features of the prepared catalyst are confirmed by latest techniques including field
emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray
spectroscopy, and X-ray photoelectron spectroscopy. The reusability of the heterogeneous catalyst was
affirmed in the aqueous reduction of nitrobenzene and oxidation of cycloheptanol for six consecutive
runs without significant loss of catalytic activity.

Keywords: hydroxyapatite; palladium nanocatalysts; heterogeneous catalysis; oxidation; reduction;
alcohol; nitrobenzene

1. Introduction

Nanoparticle-based catalysts (nanocatalysts) are propounded as competent candidates for
heterogeneous catalysis due to their enhanced catalytic activities and selectivities [1–4]; their surface area
increases as the size decreases. As a result, a high catalytic activity and eventually a semi-homogeneous
system can be attained [5–7]. In addition, the easy separation and reuse of the nanocatalysts is a
very important feature of such catalytic systems, which ultimately results in the clean preparation
of pure products [8–10], although most unsupported nanocatalysts have several drawbacks, namely
their separation and reuse from the reaction mixture. The leftover nanocatalytic residues may have
deleterious effects in the production of fine chemicals and pharmaceuticals [11–14]. Consequently,
various supports have been examined for stabilizing such metal nanocatalysts in sustainable processes
that facilitates separation, recovery, and reuse. A large number of solid supports have been studied
including carbon nanotubes, alumina, zeolites mesoporous silica, metal-organic frameworks, organic
polymers, and resins in the organic transformations [15–18]. Hydroxyapatite (HAP) is among the most
applicable supports having many advantages such as (i) immobilization of well-defined monomeric
active species on the surface because of their high adsorption capacity and ion exchangeability; (ii) its
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weak acid-base properties, preventing plausible side reactions caused by the supports; and (iii) the
nonporous structure that facilitates overcoming problems that limit mass transfer [19,20]. Indeed,
HAP is a support with several appropriate properties with the formula Ca10(PO4)6(OH)2; specific
features being its capability to form solid solutions and possessing a wide range of cationic and
anionic substituents that can help stabilize the anchored nanocatalysts. Consequently, it facilitates the
separation process for the immobilized nanocatalysts, thus enhancing their reusability [21]; various
noble metal nanocatalysts including Au, Pd, Pt, etc., have been immobilized on the surface of rigid
HAP support, thus exploiting the heterogeneity advantages and easy recovery and recycling of the
adorned nanocatalysts [22].

Many important chemical processes rely on the catalytic oxidation and reduction pathways
in [23–26], and traditionally these reactions are conducted using expensive homogeneous catalysts and
toxic organic solvents often under gas pressure (e.g., oxygen or hydrogen) [27–29]. Alcohols are used as
precursors for several acids, aldehydes, and ketones, wherein the oxidation of alcohols is necessary for
producing paints, plastics, detergents, food additives, cosmetics, and drug intermediates [30]. On the
other side, the reduction of nitroarenes to their corresponding arylamines is among the major organic
transformations because of their use as one of the important precursors and intermediates for the
preparation of pharmaceuticals, dyes, pigments, polymers, and agrochemicals [31–33]. Pd nanoparticles
(NPs) have a huge potential role in these processes [34–37]. In the present study, we synthesized
Pd nanocatalysts supported on HAP (HAP-Pd) via a greener procedure using coffee extract in
water. The activity of the HAP-Pd catalyst was verified in the reduction of nitroarenes in water and
environmentally-friendly oxidation of alcohols. The obtained results showed that this supported Pd
nanocatalyst is very effective as a heterogeneous catalyst.

2. Experimental Section

All chemicals were procured from Aldrich, Fluka, and Merck chemical companies and used
without any further purification. Field emission scanning electron microscopy (FESEM) was recorded
using a Sigma Carl Zeiss instrument. Transmission electron microscopy (TEM) images were acquired
by JEM-2100 (JEOL Ltd., Tokyo, Japan). Furthermore, the HAP-Pd catalyst was analyzed by X-ray
photoelectron spectroscopy (XPS) using an Al Kα source (Sigma probe, VG Scientifics). High-resolution
powder X-ray diffraction (HRXRD) was acquired using a Bruker D8 Advance instrument. Moreover,
we performed energy-dispersive X-ray spectroscopy (EDX) by a TESCAN mira3 apparatus. The
reactions were monitored using gas chromatography mass spectrometers (GC-MS) using an Agilent
Technologies 7693 Autosampler and 5977A mass selective detector r GC-MS.

HAP-Pd catalyst was prepared by modifying previously documented methods [38]. In a typical
synthesis, 1 g HAP was dispersed in 100 mL distilled water containing 500 mg of coffee powder.
100 mg K2PdCl4 dissolved in water was added dropwise to the aforementioned solution under
vigorous stirring. The mixture was stirred for 8 h at room temperature to produce HAP-supported Pd
nanocatalysts. The product was washed with sufficient deionized water and filtered several times to
remove any non- and/or poorly-anchored Pd NPs.

The hydrogenation of nitroarenes was performed using the HAP-Pd catalyst with aqueous NaBH4

as a reducing agent. In a typical procedure, the HAP-Pd catalyst (1 mol%) was dispersed in deionized
H2O. Then, a nitroaromatic, NaBH4, and a small stirring bar were added into the reaction glass flask
and the reaction mixture was stirred at room temperature under air atmosphere.

The oxidation of alcohols was similarly accomplished in a small round-bottom flask with the
HAP-Pd catalyst (1 mol%) dispersed in H2O. Then, the starting alcohol, H2O2 30%, and a small stirring
bar were placed in the flask and the reaction mixture was heated in an oil bath (90 ◦C) and with
constant stirring under air and ambient atmosphere.

3. Results and Discussion

The morphology, shape, and size of the prepared catalyst were identified by Field emission
scanning electron microscopy (FESEM) and TEM techniques. Transmission electron microscopy (TEM)
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images show the homogeneous distribution of spherical Pd NPs immobilized on the HAP with average
diameters of ~5 nm (Figure 1a–c). The scanning TEM (STEM) images clearly affirm that the Pd NPs
were comprised of nano-sized particles with approximately spherical morphology (Figure 1d).

Comparison study of the energy-dispersive X-ray spectroscopy (EDX) images of HAP (Figure 2)
and HAP-Pd (Figure 3) confirmed the successful preparation of the HAP-Pd, with the grain of the
spherical Pd NPs pervading a good combination on the HAP surface. As shown in the EDX spectrum
(Figure 3), the presence of Pd authenticated the FESEM analysis for the stabilization of Pd NPs on
the HAP.
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Figure 3. (a) Low, and (b) high magnification FESEM images of HAP-Pd catalyst. (c) EDX spectrum of
HAP-Pd catalyst.

The EDX mapping of the HAP-Pd catalyst provides the qualitative results for the distribution of
the existing elements in the prepared catalyst matrix; projected distributions of P, Ca, and Pd within
the HAP-Pd catalyst are shown in Figure 4. The compositional map confirms the homogeneous
distribution of all of the elements in the HAP-Pd catalyst and clearly ascertains the uniformity of
the prepared catalyst. The surface composition of the HAP-Pd catalyst was also confirmed by XPS
(Figure 5). The survey spectrum shows the surface binding situation, establishing the presence of C,
Ca, O, P, and Pd elements in the synthesized catalyst.
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Figure 5. XPS analysis of the HAP-Pd catalyst. The inset shows Pd 3d scan.

The X-ray diffraction (HRXRD) pattern of the Pd-HAP catalyst is shown in Figure 6. The intense
Bragg’s peaks are observed at 2θ = 25.88, 28.97, 31.77, 32.2, 32.9, 34.05, 35.4, 39.2, 39.8, 42.03, 43.08, 46.7,
48.1, 49.47, 64.08, 77.18, and 78.23 [39]. The positions and relative intensities of these peaks clearly
match with literature data from the joint committee on powder diffraction system of HAP crystallite
(Ca10(PO4)6(OH)2, JCPDS 09-0432), indicating that the structure of the HAP support has not changed
after supporting the Pd nanocatalysts. Five characteristic peaks of Pd appearing at 2θ = 40.11, 46.66,
68.12, 82.1, and 86.62. (Pd, JCPDS 46-1043) were observed for the HAP-Pd catalyst.
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To better elucidate the effect of the mild reduction process on Pd NPs morphology and size on
the HAP support in this study, we carried out control experiments using commonly-used reductant,
NaBH4, by adapting previously reported procedures [40]. Although the Pd NPs were formed very
rapidly on the HAP support, they instantly aggregated right after addition of NaBH4. TEM and HRTEM
images show that the agglomeration of Pd NPs is unavoidable if they are immobilized using harsh
reductant (Figure S1). We examined the possibility of immobilizing Pd NPs uniformly and discretely
on another solid support, such as carbon, using the introduced mild procedure, and successfully loaded
Pd NPs on carbon material. The TEM images of carbon before and after nanocatalyst loading show
that the Pd NPs can be stabilized on carbon using this green protocol (Figure S2).

Today, growing attention is being paid to green chemistry in organic synthesis using
environmentally-friendly processes. Many scientists have accentuated the significance of the greener
methods to synthesize heterogeneous catalysts and chemicals [41]. Aqueous solvent provides an ideal
alternative as an ecologically-safe media for particular use in this regard. In this investigation, after a
greener synthesis of the HAP-Pd catalyst, we explored the catalytic activity of Pd nanocatalysts for the



Appl. Sci. 2019, 9, 4183 6 of 12

hydrogenation of nitro compounds in water. Based on the obtained results (Table 1), the reduction of
nitroarenes possessing electron donating or withdrawing functions was fulfilled successfully in high
yields. Although predicting the exact mechanism of the reactions is rather challenging, we propose the
following mechanistic pathway for the formation of aminoaromatics from nitroarenes in this work
(Scheme 1). As shown in Scheme 1, the reduction of nitroarenes was carried out using NaBH4 as
the reducing agent, which entails two stages in the hydrogenation of nitroarenes to aminoaromatics:
(i) Absorption of nitroarene and hydrogen to the metal surfaces, and (ii) electron transfer assisted by
metal surfaces from BH4

− to nitroarene and then desorption of the amino compound.

Table 1. Heterogeneous reduction of substituted nitroaromatics catalyzed by the HAP-Pd catalyst a.
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Then, we compared the synthesis procedure and the catalytic activity of the HAP-Pd catalyst 161 
with the previously published catalysts in the reduction of nitrobenzene (Table S1). A facile synthetic 162 
method introduced in this study provided competitive catalytic conversion in mild reaction 163 
conditions, as compared to the complicated prepared catalysts [42,43]. To verify the advantages of 164 
the heterogeneous catalytic system, we carried out the reduction of nitrobenzene under 165 
homogeneous catalytic conditions using the water-soluble K2PdCl4 catalyst, which did not show 166 
reasonable catalytic activity under the reduction conditions (entry 1, Table S1). When NaBH4 was 167 
added to the reaction mixture, K2PdCl4 immediately aggregated forming large-sized particles. The 168 
reduction in the absence of the catalyst using NaBH4 also did not yield the expected product (entry 169 
2, Table S1). Consequently, the friendly reaction medium containing HAP-Pd is an efficient catalytic 170 
tool for several important industrial organic transformations with numerous advantages such as 171 
benign catalytic system, high yield of products, and the deployment of nontoxic solvent. In addition, 172 
the utilization of water soluble reductant and oxidant (e.g., NaBH4 and H2O2) in the absence of gas 173 
pressure provides less expensive, safer, and more environmentally-benign protocols. 174 

Although dehydrogenation of primary and secondary alcohols using solid-supported Pd NPs, 175 
including HAP, has been profoundly investigated, they are generally attained under oxygen pressure 176 
using hazardous and toxic organic solvents [44]. Therefore, developing mild oxidation processes 177 
using H2O2 in a greener oxidant is decidedly important for heterogeneous Pd catalysts [45]. To 178 
expand the greener potential application of the synthesized HAP-Pd catalyst, we examined the 179 
oxidation of primary and secondary alcohols in water using H2O2 as an oxidant; Table 2 summarizes 180 
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Scheme 1. A plausible mechanism for the reduction of nitroarenes catalyzed by the HAP-Pd catalyst.

Then, we compared the synthesis procedure and the catalytic activity of the HAP-Pd catalyst
with the previously published catalysts in the reduction of nitrobenzene (Table S1). A facile synthetic
method introduced in this study provided competitive catalytic conversion in mild reaction conditions,
as compared to the complicated prepared catalysts [42,43]. To verify the advantages of the heterogeneous
catalytic system, we carried out the reduction of nitrobenzene under homogeneous catalytic conditions
using the water-soluble K2PdCl4 catalyst, which did not show reasonable catalytic activity under the
reduction conditions (entry 1, Table S1). When NaBH4 was added to the reaction mixture, K2PdCl4
immediately aggregated forming large-sized particles. The reduction in the absence of the catalyst
using NaBH4 also did not yield the expected product (entry 2, Table S1). Consequently, the friendly
reaction medium containing HAP-Pd is an efficient catalytic tool for several important industrial
organic transformations with numerous advantages such as benign catalytic system, high yield of
products, and the deployment of nontoxic solvent. In addition, the utilization of water soluble reductant
and oxidant (e.g., NaBH4 and H2O2) in the absence of gas pressure provides less expensive, safer, and
more environmentally-benign protocols.

Although dehydrogenation of primary and secondary alcohols using solid-supported Pd NPs,
including HAP, has been profoundly investigated, they are generally attained under oxygen pressure
using hazardous and toxic organic solvents [44]. Therefore, developing mild oxidation processes using
H2O2 in a greener oxidant is decidedly important for heterogeneous Pd catalysts [45]. To expand
the greener potential application of the synthesized HAP-Pd catalyst, we examined the oxidation of
primary and secondary alcohols in water using H2O2 as an oxidant; Table 2 summarizes the results
of the dehydrogenative oxidation of benzyl alcohols catalyzed by HAP-Pd. Several primary and
secondary alcohols were oxidized affording the desired products in good to excellent yields in water.
It should be noted that the alcohol oxidation could not be achieved when we examined the oxidation
of cycloheptanol under the identical reaction conditions but in the absence of the HAP-Pd catalyst;
this catalytic system shows a marked ability to operate for a wide range of substrates under such
optimized conditions. The precise mechanism for the heterogeneous oxidation of alcohols has not
been delineated yet, but we proposed the following simplified pathway for the oxidation of alcohols
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using the HAP-Pd catalyst and H2O2 in this work (Scheme 2); the presence of Pd NPs plays a rather
important role for the addition of hydrogen to alcohol by facilitating water elimination, and cleavage
of C–H and O–H bonds of the alcohol to form an aldehyde or a ketone.

Table 2. Heterogeneous oxidation of alcohols catalyzed by the HAP-Pd catalyst a.

Entry Substrate Product Yield (%) b

1
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a Reaction conditions: Alcohol (0.25 mmol), HAP-Pd catalyst (1 mol%), 90 ◦C, H2O2 30% (5 mmol), H2O (3 mL),
24 h. b The yields were determined by GC-MS.
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Furthermore, we studied the recyclability of the HAP-Pd catalyst in the reduction of nitrobenzene
and oxidation of cycloheptanol as model reactions; Figure 7 illustrates the yield of the products with
the number of cycles for the examined reactions. When the reaction was completed, the catalyst was
separated from the reaction mixture, washed with deionized water, and dried in an oven for the
subsequent runs. According to Figure 7, the catalyst could be recycled and reused for at least six runs
with a negligible activity loss. The small reduction in the catalytic activity might be owing to the
normal loss of the catalyst within the workup step.
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