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Featured Application: efficient near-field analysis of cables illuminated by external fields.

Abstract: This paper proposes an efficient technique to solve the electromagnetic scattering problem,
in the near zone of scatterers illuminated by external fields. The technique is based on a differential
formulation of the Helmholtz equation discretized in terms of a finite element method (FEM). In order
to numerically solve the problem, it is necessary to truncate the unbounded solution domain to
obtain a bounded computational domain. This is usually done by defining fictitious boundaries
where absorbing conditions are imposed, for example by applying the perfect matching layer (PML)
approach. In this paper, these boundary conditions are expressed in an analytical form by using the
Dirichlet-to-Neumann (DtN) operator. Compared to classical solutions such as PML, the proposed
approach based on the DtN: (i) avoids the errors related to approximated boundary conditions;
(ii) allows placing the boundary in close proximity to the scatterers, thus, reducing the solution
domain to be meshed and the related computational cost; (iii) allows dealing with objects of arbitrary
shapes and materials, since the shape of the boundary independent from those of the scatterers.
Case-studies on problems related to the scattering from cable bundles demonstrate the accuracy and
the computational advantage of the proposed technique, compared to existing ones.

Keywords: bundled cables; Dirichlet-to-Neumann map; electromagnetic compatibility; electromagnetic
scattering; near-field analysis

1. Introduction

The near-field electromagnetic interaction between components has become an issue in
high-frequency complex electronic systems, where it is highly likely to generate phenomena that affect
the system performance, such as unwanted electromagnetic interference (EMI) or crosstalk noise.
An accurate knowledge of the near-field distribution is mandatory in the design and verification of cable
harnesses, integrated circuits, printed circuit boards, and Radio-Frequency (RF) systems. The near-field
analysis allows, for instance, the location of hot spots and possible noise sources, or the estimation
of the currents induced on the scatterers [1]. Specifically, facing both the emission and immunity
issues related to unwanted scattering has become a major challenge for high-frequency systems in
vehicles, aircraft, ships, and buildings. This problem poses many challenges both in experimental
characterization (e.g., [2,3]) and in numerical modeling, usually based on full-wave or hybrid models
(e.g., [4–8]).
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The study of the electromagnetic scattering from objects is a classical problem whose numerical
solution can be obtained by using either integral or differential formulations [9–11]. In this paper,
we focus on differential formulations solved by means of the finite element method (FEM). The final
numerical model must be of course solved in a bounded solution domain, whereas the original
problem is definite in an unbounded one (the whole space). Therefore, the unbounded domain must
be truncated by an artificial boundary containing all the scatterers, and proper conditions must be
imposed on such a boundary to avoid spurious reflections. Non-reflecting conditions can be classified
into two main classes: non-reflective boundary conditions and non-reflective boundary layers. In the
first class, the impinging waves are absorbed at the artificial boundary, as for instance when using the
classical absorbing boundary conditions (ABC) [12]. In the second approach, the waves are absorbed
in an extra layer, as in the case of perfectly matched layer (PML) [13]. A comprehensive review of low-
and high-order non-reflecting boundary conditions may be found in [14].

The approximation introduced by the absorbing conditions is not the only issue when a scattering
problem is solved in an artificially truncated domain: Another issue arises when a near-field analysis
is required. Indeed, the absorbing conditions are usually matched on the structure of the far field,
hence they are more efficient if the artificial boundary is placed in the far-field region, rather than in
the near-field region. As a consequence, in order to achieve a given accuracy, the computational cost of
a near-field simulation increases as the boundary is put closer to the scatterer.

These two issues may be solved if exact boundary conditions are imposed in the truncating
boundary. This can be done by using the so-called Dirichlet-to-Neumann (DtN) operator on the
artificial boundary. In this way, the “inner” problem (inside the artificial boundary) is decoupled
from the “outer” one (outside the artificial boundary). Since the boundary conditions are exact, the
boundary may be placed at any position, even in close proximity to the scattering object, thus reducing
the computational domain (and hence the cost). This approach has been previously proposed for
problems in acoustics, photonics, and electromagnetics, see [15–17]. Recently, it has been adopted for
electromagnetic scattering problems applied to conducting cylinders [18], and composite materials [19].
An extension to the multiple scattering problems is also provided in [20]. The treatment of periodic
structures, as those arising from arrays of conductors or Photonic Crystals, can be found in [21–24],
based on the use of a semi-analytical DtN. A DtN-related approach can also be found in modeling
atomic and molecular physics [25].

In this paper, the DtN approach is used to solve the scattering problem of a bundled cable
illuminated by an external field. The authors have already presented initial results on single scatterers
in the conference papers [26,27]. Here, we present the formulation in details, including the analysis of
the structure of the matrices associated with the numerical formulation. In addition, the approach
is here applied to analyze multiple scatterers, in case-studies of practical interest in the field of
electromagnetic compatibility (EMC). Specifically, we efficiently evaluate the high-frequency near-field
distribution, i.e., the solution in close proximity to the wire boundaries.

When arbitrary geometries are chosen for the boundary, the DtN operator can only be computed
numerically, whereas it can be given in analytical form on canonical geometries such as the circle used
in this paper. The numerical evaluation of the DtN may require a computational cost that severely
limits its advantage. It is worth noting that the DtN only depends on the shape of the boundary but is
not related to the shape of the scatterers: Therefore, scatterers of arbitrary shapes may be modeled by
using the same DtN operator. The flexibility of the FEM is here combined with the efficiency of the
DtN boundary conditions. In addition, thanks to the analytical form of the DtN for a circular boundary,
the accuracy of the solution may be easily controlled by truncating the series at an appropriate term.

In addition, compared to existing approaches such as the boundary element method (BEM), where
the DtN operator is implicitly imposed through an integral equation, the novelty of the approach
proposed here resides in the use of an analytic form in terms of a series expansion.

The paper is organized as follows. Section 2 briefly recalls the formulation of the scattering
problem in terms of Helmholtz equations. Then, the exact DtN operator is derived for a circular
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boundary and the numerical formulation of the problem is provided. In Section 3, first a benchmark
problem is analyzed, to assess the method and evaluate the accuracy. Then the proposed technique
is adopted to derive the high-frequency near-field distribution of the electrical field in a three-wire
bundle configuration, under the action of an external field. The cases of wires in air or embedded in a
dielectric are analyzed. A quantitative comparison between the DtN approach and the classical PML
approach is provided.

2. Methods

2.1. Scattering Problem and Helmholtz Equation

The reference problem for this paper is depicted in Figure 1a, where an electromagnetic wave
hits a number of objects, giving rise to a scattered field. The scatterers are dielectric but non-magnetic
objects. Hereafter we assume that the scatterers are invariant along the z axis.

At any spatial position, r, and at any time instant, t, the total field is given by the sum of the two
aforementioned contributions:

E(r, t) = Ei(r, t) + Es(r, t). (1)

The evaluation of the scattering from objects is a classic electromagnetic problem that may be
formulated, for instance, by using Helmholtz equations [11]. To this end, in the following we consider
time-harmonic fields,

e(r, t) = Re
{
E(r)e jωt

}
, (2)

where ω is the angular frequency. Hereafter, we assume TMz propagation, that is the incident wave is
a Transverse Magnetic (TM) field with the electric field polarized along the z axis and the scatterer is
invariant in the z direction. Therefore, the scattering problems reduces to a 2D scalar problem, where
Es is the (scalar) unknown.
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Figure 1. The analyzed scattering problem: n arbitrarily shaped objects are illuminated by a known
incident field. (a) References for the Helmholtz problem; (b) references for the Dirichlet-to-Neumann
(DtN) formulation.

The scattered field is the solution of coupled Helmholtz equations written inside and outside
the domain Ω, defined as the union of all the scatterers Ωi (Ω = Ω1 ∪Ω2 ∪ . . .), see Figure 1a. Proper
boundary conditions and regularity conditions at infinity must be imposed to close the problem. The
final model is:

∇
2E + k2m2E = 0, in Ω, (3)

∇
2E + k2E = 0, in R3

\Ω, (4)

E|∂Ω+ − E|∂Ω− = 0, (5)

∂nE|∂Ω+ − ∂n E|∂Ω− = 0, (6)
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lim
r→∞

r1/2(∂nEs
− jkEs) = 0. (7)

Here, k is the free-space wavenumber, m(r) is the refraction index of the scatterers, and ∂n is the
outward normal derivative. Specifically, conditions (5) and (6) enforce the continuity of the tangential
components of the electrical and magnetic fields at the boundary of the scatterers, ∂Ω, whereas (7) is
the classical Sommerfeld radiation condition. It is worth noting that the problem (Equations (3)–(7)) is
defined in an unbounded domain.

The numerical solution of the scattering problem (Equations (3)–(7)) may be obtained from integral
or differential formulations [10,11]. The main advantage of using the integral formulations is the
reduced solution domain, which includes only the material regions. Conversely, a weak point is
the need of the Green function, which is available in analytical form only for simple geometries and
material property distributions. In the general case, its numerical evaluation is extremely cumbersome
because of the presence of singular or hyper-singular kernels. In addition, integral formulations give
rise to a final numerical model characterized by fully populated matrices, which may pose challenging
problems for storage and inversion.

Conversely, differential formulations do not require knowledge of the Green function and give
rise to sparse matrices. However, a weak point is that the solution must be sought in the whole space.
To cope with this problem, an artificial boundary, Σ, is usually introduced, in order to obtain a bounded
solution domain, Vint, that includes all the scatterers (Figure 1b).

In propagation problems, the presence of this artificial boundary may affect the solution by
introducing spurious non-physical reflections. To avoid these reflections, proper conditions must
be imposed on it, to enable the absorption of such spurious waves. A state-of-the-art approach is
the so-called, “perfectly matched layer” (PML), originally proposed in [13]. In the PML method,
an extra layer of thickness, δ, is added to the solution domain B: In this extra layer, the wave is damped
according to the following law:

exp
[
j(ωt− kr) −

k
ω

∫ δ

o
σ(r′)dr′

]
, (8)

where σ(·) is a positive function of the distance. In the PML approach, the position of the truncating
boundary, Σ, and the layer thickness, δ, are two degrees of freedom that must be adequately chosen to
optimize the accuracy of the numerical solution.

2.2. The Dirichlet-to-Neumann Operator

The Dirichlet-to-Neumann (DtN) operator, Λ(u), relates the values assumed by a scalar unknown
function, u, on the boundary, Σ, (i.e., Dirichlet-type conditions), into the values of its normal derivative,
∂nu, assumed on the same boundary, Σ (i.e., Neumann-type conditions):

Λ : u|Σ → ∂nu|Σ, (9)

u being the solution of the free-space Helmholtz equation outside Σ (i.e., in the domain Vext, see
Figure 1b). By applying the DtN operator to Σ it is possible to decouple the scattering problem
(Equations (3)–(7)) into two problems: One problem defined in Vin and another one defined in Vext.
In other words, the inner problem in Vin can be closed exactly, without the need of introducing
absorbing conditions or artificial absorbing layers.

In principle, the DtN may be numerically evaluated for any shape of the boundary. However, for
canonical geometries it can be analytically evaluated. This entails better insight and more efficient
numerical computations. Here we briefly recall its derivation for a circular boundary (details may
be found in [15,26,27]). Introducing a polar coordinate system (r,θ) in the x, y plane, the scalar wave
equation can be solved in Vext by separation of variables as:
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u(r,θ) =
∞∑

n=−∞
UnH(2)

n (kr)e jnθ, (10)

where H(2)
n is the Hankel function of second kind [28], and the coefficients Un are given by:

Un =
1

2πH(2)
n (kr)

∫ 2π

0
u(r,θ′)e− jnθ′dθ′. (11)

Note that the Uns do not depend on r. The DtN operator for a circular boundary Σ of radius R may be
obtained by taking the normal derivative (∂n = ∂r) of u at r = R. Thus, from Expressions (10) and (11)
we have:

Λ(u|Σ) =
1

2π

∞∑
n=−∞

H(2)′
n (kR)

H(2)
n (kR)

∫ 2π

0
u(R,θ′)e− jnθ′dθ′, (12)

where H(2)′
n is the derivative of H(2)

n with respect to r, that can be also expressed as [28]:

H(2)′
n (kR) =

H(2)
n−1(kR) −H(2)

n+1(kR)

2
. (13)

The map is therefore known in analytical form, in terms of a series expansion.
It is worth noting that the position of the circular boundary may be arbitrarily chosen, even in

close proximity to the scatterers. Therefore, the size of the solution domain may be strongly reduced,
compared to the use of classical absorbing conditions such as PML, that are more efficient when the
boundary is placed in the far-field region.

2.3. Numerical Model

In order to numerically solve the scattering problem in the solution domain Vint, Equations (3)
and (4) are cast in weak form as:∫

Σ

ϕΛ(Es)dl−
∫

Vint

[
∇ϕ·∇Es

− k2m2ϕEs
]
dS = f , (14)

where f is a known term depending on the external impinging field:

f = −k2
∫

Vint

(
m2
− 1

)
ϕEidS, (15)

and Equations (14) and (15) hold for any function ϕ ∈ H1(Vint), for Es
∈ H1(Vint), where H1(Vint) is

the Sobolev space defined as H1(Vint) =
{
ϕ ∈ L2(Vint) : ∇ϕ ∈ L2(Vint)

}
, [29].

To obtain the discrete model, first we express the unknown as Es(x, y) =
∑N

i=1 ciϕi(x, y), where
the shape functions are first-order isoparametric nodal elements, the cis are the unknown coefficients
(degrees of freedom, DoF) and N is the total number of nodes of the finite element mesh. Then, the
Galerkin approach applied to Equation (14) gives the following linear system of equations for the DoFs:

(Λ + A)c = f , (16)

where

Λlk =

∫
Σ
ϕlΛ(ϕk)dl, Alk = −

∫
Vint

[
∇ϕl·∇ϕk − k2m2ϕlϕk

]
dS, (17)
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fl = −k2
∫

Vint

(
m2
− 1

)
ϕlEidS. (18)

It is convenient partitioning the unknowns DoFs in cb and ci which are related to the boundary
and the internal nodes of the finite element mesh. In this way, we get:([

Λbb 0
0 0

]
+

[
Abb Abi
Aib Aii

])[
cb
ci

]
=

[
fb
fi

]
. (19)

We notice that Λbb is a Nb ×Nb fully populated matrix, whereas A is a N ×N sparse matrix, where
Nb is the number of boundary nodes, usually much smaller than N (Ni). Matrix A is the classical
stiffness matrix arising from FEM.

For solving the linear system (19), an iterative method is preferable to a direct method. In doing this,
there are several key aspects such as memory occupation and computational cost for a matrix-by-vector
product. The memory required to store Λ and A is N2

b and O(N), respectively. On the other hand,
the number of multiplications for a matrix-by-vector product is N2

b + O(N), which can be further
reduced by properly treating the stiffness matrix. To make a comparison with the PML, we notice that
the memory occupation and the number of multiplications is O(Nδ) + O(NPML), where NPML are the
number of DoFs in the computational domain for the PML and Nδ the number of DOFs located in the
absorbing layer of thickness δ, see Equation (8). As mentioned, the computational domain for the PML
has to be far from the scatterer, thus it should be NPML � N, for a prescribed mesh density. Regarding
iterative methods, in this work we applied the biconjugate gradient technique [30], with an Incomplete
Lower-Upper (ILU) factorization used as a preconditioner [31].

In conclusion, at a given accuracy, the DtN approach, if compared to the PML one, does not
introduce extra DoFs in the PML layer (Nδ) and can strongly reduce the inner DoFs (Ni), since the
boundary of the computational domain can be placed close to the scatterers. Conversely, the DtN
approach introduces the (once for all) computational costs related to the assembly of matrix (Equation
(17)) and to the matrix-by-vector product related to Λbb.

3. Results

3.1. Case Study 1: Scattering from a Perfect Conductor Cylinder

The first case study is a benchmark case that is a detailed analysis of an example provided in [26]:
A perfectly conducting cylinder, infinitely long along z, is illuminated by a TMz plane wave, with
wave-vector, k, oriented along the x axis (see Figure 2):

Ei(r,θ) = E0e− jkrcosθ. (20)

For this problem, the scattering field may be given in closed form [26] as:

Es(r,θ) =
∞∑

n=−∞
wnH(2)

n (kr)e jnθ, (21)

where coefficients wn are given by:

wn = − j−n Jn(ka)

H(2)
n (ka)

E0. (22)

For this case study, a frequency of 3 GHz was chosen for the exciting wave, corresponding to a
free-space wavelength λ = 10 cm. A cylinder of radius a = λ was assumed. The distribution of the
scattered field, evaluated as in Expansion (21), is shown in Figure 3 and will be taken in the following
as the reference solution.
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In implementing the DtN solution, a circular boundary, Σ, of radius R = 1.2λwas chosen, therefore
locating the boundary of the computational domain in close proximity to the scatterer, in the near-field
zone. The finite element mesh was made by triangular elements. The number of the degrees of freedom
corresponds to the number, N, of mesh nodes.
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ε ≡

∣∣∣∣∣∣Es
n − Es

r

∣∣∣∣∣∣∣∣∣∣∣∣Es
r

∣∣∣∣∣∣ , (23)

where the subscripts “n” and “r” indicate the numerical and the reference solutions, respectively.
The numerical solutions can be obtained by using the DtN or the PML approaches. In the latter case,
the layer thickness, δ, is set to a value that optimizes the curve of the performances in terms of the
error (23). In this case, this value was found to be δ = 1.4λ.
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The errors are plotted in Figure 3, versus the number, N, of mesh nodes, which is related to the
computational cost, as pointed out before. The result validates the proposed DtN-based numerical
scheme and clearly indicates its advantage with respect to the PML approach. Indeed, for a given
value of N the relative error for DtN is about one order of magnitude smaller. Conversely, for a fixed
accuracy, the DtN approach requires much less elements: For instance, a relative error ε = 0.01 would
be obtained with N = 501 for DtN and N = 11,305 for PML, hence with a reduction of the DoFs of
about 23×. Similar performances may be observed in the case of a single penetrable cylinder, or for
arbitrarily shaped scatterers, as shown in [27].

3.2. Case Study 2: Scattering from a Cable Bundle in Air

As pointed out in the introduction, the study of the near-field scattering from unshielded bundled
cables is of great interest for the EMC analysis of a wide variety of electronic applications, from
automotive on-board systems to buried power lines. Here, we refer to the geometry shown in Figure 4a,
where three conducting wires are bundled in an unshielded cable, surrounded by air (εr = 1).
The frequency is again assumed to be equal to 3 GHz, with the wire radius a = λ/6, and the cable
radius b = λ. The three wires are reciprocally rotated by 120◦ and their centers are placed at a distance
equal to c = λ/2 from the cable center.

The DtN solution is calculated by choosing again a circular boundary of radius R = 1.2λ. Here,
the reference solution is given by the numerical solution provided by commercial code COMSOL
Multiphysics®with PML approach, stabilized to an accuracy below 10−4. For this example, this
requires about 1.1 × 106 mesh elements. The obtained distribution of the amplitude of the scattered
field is plotted in Figure 4b.

The evaluation of the maximum scattered field gives an important information in EMC analysis,
since it could provide the worst-case estimation of unwanted radiated emission and/or crosstalk noise
between the conductors in the cable. Therefore, in the following we study the maximum value of the
scattered field in the near-field region, namely inside the circle of radius R = 1.2λ. According to the
solution in Figure 5b, the maximum value of the scattered field, normalized to the amplitude of the
incident wave, is equal to

∣∣∣ES
∣∣∣/E0 = 1.604. In Figure 5a we compare the DtN and PML numerical

solution for increasing value number, N, of the mesh nodes: The DtN solution converges to the
reference value much faster than the PML one; the required values of N for reaching a difference of 1%
between the numerical solutions and the reference one are reported in Table 1. The use of the DtN
provides a reduction in N of a factor of about 5.
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Table 1. Required number of mesh nodes for 1% accuracy, Case study 3.

Case DtN PML

w/o dielectric 511 2638

w dielectric 11,573 59,534
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Finally, in order to better estimate the gain in terms of computational cost, beside the number of
the mesh nodes, N, it is of interest to compare the condition number, k, of the resulting stiffness matrix
M associated with the two numerical models, defined in our case as:

k(M) ≡
∣∣∣∣∣∣M∣∣∣∣∣∣∣∣∣∣∣∣M−1

∣∣∣∣∣∣, (24)

where M is the 2-norm of M. Indeed, the computational cost of the numerical solution (the number of
iterations required for convergence in an iterative solver), is inversely related to the condition number.
In Figure 6b, the condition number, k, versus the number of the mesh nodes, N, is reported. The DtN
scheme provides a lower condition number, hence, outperforming the PML one also in this sense.
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3.3. Case Study 3: Scattering from a Cable Bundle in a Dielectric Coating

The last example refers to the same problem as Case study 2, but assuming the wires surrounded
by a dielectric of relative permittivity equal to εr = 4. The spatial distribution of the scattered
field is now given in Figure 6a, giving a maximum value of the scattered field, normalized to the
amplitude of the incident wave, equal to

∣∣∣ES
∣∣∣/E0 = 3.3505. The reference solution is obtained by using

COMSOL Multiphysics®with an accuracy below 10−4. In this example, this requires about 16.5 × 106

mesh elements.
In Figure 6b, we compare the DtN and PML numerical solution for increasing value number, N,

of the mesh nodes: Once again, the DtN solution converges to the reference value much faster than the
PML one; the required values of N for an accuracy of 1% reported in Table 1 indicates now a gain in
using the DtN of a factor 5×.

In Figure 7, the condition number k defined as in Expression (24) is reported, highlighting a similar
behavior compared to Case study 2.
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4. Conclusions

The use of the Dirichlet-to-Neumann (DtN) operator has been, here, shown to be a suitable way to
efficiently evaluate the near-zone electromagnetic field in a scattering problem, when such a problem is
numerically solved by means of differential formulations, discretized with the finite elements method.
Indeed, thanks to the DtN operator, the numerical problem is cast in a bounded computational domain
where the boundary conditions are imposed exactly, with analytical expressions. Specifically, in this
paper the DtN map was provided with reference to a circular boundary, in terms of a series expansion
of Henkel functions. Given its features, the proposed approach may be applied to scatterers with
arbitrary shapes, topology, and material properties.

The analyzed case-studies, referring to bundles of conducting wires with or without dielectrics,
compare the DtN approach to the state-of-art absorbing boundary condition, i.e., the perfect matching
layer (PML). For a given accuracy, the DtN solution requires a lower number of mesh nodes compared
to the PML one: For instance, for a fixed maximum error of 1%, the mesh nodes are reduced by a factor
of 5. In addition, for a given number of mesh nodes, the conditioning number of the stiffness matrix
associated to the DtN is definitely better than that related to the PML solution. Both these results lead
to a lower computational cost.
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