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Abstract: This paper introduces two new deposition-strategies for five degrees of freedom (5DOF)
and 6DOF extrusion-based additive manufacturing (AM), called the tool path projection- and
parent-child-approach, respectively. The tool path projection method can be automated, and allows
for the generation of concentric shells layers, which remedy geometrical deviations (known as the
stair-case effect) that are typically seen in 3DOF AM processes that potentially require secondary
post treatment by machining or grinding of the final part. In the parent-child approach, the designer
specifies the manufacturing direction for each distinct feature, thereby helping to remove the need for
support material, as well as enabling new features to be dynamically added to the part.

Keywords: additive manufacturing; five degrees of freedom; six degrees of freedom; surface finish;
support free additive manufacturing

1. Introduction

Extrusion-based additive manufacturing (AM) is in its current state primarily dominated by
layered strategies in which a geometry is manufactured by consolidating thin layers of material [1,2]
using three degrees of freedom (DOF). This is also true for higher DOF systems, such as 6DOF robot
arms [3], i.e., systems that, despite more than a decade of research efforts into multiple DOF job
generation methods and manufacturing setups, still operate using 3DOF strategies [4–7].

Some of the main issues of the 3DOF approach include anisotropic material properties, poor
surface finish, especially on inclined surfaces, known as the stair-case effect [8–12], and the need for
support for the overhangs. One approach to remedy these challenges is to utilize numerical models to
improve the prints [13–15]. Another approach is to develop new AM deposition strategies that make it
possible to expand the design space and to overcome the aforementioned issues. One such method is
to enable out-of-plane surface contouring by increasing the DOF used at the job generation, to take
full advantage of all axes of the system [16,17]. However, this comes at the cost of more complex job
generation, as commonly recognized in the field of 5-axis CNC machining, where CAM preparation
can be as time consuming as modelling the geometry to be manufactured [18,19]. For example, 5-axis
job generation for AM requires a new approach, in which a STL file can no longer be sliced into simple
layers from which the tool paths are generated. Given that 5-axis numerical control machining is a
mature manufacturing technology [20,21], it would be naive to expect that a 5DOF job for an additive
machine tool could be generated autonomously without similar complexity.

The two proposed manufacturing strategies of this study are intended to reduce this complexity by
minimizing the number of operation decisions required during the job generation, rather than making
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the system fully automated. In this work, efforts are put into the application of 5DOF in material
extrusion-based AM, such that double-curved surfaces can be profiled, eliminating the stair-case
effect and producing a component with less single plane anisotropy. In addition, a second approach
is made to illustrate a parent-child approach of a robot-arm, based on a 6DOF system, to reduce
support structures during the build, and allow new features to be dynamically added to the part.
The two manufacturing strategies are verified on two separate systems. The tool-path projection is
experimentally tested on a 5DOF parallel kinematics machine setup [22], whereas the parent-child
strategy is experimentally tested on a 6DOF robotic arm and a stationary nozzle [23].

2. Methods

2.1. The Tool-Path Projection Approach

The tool-path projection technique that is presented in this paper was inspired by the texturing of
3D bodies used in computer-generated imagery (CGI). Within the field of CGI, texture wrapping is the
most common method by which 3D bodies are texturized [24] (Figure 1A). The approach follows a
sequence in which the surface of the geometry is unwrapped, and in its flattened form, texturized, often
manually by a sketch artist, after which the geometry is wrapped back to its 3-dimensional shape. This
method can be adapted as a tool path generation method to 5DOF AM by offsetting the computer aided
design (CAD) body inwards in increments of one until all concentric shells have been generated. This
approach differs from the conventional by-layer deposition method, in that the manufactured object
will exhibit less material anisotropy. Unwrapping each concentric layer to a two-dimensional sheet
drastically simplifies the automated tool path generation to an extent where the same algorithms can
be exploited that are presently use in by-layer tool path generation [25]. Furthermore, in this approach,
the deposition tool is angled perpendicular to the surface of the build at any given position, thereby
dramatically altering the definition of the surface of the manufactured component, and thus removing
the stair case effect. To verify this approach, a simplified implementation of tool-path projections to a
double curved surface is implemented in this work and experimentally tested.

2.2. The Parent-Child Approach

The parent-child approach is inspired by the feature-on-feature modelling approach used in
parametric CAD environments. A component is created by a hierarchy of features superimposed
onto a global coordinate system. Each feature has its own local coordinate system, from which the
manufacturing strategy of the additively-manufactured object can be planned, enabling the exploitation
of existing job generation techniques (Figure 1B). Past examples in the literature have illustrated how
complex parts can be subdivided based on geometrical considerations [26]. The approach builds on
generating features based on the typical 2.5D slicer software, and identifies features without support
generation. The parent-child approach aims to provide the designers with tools to actively choose both
how the parts are built and how to define the different features. This approach allows local features of
the workpiece to be built in different directions by reorienting the workpiece accordingly, exploiting
the 6DOF of the system.
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Figure 1. Principle sketches of the two concepts presented in this paper: (A) illustrates the general
concept of texture wrapping [24] as a path planning tool for multi DOF AM. (B) Illustrates a sample
geometry that has been divided into three parts, each belonging to a different coordinate system,
in order to print without support structure [23].

3. Implementation

3.1. The Tool-Path Projection Approach

Two test objects are prepared to test the hypothesis that the 5DOF path projection-based setup can
improve surface roughness properties, with one using a normal 3DOF pathing strategy and the other
using the new 5DOF path projection-based pathing strategy (Figure 2A,B). The tool-path-projection
job generator implemented in this study is a three-step manufacturing strategy containing a surface
geometry generation, a creation of a g-code file, and a sequence that projects this g-code onto the
generated surface geometry using an approximation function. The workflow consists of the initial
parameterization of the specific layer, in which the different parameters are characterized to set up
a discrete point cloud description of the desired 3D surface (Figure 2C), much like the typical STL
description found in normal AM strategies. The height z for each x- and y-point on the discrete surface
is calculated from the surface description of a hemisphere using the sphere radius. By this approach,
the desired surface is discreetly described, as seen in (Figure 2C).

The next step is the creation of a 2D manufacturing strategy. For this, the path planning sequence
is prepared in a plane and the strategy chosen is concentric circles, as this pattern easily coheres to
the desired hemispheric shape; see Figure 2D. The planned 2D sequence is subsequently projected
onto the 3D surface, as seen in Figure 2E. For each (x, y) coordinate on the 2D manufacturing strategy,
the z-value and normal vector of the corresponding coordinate on the 3D geometry is calculated using
bilinear interpolation. From these calculations, the surface-normal-values are inverted to cohere with
the desired tooling orientation (Figure 2E); then, the normal vectors are converted to tilt orientations.
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This process is repeated for each layer of the part and the process-plan is exported into the g-code
format for further implementation. By having these five coordinates for each command, it is possible
to secure a conformal AM process using an arbitrary 5DOF AM machine.

Figure 2. Pictures of the projection process [27]: (A) The reference geometry used for the 3DOF
comparison approach. (B) Test geometry for the 5DOF approach of this study. (C) The surface
description of the used hemisphere to describe the desired 3D shape. On this surface, a discrete pattern
is used to describe the surface with corresponding normal vectors. (D) The concentric build approach
used in this work. (E) An illustration of the projected patterns onto the desired shape (black) with its
normal vectors (red).

3.2. The Parent-Child Approach

The parent-child method is implemented on an experimental setup with a stationary extruder
and a 6 DOF robot manipulating a build plate mounted on the end effector. As mentioned in the
previous section, each feature possesses its own coordinate system with respect to the global coordinate
system. This will dictate the position of the robot end effector that will align the corresponding surface
perpendicularly to the stationary nozzle and align with the local coordinate system of said features.
In this context, the built features are assigned the role of the new receiving substrate for future features
(Figure 1B). By employing this principle, all features are still being manufactured from planar layers
following a 2.5D layout, but the increased degree of freedom allows the designer to have localized



Appl. Sci. 2019, 9, 4168 5 of 9

control over the layer orientation, and more complex geometries can be manufactured without the use
of support material.

A Robot Operation System (ROS) is used for the software implementation of the parent-child
method. ROS is a control environment that allows a wide variety of robot arms and kinematic systems
to be controlled within a flexible, library-based framework [28]. This setup is used to prevent the need
for reimplementing control of the individual joints in the articulator. The hardware utilizes a 6DOF
articulated robot with a wrist infinite joint that is supported by ROS and the MoveIt motion planner
framework, authored and maintained by Felix Messmer [29]. The articulated robot is set up in a virtual
environment describing its relative position to a fixed extruder, as illustrated in (Figure 3A,B). This
configuration enables the creation of AM pathways comprising of a series of waypoints that contain
both a rotation and position in the global 3D Cartesian space.

Figure 3. Sketches and illustration of the parent-child AM approach [23]. (A) ROS environment
showing the articulated robot and its position relative to the extruder. (B) Sketch illustrating the overall
framework of the ROD/UR3/extruder controller.

The extrusion is handled over a serial connection to an extruder controller that operates the
temperature control and drives the filament feed motor. The integration of this to ROS is illustrated in
Figure 3A,B. The path-planning engine is restricted to prevent most self-collisions of the articulator
arm, which is a necessity for the applied inverse kinematics model. Furthermore, the parts have been
manufactured using procedural generated plans, but they can also be converted from g-code produced
on various CAD/CAM software.

4. Results and Discussion

4.1. The Tool-Path Projection Approach

To test the tool-path projection approach against its ability to smoothen out the stair case effect,
the initial tests were structured so that five hemispheric layers were applied onto a base structure
made through conventional layered deposition. In this test, the results are compared to a conventional
by-layer manufactured artifact; it was observed (Figure 4A,B) that the results improved the surface
quality. Following this observation, an analysis of the artifacts using high-resolution 3D scanning
further revealed the differences between the two approaches (Figure 4C,D). It was seen that the
stair-chase effect was present in the conventional by-layer artifact, whereas this effect was not found in
the 5DOF projection artifact. This shows that the approach can be used to improve the surface accuracy
of the material extrusion-based surfaces without having to rely on time-consuming small layer-height
approaches or post-processes to reach a high surface finish on the produced parts. Hence, it is indicated
that the tool path projection approach can improve the surface quality of rounded surfaces without
changing nozzle size or layer height, thereby removing one of the clear disadvantages of the AM
surface quality of, notably, material-extrusion-based processes. The approach demonstrated can still be
improved, e.g., the linear interpolation approximation used to find the surface normal of the process
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plan could benefit from higher order approximations. In addition, automatic algorithms should be
integrated to enable the texture wrapping approach for any given geometry.

Figure 4. Results of the PLA deposition [27]. (A) Results of the 5DOF AM approach. (B) Results of the
3DOF AM approach for comparison. (C) Microscopic results of the 5DOF approach. (D) Microscopic
results of the 3DOF approach. (E) Sketch comparison of the results with scale.

4.2. The Parent-Child Approach

To investigate the applicability of the parent-child approach, two different geometries were
prepared. The first is a hollow rectangular geometry with a small extruded square on the side
(Figure 5A,B). This geometry is made to verify the coordinate change approach of the parent-child
concept. The main rectangular geometry and the square feature on top of it are each characterized
by their own coordinate system. Therefore, coordinate change must be made to create this product
without the use of a support structure. Figure 5A,B presents a successful print of the test part, which
would not have been possible with any other available system. From the success of the first geometry,
a second, more complex geometry was produced, (Figure 5C,D). In this case, five different coordinate
system changes were applied during the process. The first step was to align the moving build plate to
the stationary nozzle in order to expand the build plate area. After that, the sequence to build the four
additional features in different orientations was performed.

Due to the similarities with parametric 3D modelling, future manufacturing strategies could
facilitate the designers’ process of creating new and advanced geometries that are less constrained
by the available manufacturing processes. However, in order for this to happen, some issues need to
be addressed; for example, the alignment of motion where an accurate definition of the tool control
point is paramount. Since everything is related to the parent geometry, even small positional errors
or misalignments in the parent geometry can have catastrophic results in the final process plan,
leading to part collisions, etc. If the parent-child approach is then considered in a broader scenario,
i.e., where deposition from multiple nozzles take place, the need for accurate positioning becomes
increasingly important. This will require accurate and precise calibrating procedures and highly
complex motion planning.
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Figure 5. Results of the parent-child approach [23]. (A,B) are pictures of the initial trials. (C,D) present
the second iteration of a more complex product that aims at illustrating the power of the approach with
both substrate expansion and critical angles, which does not require any kind of support material.

5. Conclusions

In this paper, two new AM strategies were presented and discussed. The first approach,
a projection-based manufacturing strategy, demonstrates a 5DOF approach which is capable of
improving the surface finish of rounded surfaces by removing the staircase effect of material
extrusion-based processes. This approach was inspired by the texture treatment found in the gaming
industry that enables convex and concave surfaces to be unfolded and flattened for the easy treatment
of datasets. To demonstrate the concept, a projection path process was developed to illustrate some
of the basic ideas behind the approach. In this investigation, the approach was demonstrated and
verified against the conventional manufacturing strategy of AM parts. It was found that the process
enabled new deposition strategies for out-of-plane depositions, which could potentially help the
further advancement within, e.g., continuous fiber AM composite manufacturing.

The second approach, the parent-child, illustrates an alternative process for applying
differently-oriented layers using multiple reference coordinate systems. This approach makes it
possible to manufacture complex parts without support materials, using a 6DOF articulated robot
as the build plate and a fixed extruder. The current proof of concepts were only tested with
procedurally-generated construction plans, but future versions will require the automatic generation of
motion plans based on CAD models. However, despite the requirements for the further implementation
of this approach, the promising results show great potential for the use of this method in industrial
application, especially for multiple-material deposition and automated manufacturing AM production.
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