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Abstract: We investigate the topological bound modes of surface plasmon polaritons (SPPs) in a 
graphene pair waveguide array. The arrays are with uniform inter-layer and intra-layer spacings 
but the chemical potential of two graphene in each pair are different. The topological bound modes 
emerge when two arrays with opposite sequences of chemical potential are interfaced, which are 
analogous to Jackiw-Rebbi modes with opposite mass. We show the topological bound modes can 
be dynamically controlled by tuning the chemical potential, and the propagation loss of 
topological bound modes can be remarkably reduced by decreasing the chemical potential. 
Thanks to the strong confinement of graphene SPPs, the modal wavelength of topological bound 
modes can be squeezed as small as 1/70 of incident wavelength. The study provides a promising 
approach to realizing robust light transport beyond diffraction limit.  
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1. Introduction 

Surface plasmon polaritons (SPPs), the surface waves supported at the interface of metal and 
dielectric, have attracted enormous attention as they are able to propagate beyond diffraction limit 
and realize strong field enhancement [1–4]. In searching for new plasmonic material, graphene, a 
two-dimensional material composed of carbon atoms, has emerged as a promising candidate 
instead of noble metal [5–10]. Graphene shows stable mechanical properties thanks to the stability 
of the sp2 bonds that form the hexagonal lattice and oppose a variety of in-plane deformations 
[5,11]. The chemical properties of graphene are quite stable and will not be easily oxidized. The 
optical properties of graphene change with the change of the dielectric environment in contact with 
it. For example, air components such as different concentrations of oxygen and water vapor may 
affect the chemical potential of graphene [5]. The unique electronic, thermal, mechanical, and 
chemical characteristics of graphene, along with the intrinsic benefits of a carbon material, make it a 
promising candidate for many applications, such as supercapacitor [11–14]. Graphene based 
plasmonic devices have many new advantages when compared with metal. The SPPs in graphene 
are confined more than two orders smaller than that of free-space wavelength [8]. The surface 
conductivity of graphene can be dynamically controlled by tuning chemical potential via 
electrostatic and chemical doping [5]. The high carrier mobility in graphene makes it suitable for 
ultra-fast switching [15–18]. Graphene is also convenient to integrate with other optical nanodevices 
thanks to its dimensionless and flexible properties [6]. Moreover, graphene is utilized to investigate 
nonlinear optics due to its high nonlinear coefficient [19–23]. Many schemes are proposed to 
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manipulate the optical property and control the propagation of SPPs, such as coupled graphene 
waveguides [24–26], graphene metamaterials [7,27], and dynamic modulation [28–31]. The 
graphene waveguide arrays have also been utilized to demonstrate optical analogues of 
semiclassical electron dynamics [32–34]. 

On the other hand, topology, a new freedom that characterizes the collective behavior of the 
wave functions on the photonic band structure, is demonstrated to reveal new states of light and 
provide robust way to control light flows [35–38]. One important feature of topological theory is 
that topologically-protected bound states emerge when two structures with different topologies are 
interfaced [35,39,40]. Such topological bound modes are usually located at the middle of band gap 
and rather robust against certain structure disorder. For example, the Su–Schriffer–Heeger (SSH) 
model, which studies the topology of a binary periodic array, can possess two distinct topological 
phases determined by the relative strength of inter-layer and intra-layer couplings [41–44]. The 
structure is topologically nontrivial as inter-layer coupling is stronger than intra-layer coupling, 
while it is topologically trivial as inter-layer coupling is weaker than intra-layer coupling [41]. The 
SSH model is demonstrated using graphene sheets [45–49]. However, the optical properties of 
topological bound modes in these systems are mostly determined by the spatial spacing between 
different graphene sheets, which cannot be flexibly adjusted after manufacturing.  

In this work, we propose another scheme to investigate the topological bound modes in the 
binary graphene sheet arrays. The arrays are with uniform inter-layer and intra-layer spacings but 
the chemical potential of two graphene in each unit cell is different. The topological bound mode 
emerges when two arrays with opposite sequence of chemical potential are interfaced, which is 
analogous to Jackiw-Rebbi mode at the interface where the mass term changes sign in a Dirac 
equation with position dependent mass [50–54]. The Jackiw-Rebbi model is a type of topological 
bound state and firstly proposed in [50]. Such modes are recently discovered in other photonic 
systems, such as optical waveguides [51,52] and nano particles [53,54]. Here, we show the 
plasmonic Jackiw-Rebbi modes exist in graphene sheet arrays. As a result of strong confinement 
and tunable optical response of graphene SPPs, the Jackiw-Rebbi modes can be squeezed into deep 
subwavelength scale and dynamically controlled by tuning the chemical potential. The influence of 
chemical potential on propagation loss is also discussed.  

2. Materials and Methods  

2.1. Coupled-Mode Equations 

The Jackiw-Rebbi modes can be solved from a tight bounding model, which is also known as 
coupled mode theory in optical waveguides. We consider the interface of two arrays with different 
masses, that is, different detuning of propagation constants. Then, the coupled mode equation can 
be given as 

−idan/dz = c(an+1+an-1)−(−1)nσan, (1)

where an represents the field amplitude at nth waveguide, z denotes coordinate along the wave 
propagation direction, c is the coupling strength between adjacent waveguides, and σ is the 
mismatch of propagation constant. For left arrays (n < 0), the detuning of propagation constant is σ 
= σ1, while we set σ = σ2 for right waveguide array. The eigenvalues β and related bound modes of 
Equation. (1) is can be solved by setting −idan/dz = βan = c(an+1+an-1)−(−1)nσan. 

According to [51], the solution of Jackiw-Rebbi modes at the interface can be divided into two 
cases. If −σ1 = σ2 = σ0 > 0, one has:  

β = c − (σ2 
0 + c2)1/2,  (2)

the amplitudes satisfy the relation a2n-1 = a2n. For the right sites, that is, n ≥ 0, the amplitudes 
fulfill the relation a2n/a2n+1 = −[σ0/c + (1 + σ2 

0 /c2)1/2]. For the left sites, that is, n < 0, the amplitudes 
fulfill the relation a2n+1/a2n = −[σ0/c + (1 + σ2 

0 /c2)1/2].  
If σ1 = −σ2 = σ0 > 0, one has:  
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β = c + (σ2 
0 + c2)1/2,  (3)

at the same time, the amplitudes satisfy the relation a2n-1 = a2n. For the right sites, that is, n ≥ 0, 
the amplitude fulfills the relation a2n/a2n+1 = [σ0/c + (1 + σ2 

0 /c2)1/2]. For the left sites, that is, n < 0, the 
amplitude fulfills the relation a2n+1/a2n = [σ0/c + (1 + σ2 

0 /c2)1/2]. 

2.2. Graphene Waveguide Arrays 

Now we consider the realization of Jackiw-Rebbi modes in graphene sheet arrays. Figure 1 
depicts the geometry of graphene pair arrays under consideration. The SPPs propagate along the z 
axis. The structure is composed of two different arrays. For each array, there are two graphene 
sheets in each unit cell with alternating chemical potential. The middle of the structure is a defect as 
the sequences of chemical potential at left and right arrays are different.  

 

Figure 1. The geometric scheme of graphene waveguide arrays. The red and blue colors represent 
graphene sheets with different chemical potentials. The center of the structure is a defect. n denotes 
the waveguide number. 

The propagation constants of SPPs are different with different chemical potentials. In such an 
arrangement, the center defect will support Jackiw-Rebbi modes. The arrays are embedded in the 
dielectrics with permittivity denoted as εd. Here they are initially assumed to be freestanding in air 
with εd = 1. The intra- and inter-layer spacings are uniform and denoted as d. The surface 
conductivities are represented by σ1 and σ2, which are related to temperature T, chemical potential 
μ, momentum relaxation time τ, and photon frequency ω. The surface conductivity of graphene can 
be determined by the Kubo formula [6] 

ሺ, 𝑇,, ሻ ൌ  𝑖 𝑒ଶ𝑘୆𝑇
ℏଶሺ ൅ 𝑖ଵሻ ሾ 𝑘୆𝑇 ൅ 2lnሺ𝑒ି ௞ా் ൅ 1ሻሿ ൅ 𝑖 𝑒ଶ4ℏ ln ሾ2|| െ ℏሺ ൅ 𝑖ଵሻ2|| ൅ ℏሺ ൅ 𝑖ଵሻሿ, (4)

where e is the electron charge, ℏ is the reduced Planck's constant, and kB is Boltzmann constant. 
In this work, the room temperature (T = 300 K) is assumed. The spatial spacing, momentum 
relaxation time, and incident wavelength are fixed at d = 70 nm, τ = 1 ps, and λ = 10 μm. The 
chemical potential of graphene sheet is kept at μ1 = 0.15 eV and chemical potential of the other 
sheets μ2 is changed. The parameters of graphene are typically used for simulation [24], which 
coincides with the current experiment. Under these parameters, the graphene sheets are weakly 
coupled. 

We only focus on the TM polarized SPPs propagating along z axis. The propagation constants 
and mode profiles of supermodes in waveguide arrays can be figured out by transfer matrix 
method [1,55], which is based on the boundary condition of the electromagnetic field. Moreover, we 
also calculate the wave propagation in the structure performed based on the finite element method. 
The graphene is modeled by using the surface current boundary condition. The domain has been 
discretized by using homogeneous mesh with the maximal element size being less than 1/12 of the 
graphene SPP wavelength. 
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3. Results 

Figure 2 shows the effective refractive index neff of eigenmodes in the limited graphene sheet 
arrays for two different cases. The total number of graphene sheets is N = 40. For a single graphene 
sheet, there is only one TM polarized SPP mode. As a result, the system composed of 40 graphene 
sheets will support 40 supermodes. Figures 2a and 2b plot the real part and imaginary part of 
effective refractive index with μ1 = μ2 = 0.15 eV. In this case, the structure is with uniform graphene 
sheet and no interface is formed at the middle of the structure. Both the spectra of Re (neff) and Im 
(neff) are continuously varied and no gap is found in the spectra. As a result, no bound modes are 
supported in the system. 

The case is different if we tune chemical potential μ2 of some graphene sheets. Figures 2c and 
2d plot the real and imaginary parts of effective refractive index with μ1 = 0.15 eV and μ2 = 0.18 eV. 
In this case, the structure now can be regarded as two arrays with different sequences of chemical 
potential connected, and the center of the structure is the interface. The results show that there is 
evidently a SPP mode in the band gap of Re (neff) with effective refractive index being neff = 68 + 0.3i. 
The wavelength of SPPs is figured out as λSPP = λ/neff = 1/68. On the other hand, there is also another 
trivial defect mode with largest real part of effective refractive index as shown in Figure 2c. 

 

Figure 2. The effective refractive index of supermodes for two different structures. (a) and (b) are the 
real and imaginary parts of refractive index for μ2 = 0.15 eV, respectively. (c) and (d) are Re (neff) and 
Im (neff) for μ2 = 0.18 eV, respectively. In all cases, μ1 = 0.15 eV. 

 
Figures 3a and 3b plot the mode profile (|H|) of topological and trivial defect modes, 

respectively. The dotted lines indicate the location of graphene sheet. Both modes are located at the 
center defect, but their field distributions are different. For the topological mode, the field at the 
center of two graphene sheets is almost vanished, while the field for the trivial defect mode is not 
vanished. As explained above, the topological bound mode emerges because the sequence of 
chemical potential of two graphene sheet arrays is different. The trivial defect mode is formed as 
the two graphene sheets around the defect constitute a region of different effective refractive index 
than the rest of the structure.  
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Figure 3. The field distributions for (a) topological bound mode and (b) trivial defect mode. 

 
Figure 4 shows the wave propagation of SPPs for two different structures with different 

chemical potentials. In both cases, the wave is launched from a single graphene sheet at the center 
waveguide. In Figure 4a, the graphene sheets are uniform with the chemical potential of graphene 
μ1 = μ2 = 0.15 eV. In this case, there is no bound mode supported in the system and the SPPs spread 
during the propagation, which is known as discrete diffraction. In Figure 4b, the chemical potential 
is μ1 = 0.15 eV and μ2 = 0.18 eV. As the SPPs are incident from the single graphene sheet at the center 
defect, most energy is confined at the center of the structure. Moreover, the intensity of light shows 
a beating pattern during the propagation. This is because the trivial and non-trivial defect modes 
are excited simultaneously. 

 

Figure 4. The propagation of surface plasmon polaritons (SPPs) for a single-waveguide excitation. (a) 
μ1 = μ2 = 0.15 eV. (b) μ1 = 0.15 eV and μ2 = 0.18 eV. 

The surface conductivity of graphene relates largely to the chemical potential, which can be 
controlled by electrostatic and chemical doping [5]. Figure 5 plots the numerically calculated 
effective refractive index as chemical potential μ2 changes form 0.13 eV to 0.17 eV. The chemical 
potential μ1 is fixed at 0.15 eV. In Figure 5a, we plot the real part of refractive index. As μ2 = μ1, there 
are no bandgap or topological bound modes. The bandgap broadens when chemical potential is 
tuned away from 0.15 eV. The topological bound modes appear in the bandgap with effective 
refractive index approaching Re (neff) = 70. The real part of effective refractive index shows a slight 
decrease with the increase of chemical potential. On the other hand, the system also supports trivial 
defect modes. For small μ2, the real part of the effective refractive index of the trivial defect mode is 
the smallest. In contrast, Re (neff) of trivial defect mode becomes largest as chemical potential μ2 
increases. Figure 5b plots the imaginary part of effective refractive index. The red dots represent the 
imaginary part of refractive index. For small chemical potentials, the topological bound modes have 
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the smallest imaginary modes among all supermodes; that is, the lowest propagation loss. As a 
result, the topological modes will dominate for a single-waveguide excitation after enough 
propagation distances. 

 

 

Figure 5. The eigenvalue spectra for different chemical potentials. (a) Real part and (b) imaginary 
part. The red dots represent the topological bound modes. 

The topological bound modes are extremely robust against structural disorder. To test the 
robustness of Jackiw-Rebbi modes, we consider the chemical potential of original graphene sheet 
arrays to be μ1 = 0.15 eV and μ2 = 0.18 eV, and the corresponding surface conductivity are σ1 and σ2, 
respectively. We further introduce disorder into them by defining a random fluctuation of the 
surface conductivity. The additional surface conductivity of nth graphene sheet is set to be a 
random value δn, which is smaller than (σ2 -σ1)/4. Figures 6a and 6b plot the real and imaginary part 
of effective refractive index for one disordered structure. The results show that the band gap still 
does not close and the Jackiw-Rebbi persists in the gap. 

 
Figure 6. Robustness of the Jackiw-Rebbi against perturbation. The chemical potential (a) real part 
and (b) imaginary part of effective refractive index. 

4. Conclusions 

In conclusion, we have studied the topological plasmonic modes in a graphene pair waveguide 
array based on Jackiw-Rebbi modes. The interlayer and intralayer spacing of the arrays is uniform 
but the chemical potential of two graphene in each pair are different. We show the topological 
bound modes take place with changing the chemical potential of graphene such that two arrays 
with opposite sequences of chemical potential are interfaced. Such topological bound modes are 
analogous to Jackiw-Rebbi modes in a Dirac equation. Due to the strong confinement of graphene 
SPPs, the modal wavelength of the topological bound mode can reach as small as 1/70 of incident 
wavelength. As the emerging condition of topological bound modes is determined by the chemical 
potential, the topological bound modes can be dynamically controlled. Moreover, the imaginary 
part of the effective index of topological bound mode can be smaller than other modes by 
decreasing the chemical potential. We also show the trivial defect modes emerge in the system, 
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which can be reflected from the wave propagation. Further studies can be carried out from the 
following three aspects. The first is the structure design by using graphene ribbons, which are 
easier to be fabricated in experiments than the planar graphene sheets. Secondly, whether the 
suitably-distributed loss can generate Jackiw-Rebbi modes is also an interesting topic. Thirdly, one 
may extend the study to higher dimensions, such as the two-dimensional graphene-coated 
nanowire arrays.  
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