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Abstract: Purpose: Localization and mapping with LiDAR data is a fundamental building block
for autonomous vehicles. Though LiDAR point clouds can often encode the scene depth more
accurate and steadier compared with visual information, laser-based Simultaneous Localization
And Mapping (SLAM) remains challenging as the data is usually sparse, density variable and
less discriminative. The purpose of this paper is to propose an accurate and reliable laser-based
SLAM solution. Design/methodology/approach: The method starts with constructing voxel grids
based on the 3D input point cloud. These voxels are then classified into three types to indicate
different physical objects according to the spatial distribution of the points contained in each voxel.
During the mapping process, a global environment model with Partition of Unity (POU) implicit
surface is maintained and the voxels are merged into the model from stage to stage, which is
implemented by Levenberg–Marquardt algorithm. Findings: We propose a laser-based SLAM
method. The method uses POU implicit surface representation to build the model and is evaluated on
the KITTI odometry benchmark without loop closure. Our method achieves around 30% translational
estimation precision improvement with acceptable sacrifice of efficiency compared to LOAM. Overall,
our method uses a more complex and accurate surface representation than LOAM to increase the
mapping accuracy at the expense of computational efficiency. Experimental results indicate that the
method achieves accuracy comparable to the state-of-the-art methods. Originality/value: We propose
a novel, low-drift SLAM method that falls into a scan-to-model matching paradigm. The method,
which operates on point clouds obtained from Velodyne HDL64, is of value to researchers developing
SLAM systems for autonomous vehicles.

Keywords: simultaneous localization and mapping; voxel grids; scan-to-model; partition of unity

1. Introduction

Reliable localization of autonomous vehicles is an attractive research topic since it is a basic
requirement for navigation and other tasks [1–5]. Fully autonomous vehicles should reliably locate
themselves, ideally by using only their own sensors on board without relying on external information
sources such as GPS. In scenarios where such external information is absolutely unavailable,
Simultaneous Localization And Mapping (SLAM) is always an alternative option.

SLAM has been intensively studied in the past few decades and various solutions based on
different sensors have been proposed for both indoor and outdoor environments. In outdoor scenes,
the advantage of LiDAR with respect to cameras is that the noise associated with each measurement is
independent of the distance itself and usually more robust to the illumination variation. Therefore,
laser-based SLAM is becoming one of the mainstream solutions in outdoor scenes. Most laser-based
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SLAM methods tend to extract stable features such as planes and edges from points, and then do SLAM
in a ‘feature space’. They are therefore categorized as feature-based SLAM, whose performance is
mainly determined by two factors. The first factor is the way features are designed. Ji Zhang et al. [6,7]
propose a planar and edge feature designing method based on curvature. Michael Bosse et al. [8]
incorporate shape information which is calculated from geometric statistics of the point cloud into
the Iterative Closest Point (ICP) correspondence step. The second factor is the scan matching method.
Scan-to-scan and scan-to-model matching are the two main scan matching frameworks in SLAM. Sen
Wang et al. [9] propose a scan-to-scan odometry trajectory estimation method by using convolutional
neural networks to process LiDAR point clouds. KinectFusion [10] implements scan-to-model matching
by using an implicit surface as model. The state-of-the-art laser-based SLAM method, LiDAR Odometry
And Mapping (LOAM) [6] extracts distinct features corresponding to physical surfaces and corners.
To enable on-line implementation, LOAM switches between scan-to-scan at 10 Hz and scan-to-model
operation at 1 Hz update frequency. Although LOAM has achieved good performance, there are still
challenges in outdoor applications using 3D laser sensors, i.e., (1) inherent point matching error since
the sparsity of the point clouds, which means that there are always existing errors when we directly
use the sparse point cloud to fit the surface of environment. Furthermore, it is nearly impossible to
obtain rigid point correspondences between scans; (2) it is hard to fix the matching parameter since
the density variation of the point clouds. During the feature-based matching process, it is required to
extract enough context information of one 3D point to make it discriminative, while the scope of the
dominating context is greatly affected by the point density. In this paper, to tackle the above challenges,
we introduce POU implicit surface representation to regress the environment surface with sparsity
points, which can effectively encode the detailed geometrical information. We discretize the point
cloud into 3D voxels. These voxels are classified into planar and edge feature voxels according to the
geometrical character of the points contained in the voxel. Finally, we build a feature voxel map for
further scan-to-model matching, during which the POU implicit surface representation is proposed to
adapt to the voxel map. The key contributions of our work are as follows:

(1) We propose a novel feature voxel map which stores voxels with salient planar or edge features.
(2) We propose a scan-to-model matching framework using POU implicit surface representation.

The rest of this paper is organized as follows. In Section 2, we discuss related work and conclude
how our work is different from the state of the art. The feature extraction Algorithm 1 is presented with
details in Section 3, and the scan-to-model matching Algorithm 1 is given in Section 4. Experimental
results are shown in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

SLAM with cameras and LiDAR has attracted wide attention both from robotic and computer
vision communities. We acknowledge the large body of work in this field, but concentrate here only
on approaches based on LiDAR. Since feature extraction, laser-based mapping and scan-matching
framework are the three most important steps for laser-based SLAM, we therefore look into related
work on these three aspects and provide general ideas on how they work as following.

Feature extraction: LOAM focuses on edge and planar features in the LiDAR sweep and keep
them in a map for edge-line and plane-planar surface matching. Tixiao Shan et al. [11] also use edges
and planar features to solve different components of the 6-DOF transformation across consecutive scans.
While these works extract features based on curvature, there is still difference, as the method by [11],
which is ground-optimized, as it leverages the presence of a ground plane in its segmentation and
optimization steps. Using point cloud obtained from a high resolution and high density Zoller–Fröhlich
Z+F laser, J Lalonde and Yungeun Choe et al. [12,13] exploit point cloud geometrical statistics to classify
the natural terrain into scatter-ness, linearity, and surface-ness. Using point cloud from a SICK LMS291
laser range sensor, Michael Bosse et al. [8] implement scan-matching based on point cloud geometrical
statistics features. They use ICP to align voxel centroids, which can reduce the number of points for
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scan matching as well as the size of the map. In contrast to [8], we consider the geometric features of
the points more subtly and implement scan matching with original points, which would not lead to
information loss.

Laser-based mapping: SLAM systems often build and maintain environment maps, such as the
feature map [6,7,11,14,15], dense map [16,17], subsampled clouds [18,19] and Normal Distributions
Transform (NDT)-based map [20,21]. In laser-based SLAM systems, the feature map is usually a
structural collection of surfaces and corners that are extracted from original point clouds. In this paper,
we build a feature map, which can be distinguished from methods in the literature in the way that we
maintain more types of features in the form of voxels.

Scan matching framework: Recently, some laser-based SLAM systems use scan-to-model
matching framework and achieved state-of-the-art performance using the KITTI odometry benchmark.
Jens Behley et al. [16] propose a dense approach to laser-based SLAM that operates on point clouds
obtained from Velodyne HDL-64. They construct a surfel-based map and use a point-to-plane
ICP [22,23] to estimate the pose transformation of the vehicle. Our method essentially belongs to
scan-to-model matching framework. The distinction is that we build a feature voxel map and use
POU implicit surface representation to adapt to the scan-to-model matching process based on feature
voxel map.

Partition of unity approach: The POU approach has been widely used in surface reconstruction.
Ireneusz Tobor et al. [24] show how to reconstruct multi-scale implicit surfaces with attributes, given
discrete point sets with attributes. Tung-Ying Lee et al. [25] propose a new 3D non-rigid registration
algorithm to register two multi-level partition of unity implicit surfaces with a variational formulation.

3. Feature Extraction

Similar to [26], the scan-to-model matching is triggered when there are salient geometrical features
in local regions. So, it is important to find these regions first. In contrast to 3D object classification [27,28]
and place recognition [29,30], which use complex point cloud descriptor to segment and classify objects,
we use a simpler shape parameterization because our task focuses on incremental transformation for
which we have a stronger prior on the relative poses.

3.1. Computing Shape Parameters

A local region that is occupied by the input point cloud is repeated divided until the number of
points fall into each voxel is equal to the threshold Np. The threshold Np is related to the horizontal
and vertical resolution of LiDAR point cloud. In the process of feature extracting, the densities of
features in corresponding voxels vary. We consider the density while searching for the correspondences
of the features. The lower the density of the features, the lower the probability of finding enough
correspondences within a certain radius is. Our experiment results are achieved when Np is set to
25. Each voxel contains points that fall into it and voxel centroid. The points that fall into voxel are
defined as {Xi} =

{
(xi, yi, zi)

T
}

. The first and second-order moments µ, S describe the parameters for
spatial distribution of the points {Xi}:

µ =
1
N

n

∑
i=1

Xi (1)

S =
1
N

n

∑
i=1

(Xi − µ) (Xi − µ)T (2)

Inspired by [8], the matrix S is decomposed into principal components ordered by increasing
eigenvalues. −→e0 ,−→e1 ,−→e2 are eigenvectors corresponding to the eigenvalues λ0, λ1, λ2 respectively, where
λ0 ≥ λ1 ≥ λ2. In the case that the structure of points in a voxel is a linear structure, the principal
direction will be the tangent at the curve, with λ0 � λ1 ≈ λ2. In the case that the structure of points in
a voxel is a solid surface, the principal direction is aligned with the surface normal with λ0 ≈ λ1 � λ2.
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The two saliency features, named linear feature and surface feature, are linear combinations of the
eigenvalues. Figure 1 illustrates the two features used. The quantity:

c =
λ0 − λ1

λ0 + λ1 + λ2
(3)

is the linear feature of the points in voxel which ranges from 0 to 1. Similarly the quantity:

p =
λ1 − λ2

λ0 + λ1 + λ2
(4)

is the surface feature of the points in voxel which ranges from 0 to 0.5.

Figure 1. Illustration of the surface feature and linear feature.

3.2. Voxel Sampling Strategy

Essentially, the voxel-based scan matching process is to construct the associations between voxels.
It is believed that voxels with high quantity of linearity or planarity tend to be more stable than others.
So for each input point cloud, we classify its 3d grids according to the proposed quantities into three
types: edge voxel, planar voxel and others. Furthermore, it should be noticed that the ground points
usually contain more planar features and non-ground points usually contain both planar and edge
features. With these born in mind, we first divide the whole point cloud into ground and non-ground
segments using the method proposed in [31]. Figure 2a is an example of the ground segmentation
result. Then, for the non-ground points, we extract planar and edge features, while only planar features
are extracted for the ground points.

In each scan, which is now represented as the voxel centroids, we sort the voxels based on their
linearity values c and surface-ness values p and get two sorted lists. Two thresholds cth and pth are
then employed to distinguish different types of features. We call the voxels with c larger than cth
edge features, and the voxels with p larger than pth planar features. Then nFe edge features with the
maximum c are selected from each scan. Non-ground and ground planar features with the maximum p
are also selected, and the numbers of the two types of features are nFp and nFgp , respectively. Edge and
planar features extracted from all the scans are denoted as Fe, Fp and Fgp thereafter. Visualization
examples of these features are given in Figure 2b–d.
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(a) (b)

(c) (d)

Figure 2. (a) is the result of ground segmentation. In (a), the red points are labeled as ground points and
the green points are labeled as non-ground points. (b–d) are the ground planar features, non-ground
edge features and non-ground planar features.

4. Scan-To-Model Matching with POU Implicit Surface Representation

Once the currant laser scan is transformed into a set of stable voxels, we implement scan-to-model
matching process. In our method, the map consists of the last n located feature sets Fe, Fp and Fgp. Let

Mk =
{{

Mk
e

}
,
{

Mk
p

}
,
{

Mk
gp

}}
(5)

be the map that contains planar features and edge features at time k. To better fit the observed surface
with these points and adapt to the feature voxel map, we take the POU implicit surface representation
to construct the model.

4.1. Finding Feature Point Correspondence

In the current scan, each point is labeled according to the type of its corresponding voxel. During
the matching process, we construct the correspondences between voxels in the map and the current
feature points with the guidance of labels and Euclidean distance. Since such correspondences
generating mechanism narrows down the potential candidates for correspondences, it can help to
improve the matching accuracy and efficiency. The detailed correspondence construction process is
given below.

For each current edge point in feature set Fe, we search for ne voxels of

Mk
e =

{
Fk−n

e , . . . , Fk−2
e , Fk−1

e

}
(6)

inside a sphere space whose radius is re. For each corresponding voxel, we find an edge line as the
correspondence of the current edge point. After finding all the correspondence edge lines, we can
get the projection points Se of the current edge point on the corresponded edge lines. Then we use
linear quantity c to determine whether Se can be represented as an edge line. If Se can be represented
as an edge line, it is then regarded as the correspondence of the current edge point. After the edge
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feature correspondences are obtained, we compute the distance from an edge feature point to its
correspondence. The procedure of finding an edge line and the distance computation can be found
in [6].

For each current planar point in feature sets Fp and Fgp, we respectively find np and ngp voxels of

Mk
p =

{
Fk−n

p , . . . , Fk−2
p , Fk−1

p

}
(7)

and
Mk

gp =
{

Fk−n
gp , . . . , Fk−2

gp , Fk−1
gp

}
(8)

inside a sphere space whose radius is rp as the corresponding voxels. Then, we use the corresponding
voxels to construct the POU implicit surface representation of the model, and compute the distance
from a planar feature point to its implicit surface representation of the model. The details of building
the POU implicit surface representation and computing the distance from a planar feature point to its
implicit surface representation of the model will be discussed below.

4.2. POU Implicit Surface Representation for Planar Features

4.2.1. POU Approach

The basic idea of the POU approach is to break the data domain into several pieces, approximate
the data in each subdomain separately, and then blend the local solutions together using smooth, local
weights that sum up to one everywhere in the domain. More specifically, we assign a specific planar
patch as the correspondence of a planar feature point in each correspondence voxel. The procedure of
finding the specific points to form planar patches Pc can be found in [7]. We can calculate distances d
between the planar feature point and the corresponding planar patches Pc. Then, we project planar
feature point x on the surface of planar patches defined by ps: psi = x− dini, where ni is the normal
of the closest point to x in each planar patch and is a good approximation of the surface normal at
the projected point psi . Each planar patch can be regarded as a subdomain. Then, we use the weight
function to blend the subdomains together.

4.2.2. POU Implicit Surface Representation

The implicit surface is defined as the set of zeros of a function I(x), which also behaves as
a distance function from x to the implicit surface. In this work, we use the POU implicit surface
representation.

Similar to the POU implicit surface framework in [32], we define the POU implicit function IMk
(x)

as an approximate distance of planar feature point x ∈ R3 at time k to the POU implicit surface defined
by the map Mk:

IMk
(x) =

∑si∈Pc Wsi (x)(x− psi ) ·
−→n si

∑sj∈Pc Wsj(x)
(9)

where psi is the projected points on the corresponding planar patch si,
−→n si is the normal at point psi .

For approximation, we use the quadratic B-spline b(t) to generate weight functions for planar patches.

Wsi (x) = b(
3 |x− csi |

2Rsi

) (10)

where csi is the geometric center of planar patch si and Rsi = max
x∈si
‖x− csi‖ is a spherical support

radius of the planar patch si. The function is proportional to the distance between x and csi and
inversely proportional to Rsi . It means that the closer csi to the x, the higher weight will be allocated.
And the more scattered the points that form the planar patch are, the higher the weight. In addition to
computing the distance from the feature point to the model surface, the surface normal at the projected
point of the feature point x should also be computed. In this work, we use the normal of the closest
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point psclosest to x as the approximation of the surface normal at the projected point. Compared with
the method using only one plane to represent a surface (could be cylinder or sphere, etc.), we adopt
multiple local planes with various planarities to represent a surface which can achieve higher accuracy
and obtain more accurate distances from feature points to their correspondences. Figure 3 shows the
illustration of POU implicit surface.

Figure 3. Illustration of POU implicit surface. Two cells, A and B, are associated with their support
radius RA and RB, respectively. The value of a point x in the slashed region can be evaluated by
IMk

(x) = WA(x)QA+WB(x)QB
WA(x)+WB(x) ; WA(x) = b( 3d1

2RA
); WB(x) = b( 3d2

2RB
), where d1 and d2 are the distances

from the point x to the c1 and c2, respectively, RA and RB are the support radius, QA and QB are local
plane functions.

4.2.3. Motion Estimation

With distances from feature points to their correspondences in hand, we assign a bisquare
weight [7] for each feature point. The rules are twofold. In general, when the distance between the
feature point and its correspondence is below a certain threshold, the weight is assigned inversely
proportional to the distance. However, when the distance is greater than the threshold, the feature point
is regarded as an outlier. We proceed to recover the LiDAR motion by minimizing the overall distances.

First, the following equation is used to project feature point x to the map, namely x̃,

x̃ = Rx + τ (11)

in which, R and τ are the rotation matrix and translation vector corresponding to the pose transform T
between current scan and the map. By combining the distances and weights from feature points to
their correspondences and Equation (11), we derive a geometric relationship between feature points
and the corresponding model,

f (x, T) = d (12)

where each row of f corresponds to a feature point, and d contains the corresponding distances. Finally,
we obtain the LiDAR motion with the Levenberg–Marquardt method [33]. We do scan matching
between the current scan with the last n scans, and the final result is obtained by aggregating the
successfully matched nm scans. Literally, by matching the current scan with the historical n scans,
the error propagation problem can be suppressed. As for blunder, we limit the scale of the relative
transformation between the current scan and the model. When the blunder occurs, we will abandon
the result of the current scan and subsequent scan-matching implementation would be slightly affected.
After computing the transformation between the scan and model, we add feature voxels corresponding
to current scan to the map and remove the feature voxels corresponding to the oldest scan to always
keep n scans for scan matching.
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Algorithm 1: POU-SLAM Scan To Model Matching Framework
Input: current scan and model
Output: LiDAR pose transform T between current scan and model

1 extract non ground features Fk
p , ground features Fk

gp and edge features Fk
e based on shape

parameters in each voxel;
2 for a number of iterations do
3 for each non ground planar feature in Fk

p do
4 find an POU implicit surface as the correspondence, then compute point to implicit

surface distance based on (9) and stack the equation to (12);

5 for each ground planar feature in Fk
gp do

6 find an POU implicit surface as the correspondence, then compute point to implicit
surface distance based on (9) and stack the equation to (12);

7 for each edge feature in Fk
e do

8 find an edge line as the correspondence, then compute point to line distance and stack
the equation to (12);

9 compute a bisquare weight for each row of (12);
10 update T for a nonlinear iteration based on Levenberg Marquardt method;
11 if the nonlinear optimization converges then
12 break;

13 return T;

5. Experimental Evaluation

5.1. Tests on the Public Dataset KITTI

We evaluate our method using the KITTI odometry benchmark [34], where we use point clouds
from a vertical Velodyne HDL-64E S2 mounted on the roof of a car, with a recording rate of 10 Hz.
The dataset is composed of a wide variety of environments (urban city, rural road, highways, roads
with a lot of vegetation, low or high traffic, etc.). The LiDAR measurements are de-skewed with
an external odometry, so we do not apply ego-motion algorithm to this dataset. Table 1 shows the
results of our method for all sequences in detail. The relative error is evaluated by the development kit
provided with the KITTI benchmark. The data sequences are split into subsequences of 100, 200, . . . ,
800 frames. The error es of each subsequence is computed as:

es =
‖Es, Cs‖2

ls
(13)

where Es is the expected position (from ground truth) and Cs is the estimated position of the LiDAR
where the last frame of subsequence was taken with respect to the initial position (within given
subsequence). The difference is divided by the length ls of the followed trajectory. The final error value
is the average of errors es across all the subsequences of all the lengths.

We include here for comparison the reported results of LOAM, a laser-based odometry approach
that switches between scan-to-scan and scan-to-model framework, and the reported results of
SUMA [16] a laser-based odometry approach using scan-to-model framework. We can see that the
proposed method yields results generally on par with the state-of-the-art in laser-based odometry and
often achieves better results in terms of translational error. Overall, we achieve an average translational
error of 0.61% compared to 0.84% translsational error of LOAM on KITTI odometry benchmark. We can
see that the proposed method yields results generally on par with the state-of-the-art in laser-based
odometry and often achieves better results in terms of translational error. Figure 4 shows the sample
results using the KITTI benchmark datasets.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4. Cont.
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(h) (i)

Figure 4. Sample results using the KITTI benchmark datasets. The datasets are chosen from three
types of environments: highway, country and urban from left to right, corresponding to sequences
01, 03, and 07. In (a–c), we compare estimated trajectories of the vehicle to the GPS/INS ground
truth. The mapping results are shown in (d–f). An image is shown from each dataset to illustrate the
environment, in (g–i).

Table 1. Results On KITTI Odometry.

Sequence Environment LOAM SUMA Our SLAM

0 Urban 0.78% 0.7% 0.64%
1 Highway 1.43% 1.7% 0.90%
2 Urban + Country 0.92% 1.2% 0.74%
3 Country 0.86% 0.7% 0.59%
4 Country 0.71% 0.4% 0.49%
5 Urban 0.57% 0.4% 0.43%
6 Urban 0.65% 0.5% 0.36%
7 Urban 0.63% 0.7% 0.35%
8 Urban + Country 1.12% 1.2% 0.84%
9 Urban + Country 0.77% 0.6% 0.53%

10 Urban + Country 0.79% 0.7% 0.83%

5.2. Discussion of the Parameter and Performance

In our experiment, we define the thresholds cth and pth based on the KITTI Odometry sequence
01. Laser scans contained in this dataset are collected from a highway, the scenario where there is
only a very few distinct structural features could be used for scan matching. To extract as many as
possible features to accomplish the SLAM task, the thresholds should be set to a fairly low level. It is
because the smaller the thresholds, features on spheres or cylinders are more likely to be extracted.
These sphere and cylinder features themselves are not planar, and if represented by planes directly
can bring about errors that would further reduce the accuracy of the downstream algorithms. In this
paper, we blend each planar patch extracted with the weighted function under the implicit surface
representation mechanism. This explains why we achieve obvious improvement on this sequence.
Therefore, if the thresholds can perform well on such structural feature lacking scenarios, they should
be easily transferred to and work in scenarios with richer structural features. For more structured
environment such as urban case, the thresholds can be further increased to compromise between the
feature richness and the planarity, which promises an accuracy improvement to the whole SLAM
algorithm. Table 2 shows the influence of cth to the result. When cth is set too large, we can not extract
enough features and the result gets worse. Table 3 shows the influence of cth for ground features
to the result. The quantity c as shown in (3) of ground features is generally large and the threshold
cth has a slight influence on the result. Figure 5 shows the variation of the number of non-ground
features in different frames on sequence 01 when cth is set to 0.85. The average number of non-ground
features is about 7200. Deschaud [35] holds the view that the pose estimation result is related to the
number and distribution of features. The features of different position contribute to different angles
and translations. They sample 1000 features based on their sampling strategy which considers the
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feature distribution and achieve great result. Compared with their method, we do not use a sampling
strategy but use more features which compensate for the influence of feature distribution on the results
to a certain extent. In our method, the variance of the feature numbers has an influence on the extracted
feature distributions and thus further influences the performance. However, since we extract enough
number of features for scan-matching, which is more than 2000 at least, there is little influence on the
translational error when the number of features drops.

Table 2. The Influence of cth for Non Ground Features to the Result.

Parameter cth Drift on KITTI Training Dataset

cth = 0.95 1.03%
cth = 0.90 0.92%
cth = 0.85 0.90%

Table 3. The Influence of cth for Ground Features to the Result.

Parameter cth Drift on KITTI Training Dataset

cth = 0.95 0.94%
cth = 0.90 0.93%
cth = 0.85 0.90%

The parameter n is set to 40 for the KITTI odometry benchmark. Table 4 shows the the influence
of parameter n. Parameters ne, np and ngp are set to 3 for the KITTI odometry benchmark. In Table 5,
we implement camparison experiments in which all the weights of planar patches are the same. We can
tell that the performance is significantly improved due to the application of POU framework and the
result reaches the best when np is set to 3. When np is set too large, the correspondences are far away
from the current scan features and do not contribute to local surface reconstruction.

0 200 400 600 800 1000
Sequence 01

2000

4000

6000

8000

10000

12000

14000

16000

N
u
m

b
er

 o
f 

n
on

-g
ro

u
n
d

 p
la

n
ar

 f
ea

tu
re

s

Figure 5. Variation of the number of non-ground planar features in different frames on sequence 01.

Table 4. Importance of the Parameter n.

Parameter n Drift on KITTI Training Dataset

n = 1 1.34%
n = 5 0.98%

n = 10 0.92%
n = 40 0.90%
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Table 5. Comparison of drift KITTI training dataset between POU Weight and the Same Weight.

Parameter np The Same Weight POU Weight

np = 3 1.84% 0.90%
np = 4 1.91% 0.92%
np = 5 1.94% 0.92%

5.3. Discussion of the Processing Time

The operating platform in our experiment is Intel i7-7820@3.60 GHz with 16 GB RAM. Our method
is evaluated by processing KTTI datasets rather than being deployed in an autonomous vehicle.
With regarding to real time implementation, which heavily depends on the hardware configuration,
we cannot assert if our method is real time or not. However, we can still provide some of the parameters
so people can know the runtime performance of our method. First, we split the point cloud into voxels
which contain certain numbers of points and calculate the linear-ness values and surface-ness value
for these voxels. It takes 0.5 s. Second, we do scan matching for each feature. The time cost depends
on the number of features. For KITTI Odometry sequence 01, the runtime is about 1.5 s. Taking both
the above factors into consideration, our SLAM runs at 2 s per scan with one thread. For comparison,
LOAM runs at 1 s per scan on the same KITTI dataset. The reason is that compared to LOAM which
extract two-dimensional curvature features, we construct voxel grids and extract features according to
the spatial distribution of the points contained in each voxel. This results in better accuracy (refer to
Table 1) with a slight sacrifice of efficiency.

6. Conclusions

We present a new 3D LiDAR SLAM method that is composed of a new feature voxel map and a
new scan-to-model matching framework. We build a novel feature voxel map with voxels including
salient shape characteristics. In order to adapt to the proposed map, we implement scan-to-model
matching using POU implicit surface representation to blend the correspondence voxels in map
together. Our method achieves an average translational error of 0.61% compared to 0.84% translational
error of LOAM on KITTI odometry benchmark. The mapping accuracy is improved due to the
application of the POU surface model. However, to implement feature matching based on the POU
model burdens our system with more computation cost. Our method runs at 2 s per scan with one
thread. For comparison, LOAM runs at 1 s per scan on the same KITTI dataset under the scan to model
matching framework. As is shown in the the experimental results, the proposed method yields accurate
results that are on par with the state-of-the-art. Future work will proceed in two directions. From
the research perspective, a specific and efficient octree will be designed to get a 3D grid. Meanwhile,
we will deploy the method to fulfill real time application with the aid of multiple threads or GPU to
accelerate data processing.
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