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Featured Application: We present handcrafted and deep feature integration approaches
to tackle the unified weakly-supervised 14-label chest X-ray image classification and
pathological localization.

Abstract: The accurate localization and classification of lung abnormalities from radiological images
are important for clinical diagnosis and treatment strategies. However, multilabel classification,
wherein medical images are interpreted to point out multiple existing or suspected pathologies,
presents practical constraints. Building a highly precise classification model typically requires a huge
number of images manually annotated with labels and finding masks that are expensive to acquire in
practice. To address this intrinsically weakly supervised learning problem, we present the integration
of different features extracted from shallow handcrafted techniques and a pretrained deep CNN model.
The model consists of two main approaches: a localization approach that concentrates adaptively on
the pathologically abnormal regions utilizing pretrained DenseNet-121 and a classification approach
that integrates four types of local and deep features extracted respectively from SIFT, GIST, LBP,
and HOG, and convolutional CNN features. We demonstrate that our approaches efficiently leverage
interdependencies among target annotations and establish the state of the art classification results
of 14 thoracic diseases in comparison with current reference baselines on the publicly available
ChestX-ray14 dataset.

Keywords: ChestX-ray14; multiple feature integration; shallow features; deep features; convolutional
neural network; pretrained model

1. Introduction

Lung diseases are the leading health-related cause of death worldwide. There is a vital need for
screening, early detection, and personalized therapies of lung cancer due to the possibility of contracting
it from simple thorax illnesses. Historically, chronic obstructive pulmonary disease, emphysema,
chronic bronchitis, and pneumonia have been the major causes of lung cancer [1]. Pneumonia affects
approximately 450 million people, resulting in 4 million deaths per year [2]. Because it is low-cost
and easily accessible, chest radiography, colloquially called chest X-ray (CXR), has become a common
technique, making up nearly 45% of all radiological studies, including the diagnosis of a wealth of
pathologies. An enormous number of chest radiological images have been produced globally, which are
currently being analyzed through visual examinations on a slice-by-slice basis. Meanwhile, each X-ray
scan can comprise dozens of patterns corresponding to hundreds of potential lung diseases, resulting in
difficulty of interpretation, a high disagreement rate between radiologists, and unnecessary follow-up
procedures. To deal with such a large number of data, a high degree of expertise and concentration
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are required, which is time-consuming, expensive, and prone to human errors [3]. Therefore, it is
important to develop adaptive algorithms for the computer-aided diagnosis (CAD) of thoracic diseases.

Owing to the complexity and diversity of thorax diseases and the limited quality of CXR images,
the capability of CAD is limited in the two following steps; the detection of abnormalities and
their classification. In general, manual marking of pathologically abnormal regions by an expert
requires even more work than labeling them. Thus, chest radiography datasets (e.g., ChestX-ray8
and ChestX-ray14 [4]) have been published, which present disease labels along with a small subset
of region-level annotation of abnormal regions [4]; this annotation technique leads to the so-called
weakly supervised problem during CAD. As reported in [5], the bounding boxes for localization tasks
are much more informative than a single disease class label and significantly improve the model
performance. Nevertheless, obtaining detailed disease localization annotations can be expensive and
difficult. Therefore, designing models that are effective with a small number of annotated masks is a
crucial step for the success of clinical applications. Recently, several attention-based models have been
developed and proven to enhance the localization and recognition of multiple objects, despite being
given only class labels during the training process [6]. Therefore, such attention mechanism can be
used to address the problem of poor localization and recognition of objects in our study.

In the era of computer vision, deep learning-based methods have gained state-of-the-art
performances in a variety of domains, including image classification [7,8], scene recognition [9],
face recognition [10], and object detection [11]. In addition, the rapid progress of deep learning
algorithms has facilitated the establishment of various annotated image datasets [12–15]. These
annotations indicate different characteristics important for the definition of the forthcoming challenges
and subsequently possible progress. Yielding similar results in medical image analysis domains (such as
human anatomical and pathological structures in radiology imaging), deep learning approaches have led
to many works, including in lymph node and interstitial lung disease detection and classification [16,17],
pulmonary nodule detection in CT images [18], cerebral micro-bleed detection [19], prediction of spinal
radiological scores [20], skin cancer classification [21], and automated pancreas segmentation [22].
Convolutional neural networks (CNNs), one of the most common deep learning techniques, can learn
object features in an end-to-end manner considering millions of parameters in the abovementioned
studies. However, CNNs require a large number of training images to avoid overfitting issues, and it
is still unclear how well deep learning-based techniques can scale up to thousands of patients because
previous studies were evaluated on the small-to-middle scale of several hundred patients.

Intuitively, the features are the predominant factor in image representation basis. An image can be
seen as a bunch of local patches regardless of the spatial information, which can easily be obtained by
clustering shallow handcrafted features such as scale invariant feature transform (SIFT) [23], local binary
patterns (LBPs) [24], and histogram of oriented gradients (HOG) [25]. Extracting multiple shallow
handcrafted features and integrating them is a promising way to further improve the performance,
compared to extracting a single feature [26–28]. Regarding the task of bioimage classification, learned
descriptors have been recently explored. For example, Vu et al. [29] devised an automatic feature
extraction method based on class-specific dictionaries to diagnose the level of ovarian carcinomas,
and Otálora et al. [30] proposed the combination of handcrafted and learned descriptors using Riesz
wavelets to differentiate the irregularity of brain cells. However, these features may rely heavily on the
local feature descriptors, which limit the dataset generalization ability. Hu et al. [31] proposed a method
to fuse different deep features. Typically, features extracted by the top layers near to the classification
layers strongly depend on the training set, whereas the features resembling Gabor filters and color blobs
from the bottom layers tend to be transferable for many different classification problems [32]. These
studies motivate the extended applications of CNNs or ensemble models on bioimage datasets [33,34]
as feature extractors. Learned features were then treated as SIFT and LBP features to be fed into other
classifiers such as SVM. Besides, Mahmood et al. [35] presented the first use of deep features extracted
from VGGNet [8] at multiple scales and the combination of deep features with texture and color-based
handcrafted features for coral classification improvement. In this work, it is of great interest and
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importance to exploit the integration of both handcrafted features and deep features for the 14 thoracic
disease classification tasks. To sum up, the main contributions of this study are as follows.

• We utilize the efficient pretrained DenseNet-121 to visualize the class activation map (CAM) of
pathological abnormalities from the ChestX-ray14 dataset.

• We extract different types of shallow and deep features and select the coded features to generalize
the best feature combination by extensive experiments.

• We compare the classification results from different classifiers trained in a supervised manner.

The remainder of the work is organized as follows. Section 2 briefly presents the related works on
CXR disease classification. In Section 3, we describe our proposed approaches for CAM visualization
and multiple feature integration for classification tasks in details. Section 4 introduces the ChestX-ray14
dataset and summarizes our experimental results. The work concludes in Section 5 with a short
discussion and future works.

2. Related Works

Deep learning techniques have led to profound breakthroughs in various computer vision
applications, such as the classification of natural and medical images [7–17]. This success has
prompted many researchers to adopt deep CNNs for the diagnosis of thoracic diseases on CXR
images. TUNA-Net [36] presented unsupervised domain adaption for classifying pneumonia from
normal patients and achieved an AUC of 96.3%. Moreover, a CNN with attention feedback (CONAF)
was presented by the authors of [37]. They first extracted saliency maps from a repository of over
430,000 X-ray images to see if localization errors occurred and back-propagated when necessary.
Then, a recurrent attention model learned to observe a short sequence of smaller image portions for
further improvements of abnormal regions localization. In addition, generative adversarial networks
(GANs) [38] were applied to create artificial images based on a modestly sized label dataset. Then,
a CNN was trained to detect pathologies among five classes from CXR images with a substantial
improvement in classification.

There have been many studies attempting to achieve outstanding results of both localization
and classification tasks using deep learning applied to the ChestX-ray14 dataset. A unified weakly
supervised multilabel classification framework was proposed in [4]. Their objective was first to check if
one or more pathologies were present in each X-ray image of the ChestX-ray8 dataset and then localize
them using the activation and weights extracted from the DCNN. After employing different pretrained
models, e.g., the AlexNet [7], GoogleNet [39], VGGNet-16 [8], and ResNet-50 [40], disregarding the
fully connected layers and the soft-max classification layers, they inserted a transition layer, a global
pooling layer, a prediction layer, and a loss layer. This allowed the combination of deep activations
from the transition layer and the weights of the prediction inner-product layer, enabling them to find
the plausible spatial locations.

Because there can be multiple pathological patterns on each chest radiograph, the authors
developed an approach to further leverage the interdependences among target labels in 14 pathological
pattern predictions and achieved better performances in [41]. They verified, without pretraining and a
carefully designed LSTM baseline model that ignored the label dependences, that they outperformed
the pretrained model by a large margin. Similarly, the authors experimented with a set of deep learning
models and presented a cascaded deep neural network that performed better than the baseline model,
which used transfer learning when dealing with imbalanced-14-pathologies diagnosis in [42]. Their
proposed approach could model the complex dependency between class labels and could generate
the training strategy of boosting methods by considering the loss functions. In addition, the authors
designed CheXNet [43], which is a 121-layer CNN using dense connections and batch normalization
that feeds input CXR images to the model and outputs the probability of pneumonia, along with a
heat-map that localized the most indicative features of pneumonia in the image. They found that
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their model exceeded both the average radiologist performances on pneumonia detection and the best
published results on all 14 diseases at that time.

More recently, different deep learning-based methods have been developed to tackle the
ChestX-ray14 problem. The authors proposed the ChestNet model to address the effective diagnosis of
14 thorax diseases in [44]. Their model consisted of two main branches: the first was a classification
branch, which served as a unified feature extraction network pretrained with the ResNet-152 model [40]
to escape the complexity of handling with handcrafted features; the second was an attention branch,
which explored the correlation between class labels, allowing the model to find the locations of
abnormal regions. Their proposed model was shown to outperform three previously state-of-the-art
deep learning models in ChestX-ray14 by using the official patient-wise split without extra training
data. A unified model that jointly employed disease identification and localization with the limited
localized annotations from the ChestX-ray14 dataset was proposed and good results were achieved [37].
The text-image embedding network (TieNet) was proposed for text representations of distinctive
image extraction [45]. The authors first used TieNet to classify ChestX-ray14 images based on both
the image features and the texts received from corresponded reports. Later, TieNet was transformed
into a CXR reporting system as a simulation that could output disease classification and a preliminary
report. Meanwhile, the authors provided a comparison of different deep learning model settings
(ResNet-38 and ResNet-101) in [46]. They achieved the best overall results with the optimized
ResNet-38-large-meta architecture trained with CXRs and incorporated non-image dataset (i.e., view
positions, age, and gender).

From the existing reports on CXR, we can conclude that transferring the features extracted from
pretrained networks is preferable. However, the use of shallow handcrafted features from CXR images
or the integration of those conventional features and transferred deep features extracted from CNNs
has not been considered. To the best of our knowledge, no method has been applied on natural
images for either combining different shallow features [47] or integrating different layers of features
from pretrained CNNs [48] that resulted in much higher classification accuracy. Accordingly, in this
work, we attempt the multiple feature integration of both shallow handcrafted and deep features for
ChestX-ray14 images classification.

3. Proposed Approach

In this section, we present our proposed framework of multiple feature integration for the
ChestX-ray14 classification. The overall approach, illustrated in Figure 1, mainly consists of (1) feature
extraction using both shallow handcraft descriptors and pretrained deep CNN, and localization
of pathological regions via CAM; (2) appropriate feature integration with massive and expensive
experiments; and (3) classification of 14 thoracic diseases using different classifiers.
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3.1. Feature Extraction

3.1.1. Shallow Feature Extraction

To effectively combine complementary local features, we use four different types of handcrafted
feature descriptors to extract image information from different aspects. SIFT [23] extracts the structural
information from image patches, GIST [49] obtains the scales and orientation information from different
parts of images as an envelope of the image, LBP [24] enables the texture information extraction,
and HOG [25] counts the occurrence of gradient orientation in the localized portions of an image
resulting in the high feasibility for object detection problems.

• SIFT: We decompose our SIFT algorithms into four stages. First, using the feature point detection
step based on the property of scale invariance, we can find features under various image sizes.
After detecting some key point features found in the scale space, which are poorly localized,
a subpixel localization refines the positions of these feature points to pinpoint subpixels while
removing any poor features. Next, the gradient orientations of sample points within a region form
an orientation histogram.

• A set of 16 histograms—a 4 × 4 spatial grid with 8 orientation bins resulting in a feature vector
containing 128 elements—is used.

• GIST: We convolve the image with 32 Gabor filters in 8 orientations and 4 scales. With a 4 × 4 grid,
we divide each feature map into 16 regions and then average the values of the features of each
region. Finally, we concatenate the 16 values with 32 feature maps producing a 512 GIST descriptor.

• LBP: By comparing each pixel with its surrounding pixels, LBP allows us to compute the local
representation of texture in the image. First, LBP converts the image into grayscale. For each pixel
of the grayscale image, a neighborhood size surrounding the center pixel is selected. If the value
of neighbor is less than the value of the center pixel, written as “1”; otherwise, “0” is written.
The conversion from binary number in to decimal number in the range of 0–255 is then applied.
Finally, we divide the image into multiple 8 × 8 grids to generate each histogram associated with
each region and a feature vector of 256 positions. The final histogram contains 1 6384 positions.

• HOG: HOG decomposes an image into small squares in a dense manner, computes the histogram
of oriented gradients, normalizes the obtained results by a block-wise pattern, concatenates the
3 × 3 grid cells, and returns the HOG descriptor at each grid location.

3.1.2. Deep Feature Extraction

To generate the CAM [50] of the 14 pathological regions and extract deep features, we use
the pretrained DenseNet-121 [44], which was trained for pneumonia detection from our targeted
ChestX-ray14 dataset. The model architecture of the DenseNet-121 is shown in Figure 2. Compared
to the other pretrained CNNs, DenseNet-121 can improve the intake of information and gradients
through the network, in which a layer obtains a collective knowledge from all previous layers; passes
on its own feature maps to subsequent layers; and then concatenates them into the depth dimension.
Thus, the network can be thinner and compact due to having fewer layers. The training error is able to
be easily propagated to the previous layers more directly and more computational efficiency tends to
be drawn. The network can also learn more diversified and richer feature patterns as the classifier
in DenseNet uses features from all complexity levels giving more smooth decision boundaries when
training data is insufficient.
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the 14 pathologies.

The X-ray input image is encoded by a densely connected CNN, similar to DenseNet’s in [43].
At the first stage, we resize the X-ray image into a 224 × 224 grid to be fed into the pretrained
DenseNet-121. The weights of DenseNet-121 are initialized with a pretrained model on ImageNet [7]
using Adam standard parameters [51]. Next, we freeze all the weights from lower convolutional
layers, replace the final fully connected layer with the fully connected layers of a 14-dimensional
output, and treat the DenseNet-121 as a fixed feature extractor. In the second stage, we fine-tune the
weights from all layers by continuing the back-propagation. Each training iteration aims to optimize
the cross-entropy losses through the following equation,

L
(
Y, Y(P)

)
=

14∑
c = 1

Yc log
(
Y(P)

c

)
+ (1−Yc) log

(
1−Y(P)

c

)
, (1)

where Y is the ground truth vector and Y(P) is the predicted label vector in which each element is
binary; 1 and 0 represent the existence and nonexistence of the corresponding diseases, respectively.
In this study, the batch size is 16; the momentum is 0.9 (as an optimizer); the initial learning rate is
0.001, which decays by a factor of 10 after each iteration during the validation loss process; and the
maximum number of iterations is 50,000.

3.2. Feature Integration

After extracting all the features, we obtain the feature set
F = {FSIFT, FGIST, FLBP, FHOG, Fconv1, Fconv2, Fconv3, Fconv4, Fconv5}. To use the best feature integration
efficiently, we first evaluate the performances of each descriptor. Features with a high classification
performance are selected for the following combinations. Those features are kept if the classification
accuracy improves and they are discarded otherwise. Finally, we obtain the best combination of
features, denoted as Fs. All extracted features are first normalized between 0 and 1 by FL2 = F

||F||2
,

where ||F|| =
√
|F1|

2 + |F2|
2 + . . .+ |Fn|

2, and are then concatenated to the final feature representation:

Fs =
{
FL2

i , i = 1, 2, . . . , N
}
, where N is the number of selected features.
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3.3. Supervised Learning Classifiers

At the final stage, we select a collection of classifiers in a supervised manner to quantitatively
evaluate the representative capability of the integrated features, as follows.

• Gaussian discriminant analysis (GDA) [52]: based on the generative learning algorithm property,
we learn the model P(y) distributed according to Bernoulli and P(x|y = k), where k is one of
the 14 classes distributed according to the multivariate normal distribution; then, P(y|x) can be
expressed as Sigmoid function.

• K-nearest neighbor (KNN) [53]: we initialize K = 30 for the number of neighbors to capture and
locate similar data points. We gradually increase the value of K so that our KNN predictions
become more stable and accurate based on majority voting and averaging.

• Naïve Bayes [54]: based on the so-called Bayesian theorem, which calculates the posterior
probability P(c|x) from (x), P(c), and P(x|c), the Naïve Bayes assumes that the effect on a given
class (x) (x is independent of the predictor, called class conditional independence.

• Support vector machine (SVM) [55]: we apply SVM algorithms to find an optimal hyperplane
acting as a decision boundary in N-dimensional space that can distinctly classify our feature points.
We maximize the margin of the classifier when support vectors affect the position and orientation
of the hyperplane. The tuning parameters, including the kernel, regularization, and gamma, are
carefully chosen.

• Adaptive boosting (AdaBoost) [56]: we sequentially add a set of weak classifiers and trains using
the weighted training data. First, we initialize the weight for each data point, fit weak classifiers to
the dataset, and compute the weight of all weak classifiers. After 100 iterations, we obtain the final
prediction with the updated weight for each classifier by the formula F(x) = sign

(∑N
n = 1 Wn fn(x)

)
,

where fn is the nth weak classifier and Wn is the corresponding weight.
• Random Forest [57]: this comprises multiple random decision trees. A random sample from

our original dataset forms into each tree. A subset of K features presenting each tree node d is
randomly selected to generate the best split. Then, we split the node into daughter nodes and
repeating these steps n times to create n trees.

• Extreme learning machine (ELM) [58]: the ELM includes an input layer, a hidden layer, and an
output layer. We set the specific number of hidden neurons, randomize the weight and the bias
between input and hidden layers in the execution process, calculate the weight between hidden
and output layers by the Moore–Penrose pseudoinverse with a sigmoid activation function, and fit
the results with the least-squares method.

4. Experimental Results

4.1. ChestX-Ray14 Dataset and Preprocessing

To verify the efficacy of our proposed approach, we conduct experiments on the publicly available
ChestX-ray14 dataset recently introduced in [4]. With a total of 112,120 X-ray images acquired from
30,805 unique patients with 14 disease labels, it is the largest collection of front-view chest radiographs
to date. Each image is marked by a single or multiple labels based on the radiology reports, with
90% accuracy. Furthermore, 984 labeled bounding boxes (B-Box) are provided by board-certified
radiologists. Thus, we select these 984 images as “annotated” for testing CAM visualization and the
remaining 111,240 “unannotated” images for training the DenseNet-121 model. We show the complex
and diverse distribution of 10,000 sampled images by plotting t-distributed stochastic neighboring
entities (t-SNE) [59] and conducting a principle component analysis (PCA) [60] (Figure 3).
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usage of PCA.

Before inputting images into the DensNet-121 model (Figure 2), we downscale the original
1024 × 1024 PNG images to 224 × 224 PNG, and we normalize them into the range [−1,1] based on the
mean and standard deviations of the images. We also augment the training and validation data with
batch augmentation and random horizontal flipping methods. In contrast, to extract features from
different perspectives based on our proposed shallow descriptors (Figure 4), we keep the original size
of the images and do not apply any data augmentation techniques.

We used Python 3.6 for (i) both handcrafted and deep feature extractions and (ii) implementation
of the deep pretrained DenseNet-121 model for CAM visualization and classification tasks of
14 thoracic diseases with TensorFlow 1.8.0 deep learning framework of CUDA 9 and cuDNN 7.5
dependencies. In the latter part, we adopted the different classifiers implemented in Matlab 2018b.
10-fold cross-validation was also applied for the classifiers. The total computation time costs for our
proposed massive experiments took 143.9 h on a system with an i7-4770K 4-core CPU, 32G of memory,
and a GPU, GeForce GTX 1070.
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4.2. CAM Visualization

After extracting the activation weights from the final convolutional layer, we can generate the
disease heat-maps for each pathology. We obtain the feature map Mc of the most salient features by
summing up associated weights as follows,

Mc =
∑

k

Wc,kFk, (2)

where Fk is the kth feature map and Wc,k is the weight of the final convolutional layer at the feature map k
leading to pathology c. We are able to localize pathologies using CAM by highlighting the pathological
regions of the X-ray images that are important for performing a specific disease classification. Despite
the small number of annotated bounding boxes (984 instances) compared to the entire dataset, it is
sufficient to achieve a rational estimate on the disease localization performance of our proposed
framework. Figure 5 shows several CAM visualization examples.
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4.3. Classification Results

Tables 1 and 2 show the obtained classification accuracies and F1-scores, respectively. As previously
mentioned, four types of shallow local features (SIFT, GIST, LBP, and HOG) are designed to describe
image patches from different perspectives. We divide the dataset as 80% for training and 20% for
testing. As the first integration strategy, we can see that the classification accuracy of the shallow
feature integration is higher than that of each single feature. Furthermore, from the experiments we
observe that the classification accuracies keep increasing from Conv1 to Conv5, because the features
of shallow layers of deep CNN models are typically basic and shared, preventing the differentiation
of the information in X-ray images. Therefore, we disregard the integration of Conv1 to Conv4 with
our proposed handcrafted features. The results of Conv5 features, which are integrated with either
each single feature descriptor or all the conventional features, are superior to those obtained in the
first integration strategy. Regarding the performance of the supervised classifiers at the last stage of
our approach, ELM works best among all the single and integrated features, followed by AdaBoost.
Figure 6 summarizes the classification results achieved by the seven supervised classifiers.

Table 1. Accuracies of the classifiers using the feature(s) w/ or w/o the feature integration approach.

Feature Dataset Division
( ): No. of Images

Accuracy

GDA KNN Naïve
Bayes SVM Ada-Boost Random

Forest ELM

SIFT

Training:
80% (89,696)

Testing:
20% (22,424)

0.5720 0.6026 0.6562 0.5598 0.6451 0.6621 0.7669
GIST 0.5850 0.6030 0.6557 0.5732 0.6401 0.6710 0.7227
LBP 05941 0.6009 0.6440 0.5865 0.6471 0.7210 0.7828

HOG 0.5947 0.6012 0.6487 0.5897 0.6489 0.6751 0.7837
FI 1 SIFT+GIST+LBP+HOG 0.6039 0.6205 0.6587 0.6112 0.6551 0.6902 0.7941

FI 2

Conv5+SIFT 0.5753 0.5569 0.4803 0.6065 0.6401 0.6452 0.6742
Conv5+GIST 0.6006 0.5599 0.4808 0.6128 0.6451 0.6309 0.7115
Conv5+LBP 0.6058 0.5607 0.4817 0.6213 0.6519 0.6649 0.8115

Conv5+HOG 0.5901 0.5577 0.4807 0.5992 0.6551 0.6501 0.8105
FI 3 Conv5+SIFT+GIST+LBP+HOG 0.6834 0.6332 0.6052 0.7478 0.7952 0.7701 0.8462

Fully pretrained DenseNet121

Training:
70% (78,484)
Validation:

10% (11,212)
Testing:

20% (22,424)

0.8097

Table 2. Classification F1-scores using feature integration approach among seven classifiers.

Feature Dataset Division
( ): No. of images

F1-score

GDA KNN Naïve
Bayes SVM Ada-Boost Random

Forest ELM

SIFT

Training:
80% (89,696)

Testing:
20% (22,424)

0.7276 0.7646 0.7924 0.7124 0.7937 0.8211 0.8686
GIST 0.7436 0.7651 0.7921 0.7292 0.7937 0.8101 0.8227
LBP 0.7552 0.7627 0.7835 0.7454 0.7937 0.8167 0.8328

HOG 0.7552 0.7627 0.7869 0.7445 0.7937 0.8100 0.8262
FI 1 SIFT+GIST+LBP+HOG 0.7662 0.5766 0.7942 0.7747 0.7937 0.8011 0.8520

FI 2

Conv5+SIFT 0.7088 0.6056 0.7693 0.7937 0.7901 0.8110 0.6742
Conv5+GIST 0.7126 0.6062 0.7766 0.7957 0.7715 0.8444 0.7115
Conv5+LBP 0.7009 0.6076 0.7863 0.7937 0.8106 0.8646 0.8115

Conv5+HOG 0.7098 0.6060 0.7606 0.7937 0.8102 0.8445 0.8105
FI 3 Conv5+SIFT+GIST+LBP+HOG 0.8413 0.7541 0.7138 0.8661 0.9038 0.8858 0.9413

Fully pretrained DenseNet121

Training:
70% (78,484)
Validation:

10% (11,212)
Testing:

20% (22,424)

0.8838
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To accurately compare our proposed approach with the reference baseline model in the classification
of all 14 pathologies, we divided the dataset as follows; 70% for training, 10% for validation, and 20%
for testing used for the pretrained DenseNet-121; the preprocessing step is described in Section 4.1.
The feature integration approach reaches 84.62% classification accuracy, which is higher than the
80.97% accuracy of the pretrained DenseNet-121 model. The experiment reveals the effectiveness of
the feature integration strategy in extracting representative and discriminative features to describe
X-ray images. Table 3 indicates that our pretrained DenseNet-121 model achieved very competitive
accuracies in the diagnosis of the 14 thorax diseases. Note that the authors of [61] trained their model
with 180,000 images from the PLCO dataset [62] as extra training data.

Table 3. AUC comparison of the 14 pathologies classification in the ChestX-ray14 literature.

Pathology Wang et al. [4] Yao et al. [41] Gundel et al. [61] Wang et al. [44] Proposed

Atelectasis 0.716 0.772 0.767 0.743 0.795
Cardiomegaly 0.807 0.904 0.883 0.875 0.887

Effusion 0.784 0.859 0.828 0.811 0.875
Infiltration 0.609 0.695 0.709 0.677 0.703

Mass 0.706 0.792 0.821 0.783 0.835
Nodule 0.671 0.717 0.758 0.698 0.716

Pneumonia 0.633 0.713 0.731 0.696 0.742
Pneumothorax 0.806 0.841 0.846 0.810 0.863
Consolidation 0.708 0.788 0.745 0.723 0.786

Edema 0.835 0.882 0.835 0.833 0.892
Emphysema 0.815 0.829 0.895 0.822 0.875

Fibrosis 0.769 0.767 0.818 0.804 0.756
Pleural Thickening 0.708 0.765 0.761 0.751 0.774

Hernia 0.767 0.914 0.896 0.899 0.836
Average 0.738 0.801 0.807 0.781 0.8097

5. Conclusions and Future Work

The early diagnosis and treatment of lung disease are essential to prevent deaths worldwide.
In this study, we propose a novel framework to integrate multiple features from both shallow and
deep features. Representative and discriminative features are obtained to distinguish 14 pathologies
from the public ChestX-ray14 dataset after conducting comprehensive experiments. We were able
to generate the disease heat-maps despite having a limited number of annotated bounding boxes of
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pathologies. In addition, our approach yielded competitive classification accuracies compared with the
baseline approach. In the future, we will focus on exploiting different shallow feature descriptors and
deep features, learning the feature representation, and incorporating them in an end-to-end manner to
improve the classification performance.
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