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Featured Application: This study provides technical information on the implementation
of real-time ECG signal processing.

Abstract: Recently, with the active development of wearable electrocardiogram (ECG) devices such
as smart-bands or portable ECG devices, efficient ECG signal processing technology that can be
applied in real-time has been actively studied. However, a wearable ECG device is exposed to
various noise situations, thereby reducing the reliability of the detected R point or QRS interval.
In addition, as early warning techniques in healthcare systems have been studied, real-time ECG
signal processing techniques have become very important in wearable ECG devices. In this paper,
we propose an efficient real-time R and QRS detection method using two kinds of first-order derivative
filters and a max filter to analyze ECG signals measured from wearable ECG devices in real-time.
The proposed method detects the R point and QRS interval in units of a sliding window for real-time
processing and combines the detected R points in each sliding window. Also, the reliability of
the detected R points and RR intervals is examined through noise region analysis using the histogram
characteristic of a sample point. The performance of the proposed method was verified by the MIT-BIH
database (DB), CYBHi DB and real ECG data measured from the developed wearable ECG patch.
The proposed method achieves Se = 99.80%, +P = 99.80%, and DER = 0.36% against MIT-BIH DB.
In addition, the proposed method enables accurate R point detection and heart rate variability (HRV)
analysis even with noisy ECG signals.
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1. Introduction

ECG conveys valuable diagnostic information about heart functioning. Its analysis and processing
play an important and significant role in the diagnosis of heart diseases. A typical electrocardiogram
consists of five characteristic waves: P, Q, R, S, and T waves. This series of waveforms correspond
to each phase of cardiac activities [1]. The identification of these waves is a critical step in analyzing
the ECG signal and has been made possible by analyzing their morphological patterns.

The heartbeats of the MIT-BIH DB are classified into five types according to the AAMI standard [2].
The normal sinus rhythm (N or NSR), left bundle branch block (L or LBBB), right bundle branch block
(R or RBBB), atrial escape (e) and nodal (junctional) escape (j) beats belong to class N (non-ectopic).
Class S includes atrial premature (A), aberrated atrial premature (a), nodal (junctional) premature
(J), and supra-ventricular premature (S). Class V includes premature ventricular contraction (V)
and ventricular escape (E). Class F includes fusion of ventricular and normal (F), class Q includes paced
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(/), fusion of paced and normal (f), and unclassified (Q). Figure 1 shows four representative heart beats
concerning arrhythmia in the MIT-BIH DB: the atrial premature beat (APB), junctional premature beat
(JPB), premature ventricular contraction (PVC), and atrial fibrillation (AF). APB occurs when an ectopic
focus in the atria discharges before the next sinus impulse [3]. The premature impulse may depolarize
the atria and subsequently the ventricles, provided that the myocardium and conduction system have
repolarized. This appears as a premature P-wave and QRS complex occurring earlier than expected.
Additionally, the P wave morphology of APBs is different from sinus P wave and may be a deformed
or negative P wave. JPBs arise from an ectopic focus within the atrioventricular (AV) junction [4].
These cause premature QRS complexes without a preceding P wave, and the QRS morphology is very
similar to sinus complexes. A PVC is caused by an ectopic cardiac pacemaker located in the ventricle.
PVCs are characterized by premature and bizarrely shaped QRS complexes that are unusually long
(typically >120 ms) and appear wide on the ECG. These complexes are not preceded by a P wave,
and a T wave is usually large and oriented in a direction opposite the major deflection of QRS [5,6].
AF is an irregular and often rapid heart rate that can increase your risk of strokes, heart failure and other
heart-related complications [7]. Likewise, an arrhythmia is a problem with the rate or rhythm of
your heartbeat. This means that the heart beats too quickly, too slowly, or with an irregular pattern.
The most basic and important step for detecting arrhythmias with various aspects is R-peak or QRS
complex detection.
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Figure 1. Four representative heart beats concerning arrhythmia; (a) atrial premature beat (APB),
(b) junctional premature beat (JPB), (c) premature ventricular contraction (PVC), and (d) atrial
fibrillation (AF).

Recent technological advances in sensors, low-power integrated circuits, and wireless
communications have accelerated the tremendous growth of medical wearable devices. This advance
originates from the need to monitor a patient over an extensive period of time. Especially, Internet
of Medical Things (IoMT)-based wearable devices can monitor long-term physiological signals
and upload data to the cloud via a wireless communication system [8]. Figure 2 shows the concept of
a wireless patient monitoring system. The system consistently monitors the bio-signals of patients
and sends the measured bio-signals to the wearable smart device or central monitoring system [9,10].
For cardiac patients, wearable heart monitoring sensors have already become a life-saving intervention
ensuring continuous monitoring during daily life. Patients can be equipped with wireless, miniature
and lightweight sensors [11]. The sensors store the bio-signals in real-time and then periodically
upload the data to a DB server [11]. The recorded bio-signals may be analyzed in the wearable
device itself to predict a warning level. If the early analyzed result is above a threshold, a warning
alarm is sent to the medical staff of the hospital [12]. In order to acquire accurate response with
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less computational complexity as well as a light weight and long battery time, the development of
a fast and accurate algorithm for wearable heart monitoring sensors is needed. For a remote ECG
monitoring application, R or QRS detection is a preliminary step for detecting the heartbeat for
the subsequent rhythm classification. A computationally efficient R or QRS detection algorithm is
indispensable for the low-power operation of a wearable ECG device. The QRS detection algorithms
developed to date can be categorized as derivative [13], digital filters [14–16], Wavelet transform [17,18],
Hilbert transform [19,20], phasor transform [21], adaptive threshold [22,23], morphology [24,25],
and signal energy [14,26–28] based algorithms. The mentioned methods show superb QRS detection
performance; however, major issues under the mobile environment include the low-complexity
algorithms and real-time processing methods related to power efficiency and processing speed.
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Figure 2. Portable wireless patient monitoring system. ECG: electrocardiogram, SpO2: Oxygen
saturation, NIBP: Non-invasive blood pressure.

Recently, derivative-based QRS detection methods are still being studied due to their low
complexity [29,30]. Zhang et al. [29] have presented a pulse-triggered R peak detection algorithm for
ECG signals based on the second derivative. This method uses a QRS morphology for R peak detection
and is computationally inexpensive. However, in this method, the detection of the Q wave, a trough in
the ECG signal, should precede R peak detection. Therefore, if a Q wave is contaminated by noise or
there is no trough point of the Q wave, the R point detection performance is significantly lowered.
Rivas et al. [30] proposed a QRS detector using derivation and adaptive thresholding. In this method,
the accuracy of the initial maximum peak detected as the R peak greatly affects the overall performance
and has a disadvantage of being sensitive to noise. The derivative-based method has been placed in
the spotlight again with the development of wearable ECG devices: however, it is sensitive to noise.
In addition, the existing methods do not have a criterion to determine whether the detected R peak
is a true R peak or noise due to the absence of a noise detection function, which may cause errors in
the RR interval calculation and further HRV analysis.

This paper proposes an efficient real-time R or QRS detection technique with low computational
complexity and high accuracy for portable and wearable ECG monitoring systems. First, we introduce
a simple method of connecting R peaks detected for each sliding window for real-time processing
and describe an avoidance technique of R peaks with low reliability caused by noise and the R peak
mismatch problem between sling windows for extracting precise RR intervals. Furthermore, an R
peak detection method by using a pair of first-order derivative filters is introduced, and a detection
method of the negative R peak or premature ventricular contraction (PVC), which is different from
general R peak, is expressed mathematically. The proposed method is verified by the MIT-BIH DB [2]
and CYBHi DB [31,32]. Besides this, the HRV analysis is performed using actual ECG data measured
by the portable ECG monitoring device developed in this study.

The paper is organized as follows. Section 2 introduces the sliding window processing for real-time
processing, simple and efficient noise detection using a vertical histogram, the proposed real-time R
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peak detection method using a pair of derivative filters, and an exclusion technique for unreliable
RR intervals. In Section 3, the detection performance of the proposed method is demonstrated using
the MIT-BIH DB and actual ECG data measured from the developed ECG patch. In addition, time cost
and noise effects for the proposed method are analyzed. Section 4 presents the conclusion.

2. Materials and Methods

2.1. Sliding Window for Real-Time Processing

Figure 3 shows a connection example of R peaks detected per successive sliding window for
real-time processing. In the figure, Rt(n) denotes the n-th detected R-peak in the t-th sliding window.
In the proposed method, the R peak is detected in the sliding window unit for real-time processing.
Thereafter, overlapping R peaks (Rt(n− 1) = Rt+1(1) and Rt(n) = Rt+1(2) in the figure) are detected
between the sliding windows to merge the detected R peaks for each sliding window, and the detected R
peaks in the front (t-th) and rear (t+1-th) sliding windows are connected using the detected overlapping
R peaks. The setting for the sliding window is set considering bradycardia. To get a successive R
peak sequence even for bradycardia (less than 60 heartbeats per minute), the length of the sliding
window and overlapped interval between sliding windows should be at least 3 s and 1 s, respectively.
In the proposed method, the size of sliding window is set to 2000 samples (about 5.6 s) based on
MIT-BIH DB (360 samples/s), and the step size of sliding window is set to 1600 samples. This means
the overlapped interval between sliding windows is 400 samples (about 1.1 s). Thus, the length
of the sliding window and overlapped interval can be adjusted according to the sampling rate of
the measured ECG signal.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 21 

In addition, time cost and noise effects for the proposed method are analyzed. Section 4 presents the 

conclusion. 

2. Materials and Methods  

2.1. Sliding Window for Real-Time Processing 

Figure 3 shows a connection example of R peaks detected per successive sliding window for 

real-time processing. In the figure, ( )
t

R n  denotes the n-th detected R-peak in the t-th sliding window. 

In the proposed method, the R peak is detected in the sliding window unit for real-time processing. 

Thereafter, overlapping R peaks (
+

− =
1

( 1) (1)
t t

R n R and 
+

=
1

( ) (2)
t t

R n R  in the figure) are detected 

between the sliding windows to merge the detected R peaks for each sliding window, and the 

detected R peaks in the front (t-th) and rear (t+1-th) sliding windows are connected using the detected 

overlapping R peaks. The setting for the sliding window is set considering bradycardia. To get a 

successive R peak sequence even for bradycardia (less than 60 heartbeats per minute), the length of 

the sliding window and overlapped interval between sliding windows should be at least 3 s and 1 s, 

respectively. In the proposed method, the size of sliding window is set to 2000 samples (about 5.6 s) 

based on MIT-BIH DB (360 samples/s), and the step size of sliding window is set to 1600 samples. 

This means the overlapped interval between sliding windows is 400 samples (about 1.1 s). Thus, the 

length of the sliding window and overlapped interval can be adjusted according to the sampling rate 

of the measured ECG signal. 

 

Figure 3. Connection of R peaks detected per successive sliding window for real-time processing. 

2.2. Simple and Efficient Noise Detection Method Using Vertical Histogram 

The measured ECG signal is corrupted by various noises, which makes exact R detection 

difficult. The noise of the ECG signal is classified as muscle artifact (MA), baseline wander (BW), and 

electrode motion artifact (EMA), as shown in Figure 4. The ECG noises are extracted from the MIT-

BIH Noise Stress Test DB (NSTDB) [33]. MAs occur when skeletal muscles contract, the patient moves 

or because of shivering due to the inappropriate temperature of the environment [34]. The main 

problem with these interferences is the spectral overlap between the ECG and the muscle noise. BW 

is a type of low-frequency noise which adds to the ECG signal, resulting in a varying baseline. This 

noise is caused by changes in the impedance between the electrode and the patient’s skin. These 

changes might be caused by movement, breathing or by perspiration, leading to a change of distance 

between the source of the signal, the heart, and the electrodes [35]. EMA is generally considered the 

most troublesome problem, as it can mimic the appearance of ectopic beats and cannot be removed 

easily by simple filters, as with noise of other types [33]. ECG signals measured in a measurement 

room or with a stable posture are relatively clean, but ECG signals measured under motion may 

contain various noises. 

Figure 3. Connection of R peaks detected per successive sliding window for real-time processing.

2.2. Simple and Efficient Noise Detection Method Using Vertical Histogram

The measured ECG signal is corrupted by various noises, which makes exact R detection difficult.
The noise of the ECG signal is classified as muscle artifact (MA), baseline wander (BW), and electrode
motion artifact (EMA), as shown in Figure 4. The ECG noises are extracted from the MIT-BIH Noise
Stress Test DB (NSTDB) [33]. MAs occur when skeletal muscles contract, the patient moves or because
of shivering due to the inappropriate temperature of the environment [34]. The main problem with
these interferences is the spectral overlap between the ECG and the muscle noise. BW is a type of
low-frequency noise which adds to the ECG signal, resulting in a varying baseline. This noise is caused
by changes in the impedance between the electrode and the patient’s skin. These changes might be
caused by movement, breathing or by perspiration, leading to a change of distance between the source
of the signal, the heart, and the electrodes [35]. EMA is generally considered the most troublesome
problem, as it can mimic the appearance of ectopic beats and cannot be removed easily by simple
filters, as with noise of other types [33]. ECG signals measured in a measurement room or with a stable
posture are relatively clean, but ECG signals measured under motion may contain various noises.

The proposed method is basically robust to BW because it uses the product of two kinds of
derivative filters. In addition, the processing of the sliding window unit can minimize the influence of
false detection by strong noise. The proposed noise detection method is designed to cope with BW
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and EMA. The vertical histogram for the region of interest (ROI) around the signal point to detect
MA and EMA is shown in Figure 5.Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 21 
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Figure 5. Vertical histogram for the ROI around the magnified signal point.

The magnified signal x(n) for applying the vertical histogram is created by multiplying the original
signal I(n) by 100 and rounding it to nearest integer because the original signal in the MIT-BIH DB
has a small range of 10 mV. The histogram sum h(n) for the magnified signal point x(n) with the total
number of bins 2×Wv + 1 and histogram mi is obtained as follows:

h(n) =

x(n)+Wv∑
i = x(n)−Wv

mi, (1)

where Wv = 15. The total number of bins in the histogram for x(n) is always the same, but the range
of bin values depends on the signal height of x(n). Also, the histogram mi represents the number of
bin i (signal height) for the ECG signal in the ROI, and the histogram value becomes large in the local
region where the frequency is high, such as MA.
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The characteristics of the vertical histogram in the noise region (A, B, and C) and ECG signal region
(D, E, and F) is shown in Figure 6. In the figure, the noisy signal was created by adding MA to the Record
234 signal of MIT-BIH DB. The noise region generally has a higher vertical histogram value per bin,
whereas a typical ECG signal region has a different vertical histogram distribution depending on
the location of the signal point being processed. For the ECG signal, the vertical histogram at the peak
point of the important P, R, and T waves (D in the figure; i.e., the peak of the P wave) is concentrated
in the low bin section. The rising or falling interval of the important wave (E in the figure) has a flat
histogram distribution over the entire bin range, while the flat interval (F in the figure) has a histogram
distribution densified in a specific bin. As a result, we can see that the sum of the vertical histograms
in the noise region is larger than the normal ECG signal region. Thus, a vertical histogram sum at each
signal point is used to distinguish the noise point from the normal signal point.
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The noise region detection result using the vertical histogram sum and max filter is shown in
Figure 7. The baseline for calculating the vertical histogram is obtained by applying a 1 x 10 median
filter to the noisy signal. In the second-row figure, a 1 x 31 max filter is applied twice to the vertical
histogram sum to obtain the outline of the vertical histogram sum. The threshold for detecting the noise
interval is set to Nth = 120. This threshold was experimentally obtained using the difference of the sum
of respective vertical histograms for the MA signal of NSTDB [33] and the ECG signals of MIT-BIH
DB [2].
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2.3. Proposed Real-Time R and QRS Detection Method Using a Pair of Derivative Filters

Figure 8 shows the entire block-diagram of the proposed real-time R and QRS detection method
using a pair of derivative filters. The proposed method consists largely of an R-point detection module,
a noise detection module, a detected R-point connection module, and an inaccurate RR elimination
module. First, the proposed method detects the R peak using two kinds of first order derivative filter,
[1, −1] and [−1, 1]. The [−1, 1] filter detects a rapid rising interval of the QRS, while the [1, −1] filter
detects a drastic falling interval. The multiplication of each derivative filter result then suppresses
the P wave or T wave and noise while enhancing the QRS interval. By applying the max filter to
the multiplication of the derivative filter results, the QRS interval and R peak are detected through
the normalization and threshold of 0.3. This threshold is applied to the normalized max filter result,
which is the final stage of QRS interval detection, and applies to all records of MIT-BIH DB.
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Figure 9 shows an example of the QRS detection procedure using a pair of derivative filters for
the Record 234 signal of MIT-BIH DB. The QRS interval including the R peak includes an abrupt rising
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and falling section compared to other signal intervals. The derivative filter result Dα(n) for the original
ECG signal I(n) of the sliding window size is obtained as follows:

Dα(n) =

2 j−1∑
k = 0

dα(k)I(n + k), (2)

where dα(k) means the derivative filters and is obtained as follows, while j denotes half of the signal
point interval to which the derivative filters are applied; j = 1 is used in this paper.{

dα(k) = (−1) × α, for 0 ≤ k < j
dα(k) = 1× α, for j ≤ k < 2× j− 1

(3)
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Figure 9. An example of the QRS detection procedure using pair of derivative filters for Record 234 of
MIT-BIH DB.

The subscript α denotes the type of the derivative filter, and α = 1 or −1 denote the derivative
filter to detect the rising or falling section, respectively. The basic characteristics of the QRS interval
including both rapid rising and falling sections are obtained by multiplying the results of the two
kinds of derivative filters as follows:

D(n) = D−1(n)D1(n), (4)

In order to integrate the detected rising and falling section, the max filter is applied to
the multiplication result of the derivative filters as follows:

M(n) = max
{
D(s)

}
n− f≤ s≤n+ f

, (5)
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where f ( = 15) means half of the filter size of the maximum filter. As shown in Figure 10, by applying
the threshold to the normalized max filter result MN(n), the candidate QRS interval is obtained
as follows:

I(n) =

{
candidate QRS point, if MN(n) > Mth

non− candidate QRS point, else
, (6)

where Mth = 0.3 is a threshold value for determining whether the current signal point belongs to
the candidate QRS point. If the number of consecutive candidate QRS points (successive columns
of “1” in the figure) exceeds a certain threshold, the interval is classified as a candidate QRS interval
including R. The extended candidate QRS interval to improve the reliability of the R detection rate is
obtained by adding an additional interval (offset = 15 in Figure 10) to both sides of the candidate
QRS interval.
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Figure 10. Candidate QRS interval obtained from the max filter and threshold.

The position of the R peak is retrieved in the extracted candidate QRS interval of Figure 10. The R
peak detection method depends on the shape of the R wave to be detected, which is largely divided
into a normal case (positive R) and PVC case (inverse R or PVC). The shape of the normal R peak
represents a high positive R peak, whereas the shape of the R peak in PVC appears as a deep negative
R peak. Accordingly, the R peak position in the candidate QRS interval is obtained by considering two
cases, as follows:

rL =


argmin

1≤r≤k
Cs, j,k, if β×

(
max(Cs, j,k) −mean(Ws)

)
<

(
mean(Ws) −min(Cs, j,k)

)
argmax

1≤r≤k
Cs, j,k, else

, (7)

where β( = 1.5) is a coefficient value to compare positive with negative R peaks such as PVC.
The coefficient value is set to search for a negative R or PVC below the average of the ECG signal in
the sliding window. In the PVC beat, the difference between the average value of the sliding window
and the negative peak value is much larger than that between the positive peak value and the average
value of the sliding window. In this study, based on the average of the sliding window, it is assumed
that PVC is when the negative peak value is β times larger than the positive peak value. As shown in
Figure 11, the position rL of the R peak detected in the local signal corresponding to the candidate QRS
interval is converted to the R peak position rW in the sliding window with reference to the offset value,
as follows:

rW =

{
j− (offset + 1) − rL, if rL < offset
j + rL − offset, else (rL ≥ offset)

(8)

where j is the point position in the sliding window, and subscripts W and L denote the sliding window
and the local signal interval corresponding to the candidate QRS, respectively. In addition, the R peak
position in the original signal is calculated by step size s as follows:

r = rW + (s− 1), (9)
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Figure 11. R peak position in sliding window and local signal.

Figure 12 shows the QRS detection result using a pair of derivative filters and the max filter for
the Record 108, 111, 118, 217, and 214 sections in MIT-BIH DB. The annotations, N, L, R, /, and V,
as mentioned in the introduction, represent NSR, LBBB, RBBB, Paced, and PVC rhythms, respectively.
The MIT-BIH ECG signals used in the experiments were filtered by a low-pass filter with a 40 Hz
cut-off frequency. The Record 108 section is an exceptional NSR rhythm, which contains bigger P
waves and inverse QRS complexes. The Record 111 section are LBBB rhythms including notched QRS
complexes and bigger T waves, and the Record 118 section are RBBB rhythms including deformed P
waves and inverted T waves. The Record 217 section is a paced rhythm that includes deep S waves
and bigger T waves, and the Record 214 section is a complex rhythm with both LBBB and PVC beats.
We can see that the bigger P and T waves are suppressed while the QRS complex is enhanced from
the multiplication result of the derivative filter pair. The QRS complex can also be detected by using
a constant threshold (Mth = 0.3) for the normalized maximum filter result for the multiplication of
the pair of derivative filters.
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2.4. Exclusion of Unreliable RR Intervals

The reliability of the detected R points is considered in two aspects; i.e., (1) whether detected R
exists in the noise region, or (2) whether the first R in the current sliding window overlaps with the R in
the previous sliding window. Figure 13 shows an example for the exclusion of unreliable RR intervals.
In the figure, R(n) represents the position of the n-th detected R point in the entire ECG signal. If R
(16) is an unreliable R point detected in the noise region, RR (15) and RR (16) thus calculated are also
unreliable and should be excluded from the ECG analysis. Also, if R (18) is the first detected R point in
the current sliding window and does not overlap with the R points in the previous sliding window,
the detected R points between the sliding windows lack continuity. As a result, RR (17) calculated by R
(18) is unreliable and excluded from the ECG analysis. However, R (18) and R (19) are guaranteed to
have continuity, so RR (18) is a reliable RR interval. This relationship is expressed as follows:{

RR(n− 1), RR(n) is unreliable RR, if R(n) is in noise region
RR(n− 1) is unreliable RR, if R(n) is the 1st R and not overlap

, (10)
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3. Results

The performance of the proposed R and QRS detection algorithm is evaluated on a standard
MIT-BIH DB. The DB contains two-channel ECG recordings in digital format from 47 subjects comprising
25 men and 22 women of age groups of 32–89 and 23–89, respectively. Approximately 60% of the total
subjects were inpatients. The DB contains an 11 bit resolution, 10 mV range, 360 Hz sampling frequency,
and complete annotations [2]. The verification of the proposed method consists of R-point detection
performance, processing time, and detection performance analysis for noise.

3.1. R Point Detection Performance

Figure 14 shows the R point detection result for the Record 108, 111, 118, 217, 214 sections in
MIT-BIH DB based on the QRS interval detected in Figure 12. Although the Record 108 section includes
bigger P-waves and inverse QRS intervals, the positions of the inverse QRS and PVC were well detected.
In the figure, the x in Record 108 means a non-conducted P-wave (blocked APB). This shows that
there will not be a QRS complex following. The Record 111 section includes notched QRS intervals
and relatively large T waves; however, periodic R points were well detected. The R detection of
the Record 118 section is very easy compared to other signal sections. The Record 217 section includes
deep S waves and large T waves; however, positive R points were well detected. We can also see
that the positive R points and the PVC beats in the Record 214 section including large T waves are
well detected.

The CYBHi DB (1000 samples/s) [31,32]—which comprises off-the-person data—is also used to
verify the R point detection performance of the proposed method. The signals of the DB contain more
noise compared to the MIT-BIH DB. The sliding window length of 3000 samples and the step size of 1500
samples are used for the experiment. The ECG signals of the CYBHi DB used in the experiments were
filtered by a low-pass filter with a 40 Hz cut-off frequency. Figure 15 shows the R point detection result for
the Record 20110719-RMAF-CI-8B, 20110718-ARS-CI-8B, and 20110718-ARS-CI-85 sections in the CYBHi
DB. While the 20110719-RMAF-CI-8B section contains bigger T waves, the 20110718-ARS-CI-8B section
and 20110718-ARS-CI-85 section contain DC wandering and bigger P waves. Nevertheless, it can be
seen that the proposed method detects the R point relatively accurately.

To evaluate the R peak performance of the proposed method, commonly used detector performance
indexes are applied, including false negative (FN), which means failing to detect a true beat (actual QRS);
and false positive (FP), which represents a false beat detection. By using FN and FP, the sensitivity (Se),
positive prediction (+P), and detection error rate (DER) are calculated by using Se [%] = TP/(TP+FN),
+P [%] = TP/(TP+FP), and Der [%] = (FP + FN)/(TP + FN), respectively. The true positive (TP) is the total
number of the true positive beats correctly detected by the algorithm. Additionally, the denominator
(TP + FN) represents the number of total QRS [34]. Table 1 shows the detection results of the proposed
method for all 48 recordings in the MIT-BIH DB. As shown in Table 1, the proposed method achieves
Se = 99.80%, +P = 99.80%, and DER = 0.36% against MIT-BIH DB.
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Table 1. Detection results of the proposed method for all 48 recordings in the MIT-BIH DB.

Tape Total FN FP Se [%] +P [%] DER Tape Total FN FP Se [%] +P [%] DER

100 2273 0 0 100 100 0 201 1963 8 2 99.59 99.90 0.51

101 1865 3 5 99.84 99.73 0.43 202 2136 6 3 99.72 99.86 0.42

102 2187 0 0 100 100 0 203 2980 22 15 99.26 99.50 1.24

103 2084 0 0 100 100 0 205 2656 6 2 99.77 99.92 0.30

104 2229 7 19 99.69 99.15 1.17 207 1862 7 8 99.62 99.57 0.81

105 2572 13 20 99.49 99.22 1.28 208 2955 17 9 99.42 99.69 0.88

106 2027 5 6 99.75 99.70 0.54 209 3004 3 3 99.90 99.90 0.20

107 2137 2 0 99.91 100 0.09 210 2650 23 11 99.13 99.58 1.28

108 1774 13 28 99.27 98.43 2.31 212 2748 1 5 99.96 99.82 0.22

109 2532 3 0 99.88 100 0.12 213 3251 2 6 99.94 99.82 0.25

111 2124 2 2 99.91 99.91 0.19 214 2265 1 1 99.96 99.96 0.09

112 2539 0 1 100 99.96 0.04 215 3363 2 3 99.94 99.91 0.15

113 1795 1 0 99.94 100 0.06 217 2209 7 6 99.68 99.73 0.59

114 1879 3 4 99.84 99.79 0.37 219 2154 4 3 99.81 99.86 0.32

115 1953 0 0 100 100 0 220 2048 1 0 99.95 100 0.05

116 2412 14 4 99.42 99.83 0.75 221 2427 4 2 99.84 99.92 0.25

117 1535 0 0 100 100 0 222 2483 5 3 99.80 99.88 0.32

118 2278 2 0 99.91 100 0.09 223 2605 3 2 99.88 99.92 0.19

119 1987 0 0 100 100 0 228 2053 4 19 99.81 99.08 1.12

121 1863 2 0 99.89 100 0.11 230 2256 1 3 99.96 99.87 0.18

122 2476 0 0 100 100 0 231 1571 1 1 99.94 99.94 0.13

123 1518 2 0 99.87 100 0.13 232 1780 2 2 99.89 99.89 0.22

124 1619 0 0 100 100 0 233 3079 5 1 99.84 99.97 0.19

200 2601 5 15 99.81 99.43 0.77 234 2753 3 0 99.89 100 0.11

Mean 109510 215 214 99.80 99.80 0.39

Table 2 shows the supplementary function and detection performance comparison of the proposed
method with the existing methods. The criterion of real-time feasibility means that the average
calculation time for the 1 s ECG signal of Record 111 is less than 10 ms. The proposed method has
a high Se and +P but a low DER, similar to that of other methods. R points contaminated by noise
affect the RR interval and furthermore the HRV. Therefore, the elimination of erroneously calculated
RR intervals due to contaminated R values is very important in the analysis of patient condition.
The proposed method not only detects the R point (or QRS) but also detects noises and the erroneously
calculated RR interval in order to compute a reliable HRV.

Table 2. Supplementary function and detection performance comparison of the proposed method with
the existing methods.

Method Real-Time
Feasibility

Noise
Detection

Post-Processing of Contaminated
R and RR Interval

Se
[%]

+P
[%] DER [%]

Pan et al. [14] Y Y N 99.76 99.56 0.68
Hamilton et al. [15] Y Y N 99.69 99.77 0.54

Castells-Rufas et al. [16] Y Y N 99.43 99.67 0.88
Benitez et al. [19] N N N 99.81 99.83 0.36

Cristov [22] Y N N 99.78 99.78 0.44
Zhang et al. [24] N N N 99.81 99.80 0.39
Kim et al. [28] N N N 99.90 99.91 0.19

Proposed method Y Y Y 99.80 99.80 0.39
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3.2. Time Cost Analysis

The time cost of the proposed method is analyzed for several of records from the MIT-BIH
DB (360 Hz) using Matlab 2019 in Win 10 with Intel i7 4-core CPU and 8G RAM. Figure 16 shows
the calculation time per 1000 iterations for 11 seconds of Record 108, 111, 118, 217, and 214. The respective
average processing time is 33.81 ms for Record 108, 33.18 ms for Record 111, 32.94 ms for Record 118,
33.00 ms for Record 217, and 31.26 ms for Record 214. The total processing average time for an 11 second
period is less than 32.84 ms, which implies that the proposed method is suitable for real-time ECG
signal processing.
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and (e) 214.

3.3. Analysis of Noise Effects

This section attempts to analyze the reliability of the proposed method for noisy signals.
For the experiment, a relatively stable Record 234 with a constant RR interval was contaminated at 5 s
intervals by the MA and BW of the NSTDB [33], as shown in Figure 17. The third-row figure shows
the R points and noise regions detected in the noisy Record 234 signal. The noise regions were detected
by the noise detection method using the vertical histogram introduced in Section 2.2. In the noise
region, the low signal level represents non-noise regions, while the high signal level means noise
regions. Also, the R-points indicated by the triangle are the R-points contaminated by noises and are
excluded from the RR interval analysis because the contaminated R-point degrades the accuracy of
the RR interval analysis.

The analysis similarity for the original Record 234 and the noisy Record 234 is shown in Figure 18.
In the case of the noisy Record 234, half of the total signal was contaminated by noise. As a result,
the contaminated R points were excluded from the analysis of the figure, and the overall detection
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time was reduced by half. The average beat-per-minute (BPM), average RR interval, root mean square
of successive differences (RMSSD) and width and length in a Poincaré plot are 92.44 bpm, 0.65 s, 0.04 s,
0.02, and 0.05 for the original Record 234 and 92.62 bpm, 0.65 s, 0.04 s, 0.03, and 0.05 for the noisy
Record 234, respectively. We can see that the analysis result of the noisy Record 234 is similar to that of
the original Record 234, even though it was undermined by MA and BW.
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3.4. Analysis of Actual Data Measured by Wearable ECG Device

Actual ECG data were measured by a developed wearable ECG patch with a 250 Hz sampling
rate, as shown in Figure 19a, where the ECG patch was developed by TriBell-Lab and ETRI (Electronics
and Telecommunications Research Institute) in South Korea. The ECG signals measured by the ECG
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patch are stored in the hospital DB via Bluetooth, Gateway (Bluetooth to WiFi), AP, and the hospital
internal network, and are analyzed in real-time using the proposed algorithm. Ten minutes of ECG
data at a fixed posture and walking for a 36-year-old man without heart disease were measured.
Figure 19b,c show the 1 min length for two situations. Also, the R points on the measured ECG signals
were detected by the proposed method.
Appl. Sci. 2019, 9, x FOR PEER REVIEW 18 of 21 

 

(a)

 
(b)

 
(c) 

Figure 19. (a) Developed wearable ECG patch; R point detection result with (b) a fixed posture and 

(c) walking. 

Figure 20 shows the comparison of BPM, RR interval trend, histogram of RR interval, and 

Poincaré plot for the measured ECG signal with a fixed posture and walking. The average BPM, 

average RR interval, RMSSD, and width and length in the Poincaré plot are 86.75 bpm, 0.69 s, 0.08 s, 

0.05, and 0.09 for the measured ECG signal in a fixed posture and 97.12 bpm, 0.62 s, 0.08 s, 0.06, and 

0.09 for the measured ECG signal when walking, respectively. The BPM is higher when walking than 

with a fixed posture, but the other parameter values are very similar. It can be seen that the histogram 

distribution of the RR intervals for walking is a little more irregular than for a fixed posture. Also, 

the Poincaré plot is more clean when walking than in a fixed position. Through simple experiments, 

it can be seen that the proposed method can induce reliable analysis results in other parameters 

except BPM even in the presence of some movement. 

Figure 19. (a) Developed wearable ECG patch; R point detection result with (b) a fixed posture
and (c) walking.

Figure 20 shows the comparison of BPM, RR interval trend, histogram of RR interval, and Poincaré
plot for the measured ECG signal with a fixed posture and walking. The average BPM, average RR
interval, RMSSD, and width and length in the Poincaré plot are 86.75 bpm, 0.69 s, 0.08 s, 0.05, and 0.09 for
the measured ECG signal in a fixed posture and 97.12 bpm, 0.62 s, 0.08 s, 0.06, and 0.09 for the measured
ECG signal when walking, respectively. The BPM is higher when walking than with a fixed posture,
but the other parameter values are very similar. It can be seen that the histogram distribution of
the RR intervals for walking is a little more irregular than for a fixed posture. Also, the Poincaré plot is
more clean when walking than in a fixed position. Through simple experiments, it can be seen that
the proposed method can induce reliable analysis results in other parameters except BPM even in
the presence of some movement.



Appl. Sci. 2019, 9, 4128 18 of 20

Appl. Sci. 2019, 9, x FOR PEER REVIEW 19 of 21 

 

Figure 20. Comparison of BPM, RR interval trend, histogram of RR interval, and Poincaré plot for 

measured ECG signal in fixed posture and walking. 

4. Discussion 

In the performance comparison of Section 3.1, the proposed method has the third lowest DER. 

The methods with the lowest DER and the second lowest DER are those in [28] and [19], respectively. 

However, since those methods do not have a noise detection function and post-processing for R 

points and RR intervals contaminated by noises, it may be difficult to calculate a reliable HRV. The 

reason why the proposed method has similar Se and + P is because the numbers of FPs and FNs are 

similar. This means that the existing methods may obtain biased FP and FN results as they are 

processed in the record unit of the MIT-BIH DB, while the proposed method achieves FP and FN 

values with a uniform distribution due to the effect of increasing the amount of data by processing 

in the sliding window unit. Therefore, we can assume that the proposed method will have relatively 

uniform FP and FN values regardless of the kind of experimental data. 

In this paper, we examined the ideas for real-time processing as well as the proposed R detection 

technique for ECG signal analysis. Although many R point or QRS detection algorithms based on 

various theories have been developed to date, the R detection algorithms used in portable or wearable 

ECG devices should have a low complexity and calculation time. This is due to the lack of reliable 

algorithms applicable to real-time ECG analysis. With the development of signal processing 

technology, the detection accuracy difference of the R point or QRS interval for each algorithm is less 

than 0.5%, which is almost meaningless. In addition, the noise reduction technique used 

experimentally in each study may be limited in real application, because the ECG noises generated 

from various measurement environments are very complicated. For example, high-frequency signals 

and saturated signals may be alternated. It is actually very difficult to remove such complex noises. 

As a countermeasure to solve this problem, as suggested in this paper, it may be more efficient in real 

ECG analysis to detect abnormal signal intervals and remove RR intervals that lack reliability; that 

is, developing a technique that measures the reliability of detected R or calculated RR intervals is just 

as important as developing a QRS detection algorithm with a higher detection rate [36,37]. In 

addition, many current studies focus on distinguishing between normal and arrhythmic signals. 

However, in the future, classification techniques for various types of arrhythmia should be studied 

based on the opinions of medical staff. 

5. Conclusions 

This paper presents an efficient real-time R point and QRS detection technique using two kinds 

of derivative filters and a max filter with ECG signal processing for a sliding window unit. The 

proposed derivative filter processing suppresses non-QRS intervals such as P and T waves while 

improving the QRS interval. Since the ECG signal measured by a wearable device is often deformed 

Figure 20. Comparison of BPM, RR interval trend, histogram of RR interval, and Poincaré plot for
measured ECG signal in fixed posture and walking.

4. Discussion

In the performance comparison of Section 3.1, the proposed method has the third lowest DER.
The methods with the lowest DER and the second lowest DER are those in [28] and [19], respectively.
However, since those methods do not have a noise detection function and post-processing for R points
and RR intervals contaminated by noises, it may be difficult to calculate a reliable HRV. The reason
why the proposed method has similar Se and + P is because the numbers of FPs and FNs are similar.
This means that the existing methods may obtain biased FP and FN results as they are processed
in the record unit of the MIT-BIH DB, while the proposed method achieves FP and FN values with
a uniform distribution due to the effect of increasing the amount of data by processing in the sliding
window unit. Therefore, we can assume that the proposed method will have relatively uniform FP
and FN values regardless of the kind of experimental data.

In this paper, we examined the ideas for real-time processing as well as the proposed R detection
technique for ECG signal analysis. Although many R point or QRS detection algorithms based on
various theories have been developed to date, the R detection algorithms used in portable or wearable
ECG devices should have a low complexity and calculation time. This is due to the lack of reliable
algorithms applicable to real-time ECG analysis. With the development of signal processing technology,
the detection accuracy difference of the R point or QRS interval for each algorithm is less than 0.5%,
which is almost meaningless. In addition, the noise reduction technique used experimentally in each
study may be limited in real application, because the ECG noises generated from various measurement
environments are very complicated. For example, high-frequency signals and saturated signals may
be alternated. It is actually very difficult to remove such complex noises. As a countermeasure to
solve this problem, as suggested in this paper, it may be more efficient in real ECG analysis to detect
abnormal signal intervals and remove RR intervals that lack reliability; that is, developing a technique
that measures the reliability of detected R or calculated RR intervals is just as important as developing
a QRS detection algorithm with a higher detection rate [36,37]. In addition, many current studies
focus on distinguishing between normal and arrhythmic signals. However, in the future, classification
techniques for various types of arrhythmia should be studied based on the opinions of medical staff.

5. Conclusions

This paper presents an efficient real-time R point and QRS detection technique using two kinds of
derivative filters and a max filter with ECG signal processing for a sliding window unit. The proposed
derivative filter processing suppresses non-QRS intervals such as P and T waves while improving
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the QRS interval. Since the ECG signal measured by a wearable device is often deformed by various
noises, a noise detection function is very important for reliable HRV analysis. In this paper, the vertical
histogram-based noise detection technique is used to check whether the detected R point is in a section
contaminated by noises. By removing contaminated R points and RR intervals among the detected
R points, the reliability of the HRV analysis could be improved. In the future, studies to analyze
the effects of ECG noise on HRV should be accompanied by QRS detection technology.
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