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Abstract: Machine vibrations often occur due to dynamic unbalance inducing wear, fatigue, and noise
that limit the potential of many machines. Dynamic balancing is a main concern in mechanism and
machine theory as it allows designers to limit the transmission of vibrations to the frames and base
of machines. This work introduces a novel method for representing a four-bar mechanism with the
use of Fully Cartesian coordinates and a simple definition of the shaking force (ShF) and the shaking
moment (ShM) equations. A simplified version of Projected Gradient Descent is used to minimize
the ShF and ShM functions with the aim of balancing the system. The multi-objective optimization
problem was solved using a linear combination of the objectives. A comprehensive analysis of the
partial derivatives, volumes, and relations between area and thickness of the counterweights is used
to define whether the allowed optimization boundaries should be changed in case the mechanical
conditions of the mechanism permit it. A comparison between Pareto fronts is used to determine
the impact that each counterweight has on the mechanism’s balancing. In this way, it is possible
to determine which counterweights can be eliminated according to the importance of the static
balance (ShF), dynamic balance (ShM), or both. The results of this methodology when using three
counterweights reduces the ShF and ShM by 99.70% and 28.69%, respectively when importance is
given to the static balancing and by 83.99% and 8.47%, respectively, when importance is focused on
dynamic balancing. Even when further reducing the number of counterweights, the ShF and ShM
can be decreased satisfactorily.

Keywords: four-bar mechanism; multi-objective optimization; Pareto front analysis; optimization
analysis; multi-scale mechanisms; Gradient Descent; shaking force balancing; shaking moment balancing

1. Introduction

A complete mechanical balance or dynamic balance of a mechanism consists of eliminating
the dynamic reactions at the base of a mechanism produced by the movement of its structure.
These dynamic reactions are the shaking force (ShF) and the shaking moment (ShM). Such balancing is
desirable because the ShF and ShM cause vibrations of the supporting frame which latter turn into
noise, fatigue, wear, etc. The four-bar mechanism is often taken as example in dynamic balancing
because its number of applications [1,2]
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Dynamic balancing can be performed in two stages. In the first one, the balancing conditions
are commonly obtained using methods that involve Cartesian coordinates and the use of angles; this
implies the use of trigonometric functions that derive into complex expressions [3–6]. In relation to
this point, this work exploits the use of fully Cartesian coordinates (also called natural coordinates [7])
to obtain the expressions for optimizing the mechanism balance avoiding any use of angular
variables [8,9] and therefore, simplifying the equations. In the second stage, dynamic balancing
can be achieved by different methods. A complete review of methods can be found in [3–5] and more
recently in [6]. All balancing methods imply the addition of masses in some or other form while trying
to maintain the total mass as low as possible. Methods based on mass redistribution are very useful
from a practical point of view and are very suitable to be implemented. Using optimization techniques,
it is possible to minimize the dynamic reactions while maintaining the increment of mass under control.
Mass redistribution can be done by optimizing the geometry of the links [10] or by optimizing the size
and position of counterweights.

Traditionally, when computational resources were not available, dynamic balancing optimization
was carried out using analytic or semi-analytic methods [11–16]. Nowadays, technological advances
have made it easy to implement advanced numerical optimization techniques. It is usually considered
that this kind of formulation is difficult to solve because of the nonlinear nature. The most
common technique used to optimize mechanism balancing is meta heuristics. Some examples can be
appreciated in [17–19]. Herein, techniques like the so-called evolutionary algorithms, Firefly Algorithm,
or Differential Evolution, were used, respectively. Some references to methods that transform
the objective function to make it convex [20] can also be found. However, they involve a major
mathematical analysis.

The optimization algorithm proposed in this paper is a simplified version of Projected Gradient
Descent [21], a deterministic and iterative algorithm based on the gradient vector direction.
The optimization problem is multi-objective with bound constraints (also known as box constraints).
The objective function is obtained by the linear combination of the improvement indexes of the ShF and
ShM. This methodology is efficient due to the characteristics of the functions obtained by using fully
Cartesian coordinates, allowing to reach a convergence at the minimum value with just few iterations.

This article presents an extension of our previous work [22] in which, with the use of Fully
Cartesian coordinates, dynamic balancing optimization of a four-bar mechanism was achieved through
the sole addition of counterweights [23,24]. As a novelty, this work presents a comprehensive analysis
of the gradient on the optimal points obtained after the first optimization, so it is possible to know
whether the proposed limits of the optimized variables can be modified (whenever possible) to
obtain even better results than those originally obtained. An analysis of the volume and the relation
between the area and the thickness of the counterweights completes and confirms the gradient
analysis. The proposed methodology can be used in similar problems to analyze the optimization of
mechanisms. In addition, Pareto Fronts are used to present a sensitivity analysis of the response of
the whole mechanism when using three, two, or one counterweights. This type of analysis allows to
define the importance of each counterweight and determine which ones can be dispensed, obtaining
optimum results when trying to optimize the ShF, the ShM, or both.

The rest of the paper is organized as follows: Section 2 presents the mass-matrix definition and
calculus of the ShF and ShM equations of a four-bar linkage using fully Cartesian coordinates. Section 3
defines the objective function for the optimization. Section 4 details the algorithm used to optimize
the balance and the sensitivity analysis. Section 5 presents the numerical optimization and analysis
when using three, two, and one counterweights. Section 6 concludes the paper summarizing the main
findings and giving future work perspectives.
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2. Mechanical Analysis

2.1. Mass-Matrix of the Four-Bar Linkage Using Fully Cartesian Coordinates

Figure 1 shows a four-bar linkage consisting of four rigid bodies located in the same plane.
A motor is located at point A, so the crank AB rotates with velocity ω[rads/s]. lAB, lBD and lCD
represent the length of each link. By using Fully Cartesian coordinates [9] to represent the system, it is
easy to obtain the equations of the ShF and ShM. This method has been previously used in [22,25,26].

Figure 1. Original Four-bar linkage.

To obtain the mass-matrix M of the whole mechanism, it is necessary to define the mass-matrix
Mn of each n link. Those matrices can be calculated as presented in [9].

As long as the balance is carried out by adding counterweights, it is necessary to include in M
the related parameters. Therefore, each link will be considered as the conjunction of one-bar and one
counterweight as shown in Figure 2.

Figure 2. Four-bar linkage with counterweights.

The mass mn of each link-counterweight n = 1, 2, 3 is defined as:

mn = mbn + mcn (1)

where mbn is the mass of the original bar n (n = 1, 2, 3) and mcn is the mass of each counterweight
(n = 1, 2, 3). In addition, the counterweight mass in terms of its density and size can be represented as:

mcn = πρcntcn

(
ycn

2 + xcn
2
)

(2)
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where ρcn is the density of the material used in each counterweight, tcn is the thickness of each
counterweight, and xcn, ycn represents the position of the center of mass of the counterweight measured
in relation with the local coordinate system On.

The total inertia of each link-counterweight In, where n = 1, 2, 3, is defined as:

In =
3mcn

(
ycn

2 + xcn
2)

2
+ Ibn (3)

where xcn is the x position of the mass center of the counterweight corresponding to the n element
measured from the origin On and ycn is the y position of the mass center of the counterweight
corresponding to the n element measured from the origin On. Ibn corresponds to the inertia of each
original bar.

The new x position of the mass center for each n element is defined as:

XGn =
mcnxcn + mbnxbn

mcn + mbn
(4)

And the new y position of the mass center for each n element is defined as:

YGn =
mcnycn + mbnybn

mcn + mbn
(5)

where (xcn, ycn) is the position of the center of mass of each counterweight, and (xbn, ybn) is the position
of the center of mass of each original bar, both measured from the origin On.

To avoid the use of extra variables, the mass of each counterweight mcn is defined as:

mcn = π(r2
cn)(tcn)ρcn (6)

where ρcn represents the density of the counterweight, tcn is the thickness of the counterweight, and rcn

represents the ratio of the counterweight.
In addition, if the counterweight is considered to be a cylinder, the radius of the counterweight

can be defined as:
rcn =

√
x2

cn + y2
cn (7)

By substituting Equation (7) in (6):

mcn = π(x2
cn + y2

cn)(tcn)ρcn (8)

and applying the concepts of [9], the mass-matrix representing the whole mechanism can be written as:

M =



a 0 e − f 0 0 0 0
0 a f e 0 0 0 0
e f b 0 0 0 g −h
− f e 0 b 0 0 h g
0 0 0 0 c 0 i −j
0 0 0 0 0 c j i
0 0 g h i j d 0
0 0 −h g −j i 0 d


(9)

With:

a =
3πρc1tc1

(
yc

2
1 + xc

2
1
)2

+ 2Ib1

2l2
1

−
2
(
πρc1tc1xc1

(
yc

2
1 + xc

2
1
)
+ mb1xb1

)
l1

+πρc1tc1

(
yc

2
1 + xc

2
1

)
+ mb1

(10)
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b =
3πρc2tc2

(
yc

2
2 + xc

2
2
)2

+ 2Ib2

2l2
2

−
2
(
πρc2tc2xc2

(
yc

2
2 + xc

2
2
)
+ mb2xb2

)
l2

+πρc2tc2

(
yc

2
2 + xc

2
2

)
+ mb2 +

3πρc1tc1
(
yc

2
1 + xc

2
1
)2

+ 2Ib1

2l2
1

(11)

c =
3πρc3tc3

(
yc

2
3 + xc

2
3
)2

+ 2Ib3

2l2
3

−
2
(
πρc3tc3xc3

(
yc

2
3 + xc

2
3
)
+ mb3xb3

)
l3

+πρc3tc3

(
yc

2
3 + xc

2
3

)
+ mb3

(12)

d =
3πρc3tc3

(
yc

2
3 + xc

2
3
)2

+ 2Ib3

2l2
3

+
3πρc2tc2

(
yc

2
2 + xc

2
2
)2

+ 2Ib2

2l2
2

(13)

e =
πρc1tc1xc1

(
yc

2
1 + xc

2
1
)
+ mb1xb1

l1
−

3πρc1tc1
(
yc

2
1 + xc

2
1
)2

+ 2Ib1

2l2
1

(14)

f =
πρc1tc1yc1

(
yc

2
1 + xc

2
1
)
+ mb1yb1

l1
(15)

g =
πρc2tc2xc2

(
yc

2
2 + xc

2
2
)
+ mb2xb2

l2
−

3πρc2tc2
(
yc

2
2 + xc

2
2
)2

+ 2Ib2

2l2
2

(16)

h =
πρc2tc2yc2

(
yc

2
2 + xc

2
2
)
+ mb2yb2

l2
(17)

i =
πρc3tc3xc3

(
yc

2
3 + xc

2
3
)
+ mb3xb3

l3
−

3πρc3tc3
(
yc

2
3 + xc

2
3
)2

+ 2Ib3

2l2
3

(18)

j =
πρc3tc3yc3

(
yc

2
3 + xc

2
3
)
+ mb3yb3

l3
(19)

2.2. Linear Momentum and Shaking Force

Once the mass-matrix of the whole system is known and based on the basic points of the whole
linkage, it is possible to introduce a vector of positions represented by q:

q =
[

AX AY BX BY CX CY DX DY

]T
(20)

By time-deriving Equation (20), a vector of velocities can be obtained:

q̇ =
[
VAX VAY VBX VBY VCX VCY VDX VDY

]T
(21)

By introducing matrix B, it is possible to obtain the linear momentum vectors L associated to the
whole system: [

Li
Lj

]
= BMq̇ (22)

Where B (Equation (23)) is a matrix formed by identity matrices for each of the basic points
founded in the mechanism:

B =

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

]T

(23)
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By solving Equation (22) and considering the velocity of the fixed points always equal to zero
(VAX = 0, VAY = 0, VCX = 0, VCY = 0), the expressions of linear momentum (Li and Lj) for the
linkage are obtained.

The shaking force ShF (Equations (24) and (25)) of the linkage can be calculated from the
derivation of Equations Li and Lj (Equation (22)). To ensure the linkage is force balanced,
these equations must be constant (usually zero) over all the analyzed period of time, thus warranting a
null shaking force.

ShFi =
dLi
dt

=

(
−

πρc3tc3yc3
(
yc

2
3 + xc

2
3
)
+ mb3yb3

l3
−

πρc2tc2yc2
(
yc

2
2 + xc

2
2
)
+ mb2yb2

l2

)
ADY

+

(
πρc3tc3xc3

(
yc

2
3 + xc

2
3
)
+ mb3xb3

l3
+

πρc2tc2xc2
(
yc

2
2 + xc

2
2
)
+ mb2xb2

l2

)
ADX

+

(
πρc3tc3yc3

(
yc

2
3 + xc

2
3
)
+ mb3yb3

)
ACY

l3

+

(
−

πρc3tc3xc3
(
yc

2
3 + xc

2
3
)
+ mb3xb3

l3
+ πρc3tc3

(
yc

2
3 + xc

2
3

)
+ mb3

)
ACX

+

(
πρc2tc2yc2

(
yc

2
2 + xc

2
2
)
+ mb2yb2

l2
−

πρc1tc1yc1
(
yc

2
1 + xc

2
1
)
+ mb1yb1

l1

)
ABY

+(−
πρc2tc2xc2

(
yc

2
2 + xc

2
2
)
+ mb2xb2

l2
+ πρc2tc2

(
yc

2
2 + xc

2
2

)
+mb2 +

πρc1tc1xc1
(
yc

2
1 + xc

2
1
)
+ mb1xb1

l1
)ABX

+

(
πρc1tc1yc1

(
yc

2
1 + xc

2
1
)
+ mb1yb1

)
AAY

l1

+

(
−

πρc1tc1xc1
(
yc

2
1 + xc

2
1
)
+ mb1xb1

l1
+ πρc1tc1

(
yc

2
1 + xc

2
1

)
+ mb1

)
AAX

(24)
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ShFj =
dLj

dt
=

(
πρc3tc3xc3

(
yc

2
3 + xc

2
3
)
+ mb3xb3

l3
+

πρc2tc2xc2
(
yc

2
2 + xc

2
2
)
+ mb2xb2

l2

)
ADY

+

(
πρc3tc3yc3

(
yc

2
3 + xc

2
3
)
+ mb3yb3

l3
+

πρc2tc2yc2
(
yc

2
2 + xc

2
2
)
+ mb2yb2

l2

)
ADX

+

(
−

πρc3tc3xc3
(
yc

2
3 + xc

2
3
)
+ mb3xb3

l3
+ πρc3tc3

(
yc

2
3 + xc

2
3

)
+ mb3

)
ACY

−
(
πρc3tc3yc3

(
yc

2
3 + xc

2
3
)
+ mb3yb3

)
ACX

l3

+(−
πρc2tc2xc2

(
yc

2
2 + xc

2
2
)
+ mb2xb2

l2
+ πρc2tc2

(
yc

2
2 + xc

2
2

)
+mb2 +

πρc1tc1xc1
(
yc

2
1 + xc

2
1
)
+ mb1xb1

l1
)ABY

+

(
πρc1tc1yc1

(
yc

2
1 + xc

2
1
)
+ mb1yb1

l1
−

πρc2tc2yc2
(
yc

2
2 + xc

2
2
)
+ mb2yb2

l2

)
ABX

+

(
−

πρc1tc1xc1
(
yc

2
1 + xc

2
1
)
+ mb1xb1

l1
+ πρc1tc1

(
yc

2
1 + xc

2
1

)
+ mb1

)
AAY

−
(
πρc1tc1yc1

(
yc

2
1 + xc

2
1
)
+ mb1yb1

)
AAX

l1

(25)

2.3. Angular Momentum and Shaking Moment

The use of Fully Cartesian coordinates allows to express the angular momentum H as Equation (26)
with r defined as shown in Equation (27).

H = q× (Mq̇) = rMq̇ (26)

r =
[
−AY AX −BY BX −CY CX −DY DX

]T
(27)

By solving Equation (26) and considering VAX = 0, VAY = 0, VCX = 0 and VCY = 0, the
expression of the angular momentum H can be obtained.

A scalar value corresponding to the shaking moment ShM of the linkage that is considered
perpendicular to the plane of the 2D mechanism, can be calculated by time-deriving H:

ShM =
dH
dt

= rM(
d(q̇)

dt
) + (

dr
dt
)Mq̇ (28)

ShM =
dH
dt

= rMq̈ + ṙMq̇ (29)

where:
ṙ = [−VAY VAX −VBY VBX −VCY VCX −VDY VDX ]

T (30)

and q̈, the time-derivation of vector q̇, represents the acceleration vector.
To guarantee the dynamic balancing of the mechanism, ShM must be kept constant:

The time-derivation of H (Equations (28) and (29)) should be zero.
By solving Equation (29) and considering VAX = 0, VAY = 0, VCX = 0 and VCY = 0, the ShM of

the four-bar linkage can be obtained:
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ShM = VDX

((
3πρc3tc3

(
yc

2
3 + xc

2
3
)2

+ 2Ib3

2l2
3

+
3πρc2tc2

(
yc

2
2 + xc

2
2
)2

+ 2Ib2

2l2
2

)
VDY

+

(
πρc2tc2xc2

(
yc

2
2 + xc

2
2
)
+ mb2xb2

l2
−

3πρc2tc2
(
yc

2
2 + xc

2
2
)2

+ 2Ib2

2l2
2

)
VBY

−
(
πρc2tc2yc2

(
yc

2
2 + xc

2
2
)
+ mb2yb2

)
VBX

l2

)
+ VBX −VBY

−
(

3πρc3tc3
(
yc

2
3 + xc

2
3
)2

+ 2Ib3

2l2
3

+
3πρc2tc2

(
yc

2
2 + xc

2
2
)2

+ 2Ib2

2l2
2

)
VDXVDY

−
(
πρc2tc2yc2

(
yc

2
2 + xc

2
2
)
+ mb2yb2

)
VBYVDY

l2

−
(

πρc2tc2xc2
(
yc

2
2 + xc

2
2
)
+ mb2xb2

l2
−

3πρc2tc2
(
yc

2
2 + xc

2
2
)2

+ 2Ib2

2l2
2

)
VBXVDY

−
((

3πρc3tc3
(
yc

2
3 + xc

2
3
)2

+ 2Ib3

2l2
3

+
3πρc2tc2

(
yc

2
2 + xc

2
2
)2

+ 2Ib2

2l2
2

)
ADX

+

(
πρc2tc2yc2

(
yc

2
2 + xc

2
2
)
+ mb2yb2

)
ABY

l2

+

(
πρc2tc2xc2

(
yc

2
2 + xc

2
2
)
+ mb2xb2

l2
−

3πρc2tc2
(
yc

2
2 + xc

2
2
)2

+ 2Ib2

2l2
2

)
ABX

)
DY

+

((
3πρc3tc3

(
yc

2
3 + xc

2
3
)2

+ 2Ib3

2l2
3

+
3πρc2tc2

(
yc

2
2 + xc

2
2
)2

+ 2Ib2

2l2
2

)
ADY

+

(
πρc2tc2xc2

(
yc

2
2 + xc

2
2
)
+ mb2xb2

l2
−

3πρc2tc2
(
yc

2
2 + xc

2
2
)2

+ 2Ib2

2l2
2

)
ABY

−
(
πρc2tc2yc2

(
yc

2
2 + xc

2
2
)
+ mb2yb2

)
ABX

l2

)
DX

+

((
πρc3tc3xc3

(
yc

2
3 + xc

2
3
)
+ mb3xb3

l3
−

3πρc3tc3
(
yc

2
3 + xc

2
3
)2

+ 2Ib3

2l2
3

)
ADY

+

(
πρc3tc3yc3

(
yc

2
3 + xc

2
3
)
+ mb3yb3

)
ADX

l3

)
CX − BY + BX

(31)

3. Objective Function

A dimensionless balancing index βi can be used to define the optimization’s objective function.
This kind of expressions has been previously used in [14,24], and more recently in [20]. As shown in
Equation (32), the first balancing index is defined by the relation of the root mean square (rms) of the
reaction of the optimized linkage (rms(oReaction)) with respect to the rms value of the reaction of the
original linkage (rms(Reaction)), both considered over a period of time T.

Two objective indexes will be considered taking in account the reactions of the ShF and ShM.
As long as they represent the ratio between the reactions of the original mechanism and the optimized
one, the result will present the achieved optimization. The value is in the range (0, 1). The nearest this
value is to 0, the best balance is achieved. Otherwise (a value close to 1), the result is almost the same
that the one obtained without balancing.
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The first balancing index βShF is shown in Equation (32).

βShF =
rms(oShF)
rms(ShF)

(32)

where the root mean square of the ShF (rms(ShF)) is given by:

rms(ShF) =

√√√√ 1
N

N

∑
k=1

(ShF2
ik + ShF2

jk) (33)

and the root mean square of the original ShF (rms(oShF)) is a constant value obtained from calculating
the root mean square of the ShF of the four-bar linkage without any added counterweight.

rms(oShF) =

√√√√ 1
N

N

∑
k=1

(oShF2
ik +

o ShF2
jk) (34)

By substituting Equations (33) and (34) in Equation (32), the balancing index (βShF) can be
expressed as:

βShF =

√√√√ ∑N
k=1(ShF2

ik + ShF2
jk)

∑N
k=1(

oShF2
ik +

o ShF2
jk)

(35)

Similarly, the second objective index can be calculated when the ShM is considered as the reaction.
So, βShM can be written as:

βShM =

√√√√ ∑N
k=1 ShM2

k

∑N
k=1

oShM2
k

(36)

where ShM is the shaking moment of the optimized linkage when using the added counterweights
and oShM is a constant value that represents the shaking moment of the unbalanced linkage.

The optimization objective is to minimize βShF and βShM considering boundary limits while
ensuring that the coordinates of the centers of mass (xcn and ycn) and the thickness (tcn) of each
counterweight are dimensions that can be used in the mechanical context. Therefore, the boundaries
for optimization are limited according to:

xmin
cn 6 xcn 6 xmax

cn (37)

ymin
cn 6 ycn 6 ymax

cn (38)

tmin
cn 6 tcn 6 tmax

cn (39)

4. Optimization

The optimization theory deals with selecting the best alternative in the sense of the given objective
function [27]. It can be applied to solve a wide variety of problems, for example: [28–30].

Mathematically, optimization is the process of finding the minimum or the maximum of a function
f (X) : Rn− > R. X ∈ Rn is the vector of variables that can be modified in order to optimize f (X).
When minimizing the function f , an optimal solution can be defined as X∗ where f (X∗) ≤ f (X) for all
X ∈ Rn. In other words, it is a global minimum.

4.1. Simplified Version of the Projected Gradient Descent

Gradient Descent is an iterative algorithm that finds a local minimal in a function [21,27,28].
It starts in a random point and continues until the minimal is reached. This technique is based on the
use of the gradient vector to update the solution. The gradient vector ∇f(X) evaluated in a point X
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points the direction of a maximum ascent. Gradient Descent moves the point in the opposite direction
to the gradient. The problem starts with the solution vector X0 and in each iteration Xk is modified
according to Equation (40).

Xk+1 = Xk + αkPk (40)

where k is the current iteration, αk is the step length, and Pk is the direction calculated as an unitary
direction vector as shown in Equation (41).

Pk = − ∇f(Xk)

||∇f(Xk)||
(41)

The step length αk is optimized based on the approximation of the Taylor’s Theorem
(Equation (42)), ensuring this way the maximum descent.

f (Xk + αkPk) ≈ f (Xk) + αkPk
T∇f(Xk) +

α2
k

2
Pk

T∇2f(Xk)Pk (42)

By deriving Equation (42) with respect to α and clearing α:

αk = −
∇f(X)TPk

Pk
T∇2f(X)Pk

(43)

4.2. Finite Difference

Calculating the derivatives in a symbolic way may be difficult on certain occasions.
Finite Differences [21] can be used to obtain an approximation of the Gradient Vector and the
Hessian matrix.

Mathematically, the Gradient vector ∇f(X) is formed by the first derivatives of the function with
respect to all the variables (Equation (44)) and the Hessian matrix ∇2f(X) is composed of the second
derivatives (Equation (45)).

∇f(X) =
[

∂ f
∂x1

, ∂ f
∂x2

, . . . , ∂ f
∂xn

]T
(44)

∇2f(X) =



∂2 f
∂x2

1

∂2 f
∂x1∂x2

. . . ∂2 f
∂x1∂xn

∂2 f
∂x2∂x1

∂2 f
∂x2

2
. . . ∂2 f

∂x2∂xn

...
...

. . .
...

∂2 f
∂xn∂x1

∂2 f
∂xn∂x2

. . . ∂2 f
∂x2

n


(45)

To approximate the first partial derivatives, Equation (46) is used. Here, ε is a scalar constant with
a small value (ε = 1e− 5), ei is a unitary vector with the size of X that contains 0’s in all its positions
except in the position i where there is a 1.

∂ f
∂Xi

=
f (X + εei)− f (X)

ε
(46)

Since the Hessian matrix will be multiplied by a vector, a finite approximation is used
(Equation (47)), where V is the vector to be multiplied.

∇2f(X) ∗V =
∇f(X + εV)−∇f(X)

ε
(47)

4.3. Implementation to Optimize the ShF and ShM

The optimization problem consists of minimizing βShF and βShM (see Equations (35) and (36)).
X is the vector that contains all the variables values that need to be calculated, this is, X =



Appl. Sci. 2019, 9, 4115 11 of 26

[xc1, yc1, tc1, xc2, yc2, tc2, xc3, yc3, tc3]. As two functions need to be optimized, βShF and βShM, it can
be stated that this is a multi-objective problem. In this research, the objectives are in conflict, it means
that, when optimizing the values of X for minimizing βShF, a worse value of βShM can be obtained
and vice-versa. All the solutions X can be represented in a two dimensional plane with the pair
(βShF(X), βShM(X)), as it can be seen in Figure 4. We say a solution is dominated Xd when its two
objectives are worse than at least other solution, this is, ∃x : βShF(Xd) ≥ βShF(X) ∧ βShF(Xd) ≥
βShF(X). And the non-dominated solutions X∗ are the ones that βShF(X∗) ≤ βShF(X) ∨ βShM(X∗) ≤
βShM(X)∀x. Figure 4b shows an example of non-dominated (dark blue) and dominated solutions (light
blue). The Pareto Front [17] is conformed by the non-dominated solutions. According to the specific
mechanical reaction that is more urgent to optimize, it is recommended to choose a specific solution
from the Pareto Frontier.

The technique weighted sum [31], that is widely known for solving multi-objective problems, was
used for defining the objective function of the optimization problem (Equation (48)).

f (X) = γ ∗ βShM(X) + (1− γ) ∗ βShF(X) (48)

where γ is a scalar value that determines the importance given to each of the objectives of the
optimization.

The simplified version of Projected Gradient Descent algorithm is used for solving the
optimization problem (Equation (48)). It is described in Algorithm 1. RandomBoxConstraints()
calculates a vector of random variables with uniform distribution respecting the specified bounds.
GradientFiniteDi f f ( f , X0) and HessianFiniteDi f f ( f , Xk, Pk) calculate the approximation of the
Gradient vector and the Hessian matrix based on the Equations (44), (46) and (47). ‖.‖ represents the
vector norm. ε is a small scalar (ε = 1e− 5).

To handle bound constraints, a simplified version of Projected Gradient Descent is used, so when
a solution is found outside of the boundaries, it is projected to the valid region. The Boolean function
isInvalid(Xk+1) returns true if the obtained vector contains values inside the boundaries otherwise,
it returns false. The function clip(Xk+1) is used to clip the values of the vector if they are not valid.
Clipping the values implies that if the value is smaller than the lower value allowed, then the value is
converted to the minimal. In the same way, if the value is bigger than the maximum value allowed,
then the value is converted to the maximum.

The algorithm implements two stop conditions: (1) ||Xk+1 −Xk|| < ε. It means that the difference
between Xk+1 and Xk is too small, so there is no change in the current solution, this also includes
when the Gradient vector norm is close to 0. (2) k > NMaxIter. It means that the maximum number
of iterations has been reached (In this work NMaxIter = 1000).

Algorithm 1: Projected Gradient Descent with maximum descent.

1 X0 = RandomBoxConstraints();
2 ∇f(X0) = GradientFiniteDi f f ( f , X0);
3 k = 0;
4 while ‖∇f(Xk)‖ > ε or k < NMaxIter do
5 Pk = − ∇ f (Xk)

‖∇ f (Xk)‖
;

6 APk = HessianFiniteDi f f ( f , Xk, Pk);

7 αk = −
∇f(X)TPk

PT
k APk

;

8 Xk+1 = Xk + αkPk;
9 If isInvalid(Xk+1) then clip(Xk+1);

10 If ||Xk+1 − Xk|| < ε then break;
11 k = k + 1;
12 end
13 return Xk;
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The objective function defined in Equation (48) is non convex, therefore it has different local
minimums. For this reason, the algorithm 1 is executed 500 times, each one with a different
starting point with the goal of finding the different local minimums. Based on a random search
for hyperparameters presented in [32], γ is taken as a random value from a uniform distribution in the
range (0, 1) (see Equation (48)). When the optimization objective values are less than 1.0, the resultant
parameters are stored.

4.4. Sensibility Analysis

This subsection shows a way to analyze the Gradient vector values and the constraints.
The optimization problem can be defined as:

minX f (X, α)

s.t.
l <= X <= h

(49)

And the constraints can be redefined as:

minX f (X, α)

s.t.
X− l >= 0
h− X >= 0

(50)

In this case, the Lagrangian is given by:

L(X, δ, π) = f (X)− δT(l)− πT(h− X) (51)

and the KKT :
∇f(X)− δ + π = 0 (52)

with δ, π >= 0, defining λ = δ− π

∇f(X)− λ = 0 (53)

∇f(X) = λ (54)

Then

δi =


0 i f λi = 0
λi i f λi > 0
0 i f λi < 0

(55)

πi =


0 i f λi = 0
0 i f λi > 0
−λi i f λi < 0

(56)

In other words, if the i − th entry of the Gradient has a value equal to 0, the constraint is not
affected. If the value is greater than 0, the constraint of the lower border is affected. Finally, if the value
is smaller than 0, the constraint of the higher border is affected.

5. Analysis

This section presents a deep analysis that provides information on the importance of each
counterweight and its influence on the balance of the mechanism. It also presents a method to
determinate if the optimization limits are the most appropriate or if it is convenient to change them in
case the mechanical limitations of the system allows it.
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5.1. Using Three Counterweights

5.1.1. Mechanical Characteristics

Table 1 presents the parameters of a four-bar linkage (Figure 2). The material used for the links
is steel with a density of 7800 kg/m3. The counterweights are made from brass with a density (ρc)
of 8500 kg/m3.

The mechanism is moved by a motor placed at point A, rotating at a constant speed
of 500 rpm. Using direct kinematics, it is possible to obtain a sample of the positions
(Ax, Ay, Bx, By, Cx, Cy,Dx, Dy ), speeds ( VBx, VBy, VCx, VCy, VDx, VDy) and accelerations ABx, ABy,
ACx, ACy, ADx, ADy) corresponding to each of the basic points considered in this system.

Figure 3 shows the results of the direct kinematics using the mechanism parameters presented
in Table 1. It is important to notice that Figure 3a only presents the positions of points B and D (points A
and C are fixed). The same occurs with Figures 3b,c where only the velocities and the accelerations of
points B and D are presented (this parameters are always zero for points A and C.)

By replacing all known parameters in Equations (35) and (36), the balancing indexes used to
define the objective function (Equation (48) can be obtained.

According to the mechanical characteristics of the mechanism the boundaries considered for the
optimization are:

− 0.40 m 6 xcn, ycn 6 0.40 m (57)

0.005 m 6 tcn 6 0.04 m (58)

Table 1. Parameters of the four-bar mechanism used in the example.

Body
n 1 2 3

Mass
mbn

[kg]
2.51946901 4.73866901 3.68746901

Lenght
ln

[m]
0.40 0.78 0.60

Inertia
Ibn

[kg m/s2]
0.14023528 0.98146460 0.45494271

Center
of mass

xbn

[m]

0.20 0.39 0.30

Center
of mass

ybn

[m]

0.00 0.00 0.00
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(a) Basic points positions of the four-bar mechanism.

(b) Basic points velocities of the four-bar mechanism.

(c) Basic points accelerations of the four-bar mechanism.

Figure 3. Direct kinematic results of the four-bar mechanism.

5.1.2. Pareto Front Using Three Counterweights

Figure 4a shows the βShF and βShM values of all the solutions founded. Different colors are used
to represent the value used for γ on function F(X) (Equation (48)). In Figure 4b, the dark points
represent the Pareto front while the light ones represent the dominated solutions.
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(a) Optimized βShM and βShF according to γ. (b) Pareto Front of optimized objectives.

Figure 4. Pareto analysis of optimization objectives: βShM and βShF.

5.1.3. Numerical Results

Among the solutions found in the Pareto front, it is possible to select the one that is the most
appropriate according to the specific problem that is being solved.

As an example, three solutions of the Pareto front are taken; the first one is the best
result when optimizing the index corresponding to the ShM (βShM = 0.1600587, βShF = 0.9152829),
the second one is the best result when optimizing the index corresponding to the ShF
(βShM = 0.71311372, βShF = 0.00295769) and the last one is selected when both ShM and ShF indexes
are optimized by almost 60% (βShM = 0.42969434, βShF = 0.45176319).

The first chosen solution is the one in the Pareto front with the minimum value in βShM (βShM =

0.1600587, βShF = 0.9152829). It corresponds to the following variables values:

xc1 = −0.306033474 yc1 = −0.05120233 tc1 = 0.007840031
xc2 = −0.031811247 yc2 = −0.09348429 tc2 = 0.04
xc3 = −0.115671647 yc3 = 0.112686771 tc3 = 0.04

Figure 5a shows the comparison between the ShF (on the x and y axes) of the original mechanism
and the ShF after the optimization. In this case, the total ShF was improved only by 8.47%. But with
this solution, it is possible to appreciate that the ShM of the four-bar optimized mechanism is 83.99%
better than the original one (Figure 5b). It can be observed that upon the sole use of counterweights,
it is not possible to eliminate the ShM, but it can be significantly reduced, reducing also the ShF a bit.
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(a) Resultant ShF of the first selected solution. (b) Resultant ShM of the first selected solution.

(c) Resultant ShF of the second selected solution. (d) Resultant ShM of the second selected solution.

(e) Resultant ShF of the third selected solution. (f) Resultant ShM of the third selected solution.

Figure 5. Shaking Force and Shaking Moment comparison.

The second chosen solution is the one in the Pareto front with the minimum value in βShF
(βShM = 0.71311372, βShF = 0.00295769). It corresponds to the following variables values:

xc1 = −0.15548064 yc1 = −0.007810097 tc1 = 0.035743454
xc2 = −0.046683398 yc2 = −0.068805445 tc2 = 0.027404923
xc3 = −0.132085338 yc3 = 0.015127099 tc3 = 0.037640418
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In Figure 5c, it is possible to appreciate that the ShF is significantly reduced (99.70%) compared to
the original mechanism. It can be considered that the ShF is almost completely eliminated by using
counterweights and also that the ShM has a reduction of 28.69% (Figure 5d).

The third chosen solution is the one in the Pareto front where both indexes corresponding to ShF
and ShM are optimized almost by 60% (βShM = 0.42969434, βShF = 0.45176319). It corresponds to the
following variables values:

xc1 = −0.233449901 yc1 = 0.047539111 tc1 = 0.005
xc2 = 0.0000527 yc2 = 0.000296052 tc2 = 0.005000159
xc3 = −0.125584323 yc3 = 0.058770112 tc3 = 0.04

By using these counterweights, the ShM is reduced by 57.03% and the ShF by 54.82% (Figures 5e,f).

5.1.4. Partial Derivatives, Volumes and Relation Area-Thickness of Three Counterweights

This subsection presents an analysis to determine if the proposed limits for optimization are the
most suitable or if they should be changed (in case there is the possibility of modifying them due to
mechanical constraints).

In Figure 6 the box-plots of the partial derivatives with respect to each variable xn, yn and tn for
each counterweight n (1 ≤ n ≤ 3) are shown.

Figure 6. Box plots of partial derivatives with respect to each optimization variable when using
three counterweights.

It is known that an optimal solution is found if all the partial derivatives values are equal to zero.
In the box plots of Figure 6 it can be seen that, for the variables xn and yn of the counterweights n
(1 ≤ n ≤ 3), the partial derivatives are close to zero, this means that it was possible to reach the optimal
values within the proposed optimization limits.

However, for the variables t1 and t3, the partial derivatives are not close to zero. In t1, it can be
appreciated that the value tends to be greater than zero, hence, it can be deduced that the thickness
of Counterweight-1 is trying to be less than the limit 0.005 m. Evidently, this is not possible due to
the mechanical limitations that prevent a counterweight thickness from being too close to zero or
negative because it is physically impossible. On the other hand, the value of t3 tends to be less than 0,
which means that if the limits of the optimization allowed it, Counterweight-3 would have a thickness
greater than 0.04 m. This information, obtained from the partial derivatives analysis, can be very useful
to decide the limits of the counterweights when there is the possibility to modify them.
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In Figure 7a, the volume value histogram of the counterweights obtained on the different
optimization solutions is presented. By analyzing the volume of the counterweights and the relation
between their area and thickness (Figure 7b), it can be seen that Counterweight-2 has a very small
volume (compared with the other counterweights) and when both area and thickness are very small,
Counterweight-2 is almost disappearing from the solution. On the other hand, the relation between
the area and the thickness of Counterweight-3 shows how in almost all the cases the thickness is
reaching the highest allowed limit; this confirms the information given by the histogram previously
analyzed and confirms the conclusion that if mechanical characteristics of the system allows it, it might
be advisable to perform the optimization with a slightly larger upper limit for the variable t3.

(a) Volumes of counterweights when using three of them

(b) Relation between area and thickness of each cylindrical counterweight when using three of them.

Figure 7. Parameters used to analyze the dimension of each counterweight when using three of them.

5.2. Decreasing the Amount of Counterweights Used for Balancing

There could be cases when it is desirable to eliminate one or more counterweights. The reasons
can be the resultant volume of the whole mechanism or the cost for implementing the solution.

5.2.1. Pareto Front Comparison to Eliminate One Counterweight

Figure 8 shows the Pareto front of the different optimization results when using all possible
combinations (three, two, or only one counterweight). The black stars correspond to the original
Pareto front when the three counterweights are used. The blue crosses correspond to the Pareto front
when Counterweight-2 has been eliminated and only Counterweights 1 and 3 are being considered.
Comparing these results with those obtained when using all the counterweights, it is possible to see
that the Pareto fronts are very similar.

The green crosses correspond to the Pareto front when using only Counterweights-2 and 3.
The yellow crosses correspond to the Pareto front when Counterweight-3 has been eliminated and
Counterweights-1 and 2 are in use.

Using the information provided by the Pareto fronts (Figure 8), it is possible to conclude that,
if one decides to eliminate a counterweight to simplify the balancing of the mechanism, it should be
Counterweight-2, since using only Counterweights-1 and 3 produces a similar result to that obtained
when all three counterweights are used.
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Figure 8. Pareto front comparison.

Appendix A shows the numerical results when using only two counterweights giving importance
to the optimization of the ShF, ShM, and both. A sensitivity analysis is also presented to decide
which counterweight should be used if one decides to use only one counterweight. The partial
derivatives, volumes and relation area-thickness is also presented giving information about the
selected optimization limits, allowing to further improve the results.

Appendix B shows the numerical results when using only one counterweight and presents the
sensitivity analysis and the partial derivatives, volumes and relation area-thickness using the methods
previously proposed.

Table 2 shows the optimization results when using three, two, and one counterweight.

5.3. Expanding Optimization Limits for t3

As aforementioned, using the box-plots of the partial derivatives with respect to each variable,
the volume values histogram of the counterweights, and the graphics of the relation between area
and thickness, it is possible to obtain valuable information about the chosen limits of the optimization.
The decision of modifying these limits depends on the mechanical characteristics of the whole
mechanism.

Taking the example when using only one counterweight (Appendix B) the recommendation after
the analysis was to choose a higher limit of thickness t3, a new optimization process was executed
with the limits:

− 0.40 m 6 xcn, ycn 6 0.40 m (59)

0.005 m 6 tcn 6 0.05 m (60)

The upper limit of t3 could be changed from 0.04 m to 0.05 m. Using this value and giving more
importance to βShF, the physical characteristics of Counterweight-3 should be:

xc3 = −0.141021300369708 yc3 = −0.00665773774579448 tc3 = 0.0207544372440781

Using this solution, allows the ShF and ShM to be reduced by 73.92% and 14.32%, respectively.
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Table 2. Comparison between optimization results.

ShF Optimization ShM Optimization

Using
three
counterweights

Optimizing
ShF 99.70% 28.69%

Optimizing
ShM 8.47% 83.99%

Optimizing both
ShF and ShM 54.82% 57.03%

Using
counterweights
1 and 3

Optimizing
ShF 99.67% 24.34%

Optimizing
ShM 1.55% 79.22%

Optimizing both
ShF and ShM 55.05% 57.27%

Using only
counterweight 3

Optimizing
ShF 78.74% 0.42%

Optimizing
ShM 3.22% 73.61%

Optimizing both
ShF and ShM 51.19% 53.31%

On the other hand, when the importance is given to βShM, the physical characteristics of
Counterweight-3 should be:

xc3 = −0.1112378507983744 yc3 = 0.091294702876245 tc3 = 0.05

Using this counterweight the ShM and ShF is reduced by 80.17% and 5.30%, respectively.
Table 3 compares the optimization results obtained with the expanded limits and the original limits.

It can be seen that expanding Counterweight-3 thickness upper limit, improves the ShM. Figure 9
shows the comparison of Pareto fronts before and after changing the optimization limits. It can be
noticed that the thickness of Counterweight-3 has a greater influence on the optimization of the ShM
of the mechanism. By increasing this limit, optimization results can be better.

Table 3. Comparison between optimization results when expanding the thickness upper limit of
Counterweight-3.

ShF Optimization ShM Optimization

Using
0.05m as
t3 upper limit

Optimizing
ShF 73.92% 14.32%

Optimizing
ShM 5.30% 80.17%

Using
0.04m as
t3 upper limit

Optimizing
ShF 78.74% 0.42%

Optimizing
ShM 3.22% 73.61%
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Figure 9. Pareto comparison when changing Counterweight-3 thickness upper limits.

6. Conclusions

By using fully Cartesian coordinates to represent a mechanism, the equations that define the
reactions are less complex than those obtained with other methods, hence, the use of this kind of
coordinates is suitable for complete balancing, minimization of reactions, and calculation of the ShF
and ShM in mechanisms.

The use of fully Cartesian coordinates to represent a four-bar linkage in conjunction with
the Simplified Gradient Descent algorithm is a suitable methodology to optimize the balancing
of mechanisms. It allows, when using three counterweights and giving more importance to static
balancing, to reduce the ShF and ShM by 99.70% and 28.69%, respectively; and when importance is
given to the dynamic balancing, to reduce the ShM and the ShF by 83.99% and 8.47%, respectively.

The optimization algorithm was successfully applied to solve the problem. The use of linear
combination of functions is a simple yet robust way to handle multi-objectives. The approximation of
the derivatives based on Finite Difference allows guiding the algorithm and reducing human hand
calculation mistakes.

Comparison between Pareto fronts proves to be an adequate methodology for the sensitivity
analysis of each counterweight. This method has proved that even when using only one counterweight,
the ShF can be reduced by 78.74% when giving importance to the static balancing or the ShM can be
reduced by 73.61% when giving importance to dynamic balancing.

The box-plots of the partial derivatives with respect to each variable, histograms of volumes,
and relations between area and thickens allow to analyze the proposed optimization limits in order to
decide if they can be changed to obtain even better results.

As future work, it is expected to use these algorithms and analysis to optimize more complex
mechanisms in two and three dimensions.
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Appendix A. Analysis Using Two Counterweights

This appendix presents the analysis when using only two counterweights.

Appendix A.1. Numerical Results

After proving that the counterweight that has the less influence on the optimization is
Counterweight-2, three solutions are selected from the Pareto front that use only Counterweights-1
and 3. Solutions are chosen as follows:

1. If the interest is to optimize the index related to the ShF (βShF) without giving importance to the
index related to the ShM (βShF), the selected solution is:

xc1 = −0.210649187 yc1 = 0.002597417 tc1 = 0.005812833
xc3 = −0.133324421 yc3 = 7.62E− 05 tc3 = 0.039931556

By using this solution, the ShF can be reduced by 99.67%, while the ShM by 24.34%.
2. If the interest is to optimize the index related to the ShM (βShM), without giving importance to

the index related to the ShF (βShF), the selected solution is:

xc1 = −0.273728043 yc1 = −0.029116001 tc1 = 0.005
xc3 = −0.11860947 yc3 = 0.10186805 tc3 = 0.04

By using this solution, the ShM can be reduced by 79.22%, while the ShF by 1.55%.
3. If the interest is to optimize both indexes, βShF and βShM, the selected solution is:

xc1 = −0.207213869 yc1 = 0.031661306 tc1 = 0.006993731
xc3 = −0.126559077 yc3 = 0.058396603 tc3 = 0.04

This solution reduces the ShF and the ShM by 55.05% and 57.27%, respectively.

Appendix A.2. Partial Derivatives, Volumes, and Relation Area-Thickness When Using Two Counterweights

Figure A1 shows the box-plots of the partial derivatives with respect to each variable xn, yn and
tn (for counterweights n = 1 and n = 3), when Counterweight-2 is eliminated.

A partial derivative analysis of each optimized variable can be performed to know if it is advisable
to modify the proposed optimization limits. When analyzing the box-plots for the values of xn, yn,
it can be noticed that they are very close to zero, this means that the limits defined on the optimization
to these variables are adequate. The variable t1 slightly tries to be greater than zero, this means that in
this some cases the thickness of Counterweight-1 it is trying to be less than the limit 0.005m, but as
aforementioned this is not mechanically possible.

On the other hand, the partial derivative box-plot of t3 shows that this value is trying to be greater
than the proposed limit, this means that the optimization is reaching the allowed upper limit and if the
mechanical limitations allow, it could be interesting to increase it.

To confirm the proposed analysis, Figure A2a shows the histogram of the total volume of
each counterweight. Note that Counterweight-1 is smaller than Counterweight-3, and that the
relation between area and thickness of each counterweight (Figure A2b) proves that the thickness of
Counterweight-3 is trying get out of the upper limit.
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Figure A1. Box plots of partial derivatives with respect to each optimization variable when using
two counterweights.

(a) Volumes of counterweights when using two of them

(b) Relation between area and thickness of each cylindrical counterweight when using two of
them

Figure A2. Parameters used to analyze the dimension of each counterweight when using two of them.

Appendix B. Analysis Using Only One Counterweight

This appendix presents the analysis when using only one counterweight.

Appendix B.1. Numerical Results

Three solutions are selected form the Pareto front using only Counterweigh-3, they are chosen
as follows:

1. If the interest is to optimize the index related to the ShF (βShF), without giving importance to the
index related to the ShM (βShM), the selected solution is:

xc3 = −0.11950597007297 yc3 = 0.0984494486824036 tc3 = 0.04

By using this solution, the ShF can be reduced by 78.74%, while the ShM by 0.42%.
2. If the interest is to optimize the index related to the ShM (βShM) without giving importance to the

index related to the ShF (βShF), the selected solution is:

xc3 = −0.240986266107467 yc3 = 0.0012908547612233 tc3 = 0.00715115109817927
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By using this solution, the ShM can be reduced by 73.61% while the ShF by 3.22%.
3. If the interest is to optimize both indexes (βShF and βShM) the selected solution is:

xc3 = −0.130165416712609 yc3 = 0.0500126887169449 tc3 = 0.04

This solution reduces the ShF by 51.19% and the ShM by 53.31%.

In Table 2 the comparison between the optimization results when using three, two and only
one counterweight can be observed. It is evident that the best results are obtained when using three
counterweights. Still, it is interesting to notice that when using only Counterweight-3, it is possible to
improve the balance of the whole mechanism and reduce the total cost of the implementation.

Appendix B.2. Partial Derivatives, Volumes, and Relation Area-Thickness When Using Only One Counterweight

Figure A3 shows the box-plots of the partial derivatives with respect to each variable x3, y3 and t3

when using only the third counterweight. It can be observed that the optimization limits for x3 and
y3 are adequate, but as t3 tends to be negative, it is actually trying to become even bigger. This can
be confirmed by analyzing the relation between the area and the thickness of Counterweight-3 in
Figure A4 where the thickness in all the cases is trying to take higher values. So, if the solution will
be implemented using only one counterweight, it could be interesting to allow a higher limit on the
optimization of this variable, so even better results can be achieved.

Figure A3. Box plots of partial derivatives with respect to each optimization variable when using
one counterweight.

Figure A4. Relation between area and thickness of each cylindrical counterweight when using
only Counterweight-3.

References

1. Martini, A.; Troncossi, M.; Rivola, A. Elastodynamic effects of mass-balancing: Experimental investigation
of a four-bar linkage. Adv. Mech. Eng. 2013, 2013. [CrossRef]

2. Zhang, J.; McInnes, C.R. Reconfiguration of a four-bar mechanism using phase space connections. Mech. Syst.
Signal Process. 2016, 81, 43–59. [CrossRef]

3. Arakelian, V.; Dahan, M.; Smith, M. A Historical Review of the Evolution of the Theory on Balancing
of Mechanisms. In International Symposium on History of Machines and Mechanisms Proceedings HMM 2000;
Springer: Dordrecht, The Netherlands, 2000; pp. 291–300. [CrossRef]

http://dx.doi.org/10.1155/2013/949457
http://dx.doi.org/10.1016/j.ymssp.2016.03.024
http://dx.doi.org/10.1007/978-94-015-9554-4_33


Appl. Sci. 2019, 9, 4115 25 of 26

4. Arakelian, V.H.; Smith, M.R. Shaking Force and Shaking Moment Balancing of Mechanisms: A Historical
Review With New Examples. J. Mech. Des. 2005, 127, 334. [CrossRef]

5. Lowen, G.; Tepper, F.; Berkof, R. Balancing of linkages—An update. Mech. Mach. Theory 1983, 18, 213–220.
[CrossRef]

6. Arakelian, V.; Briot, S. Balancing of Linkages and Robot Manipulators; Mechanisms and Machine Science;
Springer International Publishing: Cham, Switzerland, 2015; Volume 27, pp. XVI, 291. [CrossRef]

7. De Jalón, J.G. Twenty-five years of natural coordinates. Multibody Syst. Dyn. 2007, 18, 15–33. [CrossRef]
8. García de Jalón, J.; Serna, M.A.; Avilés, R. Computer method for kinematic analysis of lower-pair

mechanisms—I velocities and accelerations. Mech. Mach. Theory 1981, 16, 543–556. [CrossRef]
9. De Jalon, J.G.; Bayo, E. Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge;

Springer: New York, NY, USA 1994; p. 440.
10. Chaudhary, K.; Chaudhary, H. Optimal dynamic balancing and shape synthesis of links in planar

mechanisms. Mech. Mach. Theory 2015, 93, 127–146. [CrossRef]
11. Haines, R. Minimum RMS shaking moment or driving torque of a force-balanced 4-bar linkage using feasible

counterweights. Mech. Mach. Theory 1981, 16, 185–195. [CrossRef]
12. Elliott, J.L.; Tesar, D. The Theory of Torque, Shaking Force, and Shaking Moment Balancing of Four Link

Mechanisms. J. Eng. Ind. 1977, 99, 715. [CrossRef]
13. Wiederrich, J.L.; Roth, B. Momentum Balancing of Four-Bar Linkages. J. Eng. Ind. 1976, 98, 1289–1295.

[CrossRef]
14. Tepper, F.R.; Lowen, G.G. Shaking Force Optimization of Four-Bar Linkage With Adjustable Constraints on

Ground Bearing Forces. J. Eng. Ind. 1975, 97, 643–651. [CrossRef]
15. Lowen, G.G.; Berkof, R.S. Determination of Force-Balanced Four-Bar Linkages With Optimum Shaking

Moment Characteristics. J. Eng. Ind. 1971, 93, 39–46. [CrossRef]
16. Berkof, R.S.; Lowen, G.G. Theory of Shaking Moment Optimization of Force-Balanced Four-Bar Linkages.

J. Eng. Ind. 1971, 93, 53–60. [CrossRef]
17. Farmani, M.R.; Jaamialahmadi, A.; Babaie, M. Multiobjective optimization for force and moment balance of

a four-bar linkage using evolutionary algorithms. J. Mech. Sci. Technol. 2011, 25, 2971–2977. [CrossRef]
18. Zamuda, A.; Brest, J.; Boskovic, B.; Zumer, V. Differential evolution for multiobjective optimization with

self adaptation. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore,
25–28 September 2007; pp. 3617–3624. [CrossRef]
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