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1 Computer Systems Department, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia;
tome.eftimov@ijs.si (T.E.); peter.korosec@ijs.si (P.K.); barbara.korousic@ijs.si (B.K.S.)

2 Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
3 School of Engineering and Management, University of Nova Gorica, Vipavska 13,

5000 Nova Gorica, Slovenia
* Correspondence: gordana.ispirova@ijs.si; Tel.: +386-14773519

Received: 19 August 2019; Accepted: 26 September 2019; Published: 1 October 2019
����������
�������

Abstract: This paper addresses the problem of missing data in food composition databases (FCDBs).
The missing data can be either for selected foods or for specific components only. Most often,
the problem is solved by human experts subjectively borrowing data from other FCDBs, for data
estimation or imputation. Such an approach is not only time-consuming but may also lead to wrong
decisions as the value of certain components in certain foods may vary from database to database
due to differences in analytical methods. To ease missing-data borrowing and increase the quality of
missing-data selection, we propose a new computer-based methodology, named MIGHT - Missing
Nutrient Value Imputation UsinG Null Hypothesis Testing, that enables optimal selection of missing
data from different FCDBs. The evaluation on a subset of European FCDBs, available through
EuroFIR and complied with the Food data structure and format standard BS EN 16104 published
in 2012, proves that, in more than 80% of selected cases, MIGHT gives more accurate results than
techniques currently applied for missing value imputation in FCDBs. MIGHT deals with missing data
in FCDBs by introducing rules for missing data imputation based on the idea that proper statistical
analysis can decrease the error of data borrowing.

Keywords: food composition databases; nutrient values; missing data; missing-data imputation; data
borrowing; null hypothesis testing

1. Introduction

In food chemistry, chemical properties and interactions of food components are studied. Many
chemical components, such as nutrients, occur in foods naturally and most of them contribute to
balanced diet and eating pleasure. Components, called functional chemicals, play an important role
in food production and preservation. Moreover, they can be effectively applied in the treatment and
prevention of diseases. In foods, however, there are also chemicals with toxicological properties,
some of which can cause harmful effects in humans and animals. Although it is very important to
know which chemicals are built in foods, most countries still lack complete sets of food composition
data (FCD). FCD is presented as a detailed set of information about the chemical components of
foods, providing values for energy, nutrients and other bioactive components of foods (basic data
elements), as well as food classifiers and descriptors (metadata). This type of data is available in
Food Composition Databases (FCDBs) [1]. One of the most well-known applications of FCD is the
nutrient-intake assessment at individual, regional, national or international level. FCDBs represent
fundamental information resources for Food Science, however, they are also used in other public-health
domains since the food industry, legislation and consumers all need and/or use FCD [2].
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Two of the main limitations of FCDBs are: (i) variability in data between countries [3]; and (ii)
incomplete coverage of foods or nutrients and bioactive components leading to missing data [4,5].
The variability in FCD between countries is a problem that occurs because different FCDBs may use
different metadata to describe the same data. This problem can be solved by data harmonization, which
is the process of bringing together data of varying file formats, naming conventions, and columns,
and transforming them into one cohesive dataset, or in this case matching the same food items or
nutrient descriptions from different FCDBs considering their matadata (i.e., classifiers and descriptors).
Recently, normalization of short text segments (e.g., names or descriptions of nutrients) was proposed
using two approaches: (i) standard text similarity measures; and (ii) a modified version of Part of
Speech (POS) tagging probability weighted method [6–10].

The second limitation are missing data, which distort the integrity of the database. Missing FCD
must never be assigned a zero value [5], which is a rule for FCDBs because a nutrient value can be
zero [1]. A good quality FCDB should aim towards minimizing the amount of missing data. When
there are no analytical values for missing FCD, the most used approach for resolving missing data is
borrowing data from tables and databases from other countries, where a citation back to the original
source may or may not be possible [11].

The FCDBs currently available in Europe and worldwide contain compositional values of differing
quality, reflecting the various ways in which they were obtained [12–14]. They differ in basic data
elements that are available, the metadata used to describe them, and in the quantity of the FCD that is
held in the database. However, if FCD is intended to be used internationally, it must be of consistent
and compatible quality, so that it can be used collaboratively between individuals and countries.

In FCDBs, data types and sources are identified by codes as done in many countries and by
references [12–14]. These include, in order of preference [15]:

• Original analytical values: The data are taken from published literature or unpublished laboratory
reports, whether or not prepared explicitly for the purpose of compiling the database.

• Estimated values: Estimates are derived from analytical values obtained for a similar food or for
another form of the same food.

• Calculated values: Data are derived from recipes, calculated from the nutrient contents of the
ingredients and corrected for preparation factors [16].

• Borrowed values: The data are taken from other tables and databases.

Since the food supply has evolved, and the demand for nutritional and bio-active components
grows, relying only on chemical analysis when compiling FCDBs has become almost impossible.
According to current “rules”, or rather suggestions, missing values should be borrowed from a FCDB,
which contains the foods and nutrients of interest and/or is compiled from geographically similar
countries [17]. In practice, the borrowing of data for imputation of missing values is performed either
using a FCDB well known for its data quality or by using several FCDBs and using either an average
or median value of their values [18]. In our case, the average is the arithmetic mean, which is the sum
of a collection of data values divided by the number of data values in the collection. The median is the
value separating the higher half from the lower half of a data sample. For example, for a dataset, it may
be thought of as the “middle” value [19]. Using these approaches, however, can lead to inaccuracies.
Foods also exhibit variations in composition, and the composition of any given single food sample
cannot be accurately predicted. The prediction accuracy is also constrained by how data are maintained
in a FCDB (as averages or best estimates, for example). Clearly, to increase the quality of FCDBs, there
is a need for methods that can be used either for imputation or calculation of missing FCD.

In this paper, we present a semi-automatic computer-supported methodology for borrowing
missing nutrient values by generating rules using null hypothesis testing. The end result for a missing
value of a specific nutrient in a food from a given country is an average or median value from the
values of the set of countries whose FCDBs are eligible for borrowing. Several experiments were
conducted and the experimental results demonstrate that our methodology provides high accuracy
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when compared with the most commonly used approaches. The rest of the paper is structured
as follows. In Section 2, we give explanation of the data for the experiments and the background
literature for the methodology. The experimental results are presented in Section 3. A comparison with
state-of-the art methodologies, time efficiency as well as further discussions about the methodology
are given in Section 4. Finally, in Section 5, a summarization of the importance of this methodology
and directions for future work are presented.

2. Materials and Methods

This section contains the data used in our experiments, how it is obtained, and the format in
which it is used. After this subsection, the background that is needed to understand the methodology
in this paper is presented. Here, we give an overview of the current techniques for borrowing FCD,
and the current state-of-the-art approaches for obtaining missing values. The final subsection is a
detailed explanation of the methodology itself.

2.1. Food Composition Data

There are several international bodies, organizations and projects working on food composition.
One of them is EuroFIR (European Food Information Resource Network) AISBL, which is an
international, non-profit association under the Belgian law [20]. Its purpose is to develop, publish
and exploit food composition information and promote international cooperation and harmonization
of standards to improve data quality, storage and access. One of the aims of the EuroFIR Network
of Excellence [20] was to develop the standard “Food data structure and format standard” BS EN
16104:2012 [21], which can be used as a framework for compiling and disseminating FCD that is
comparable and unambiguous with respect to the identity and description of foods, components
and compositional values [20,22]. Each EuroFIR member country has compiled one or more national
FCDBs that are published online and are accessible by the public through the FoodEXplorer tool [23].

For the purpose of this study, we chose to collect data from the national FCDBs of 10 countries:
Italy (IT), United Kingdom (UK), Switzerland (CH), Sweden (SE), Slovenia (SI), Belgium (BE), Denmark
(DK), Netherlands (NL), United States of America (USA), and Canada (CA). In the process of collecting,
we also considered the following key points:

1. Choosing method type: As mentioned, there are several types of FCD with differing quality.
Terms for documenting the method used to obtain a compositional value, including analysis,
calculation and imputation, are presented in the EuroFIR Method Type Thesaurus [24]. In the
thesaurus, the terms are organized in a hierarchy and for each method a short abbreviation with a
full description used for classification is given. Since we are proposing a method for borrowing
data for imputation of missing FCD between countries, it is also important that the data are
relevant and genuine, therefore, we only included data whose method type is listed as:

• “A” (Analytical result/s): The value is based on an analytical result or a statistic of multiple
measurements of the same food sample (replicates).

• “AG” (Analytical, generic): The value is known to be analytical, but no further information
on the nature of analysis is available, whether the value derives from the same or different
statistical distributions.

2. Choosing food groups: For this study, we decided to include the food groups: “Fruits”,
“Vegetables” and “Meats”.

3. Choosing foods that belong to the selected food groups: In this stage of the study, we decided
to include only simple, raw foods for the convenience of easily selecting the same foods from
different countries, and because, generally, there more available data worldwide for simple,
raw foods.
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4. Choosing nutrients: This step is highly dependent on the available data. Given the selections
from the previous steps, we chose nutrients with the most data available. For the evaluation of
the proposed methodology, for the food group “Fruits”, the nutrients chosen are Sodium (Na) and
Potassium (K); for the food group “Vegetables”, Sodium (Na); and for the food group “Meats’,
Protein (PROT).

5. Choosing countries: The last step is to manually choose specific countries for each of the selected
food groups. For this purpose, we constructed a binary matrix for each nutrient in each food group.
The matrix rows correspond to the selected foods belonging to one food group, the columns are
the identification numbers of the national FCDBs in EuroFIR FCDB, “1” represents the presence
and “0” the absence of the required nutrient value. Using this matrix, we can find the countries,
i.e., the national FCDBs for which the methodology can be evaluated. After the data collection
process, before assembling it all in one table, the last step is to ensure that all the values are in
the same measure unit; if not, the needed unit conversions are made. Table 1 presents a binary
matrix for the nutrient Potassium (K) in the food group “Fruits”. The end result is a data table
that contains values of the selected nutrient in the foods from the corresponding food group.
In Table 2, a general representation of the data used in our experiments is given, where m is the
number of selected countries and n the number of considered foods per food group.

Table 1. Binary matrix for selecting which national FCDBs to include.

Food NO FR IT UK CH SE ES BE DK USA CA SI NL CZ AU PT

Apple 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0
Banana 0 1 1 1 1 1 0 1 1 1 0 0 1 0 1 0

Blueberry 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1
Cherry 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

Table 2. Generalized for values from one nutrient in several foods from several FCDBs.

Food/FCDB Country1 Country2 Country3 ... Countrym

Food1 Value11 Value12 Value13 ... Value1m
Food2 Value21 Value22 Value23 ... Value2m
Food3 Value31 Value32 Value33 ... Value3m

... ... ... ... ... ...

Foodn Valuen1 Valuen2 Valuen3 ... Valuenm

2.2. Related Work

This subsection starts with the traditional approaches for borrowing data for imputation of
missing FCD in the context of FCDBs, and continues with a chosen state-of-the-art methodology for
missing value imputation in general.

2.2.1. Traditional Approaches for Borrowing FCD

Although food composition data may appear to be simply a collection of foods with the nutrients
listed alongside them, to ensure that the values reported are used correctly, there are actually a number
of considerations that users should take into account:

• variability of the composition of a food item;
• misunderstanding of nutrient definitions;
• use of an incorrect conversion factor; and
• use of a nutrient interchangeably with its sub-types.

When using FCD on its own, the limitations that should be considered include the inherent
variability in the composition of a food item, the number of food items and range of nutrients covered
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by a database. Errors that may be associated with using a FCDB include: an understanding of nutrient
definitions such as available carbohydrate (excluding fiber) versus total carbohydrates (including
fiber) and calculation errors for fatty acid values. This commonly includes the use of an incorrect
conversion factor, e.g., the use of fatty acids per 100 g of total fatty acids instead of per 100 g of the
food item, or calculation of vitamin A intake without considering the pro-vitamin A compounds
(alphacarotene, beta-carotene, and betacryptoxanthin). Similarly, interchangeable use of vitamin E
and alpha-tocopherol is another common error (vitamin E actually includes alpha-, beta-, delta- and
gamma-tocopherols and tocotrienols).

Nowadays, many countries have their own national FCDBs that are readily available online [20].
When using the food composition data of another country, there are few things that we must be
observant of:

• differing cultivators, soils, climates and agricultural practices;
• differing food production and processing practices;
• variation in the composition of recipe ingredients with the same name; and
• variation in food products available.

Each of these factors can have significant impact on the micro-nutrient composition of food items.
FCD may differ between countries as a result of different things such as varied definitions of nutrients,
analytical methods (e.g., fiber), nutrient calculations (e.g., energy), the reference quantity of foods
contained in the database (per 100 g vs. per serving) and the nutrient values that are available for
the foods. The treatment of missing values may vary between countries despite efforts to adjust the
practices. When selecting another FCDB to borrow values from, the following must be taken into
account [17,18]:

1. The FCDB should contain up-to-date FCD.
2. The FCDB should be of high quality (foods and components are well defined and described, using

appropriate analytical methods and nutrient definitions, a variety of foods types are provided,
e.g., raw, cooked, recipes, brand name, fortified, and supplement).

3. The FCDB should contain foods and nutrients of interest.
4. The FCDB should come from a country that is similar in terms of geographic location, agriculture,

food production, recipes and food processing.

Often, these rules are not taken into account, simply because the FCDB that fulfills the first, second
and fourth rule does not fulfill the third rule, i.e., it does not contain the nutrients of interest, or simply
one cannot find a database that fulfills the first three and it is in similar geographic location (the fourth
rule). Because these “rules” are demanding and often without a possible solution, the users choose
other ways of finding an eligible FCDB for borrowing. The most common solution is borrowing from
the FCDB of one of the neighboring countries, or just relaying on a FCDB with a big span of data.

As a solution, users also choose to calculate average of values from multiple countries, and as
of today this is considered to be the most appropriate and accurate method for borrowing data for
imputation of missing values.

2.2.2. Non-Negative Matrix Factorization

Recently, non-negative matrix factorization (NMF) has been proven to be useful for missing value
imputation in many applications in the environment, pattern recognition, multimedia, text mining,
and DNA gene expressions. The roots of NMF can be traced back to the 1970s [25] and was initiated
and studied extensively by Paatero and Tapper [26].

NMF [27,28] is a group of algorithms in multivariate analysis and linear algebra where a matrix
V is factorized into two matrices W and H, where all three matrices have no negative elements.
This property of non-negativity makes the resulting matrices easy to inspect.
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Non-negative matrix factorization (NMF) has previously been shown to be a useful decomposition
for multivariate data. The authors of [29] interpreted the factorization in a new way and used it to
generate missing attributes from test data. They provided a joint optimization scheme for the missing
attributes as well as the NMF factors. In addition, they proved the monotonic convergence of their
algorithms, and presented classification results for cases with missing attributes.

2.3. MIGHT—Missing Nutrient Value Imputation Using Null Hypothesis Testing

Working with FCDBs has its downsides. As analytical FCD is very valuable, relevant, difficult
and expensive to obtain, and missing values are a very common problem in general in FCBDs, it is
evident that in our case we will be working with small datasets. As we are working with food groups,
i.e., selecting foods that belong to a specific food group, an important part here is to note that each
set of values formed for one food group must consist of a minimum number of foods n. This implies
finding existing, non-null values for one nutrient in n foods that belong to a certain food group where
all values are type “A” (Analytical result/s) or “AG” (Analytical, generic). To find the minimum
number n, we must go further with our methodology.

The idea of hypothesis testing used with biological and chemical data is presented in [30,31].
Modeling based on null hypothesis testing has been previously used in a lot of application in the area
of economics and information systems [32]. Alongside effect size, confidence intervals, and p-values
are part from frequentist statistics, albeit with increasing movements towards Bayesian approaches, for
much of the health sciences. MIGHT follows the idea of frequentist statistics and involves statistically
comparing values from different FCDBs, and based on the statistical significance between them creating
rules for borrowing. One common approach for making a statistical comparison is null hypothesis
testing. To perform null hypothesis testing, the number of instances, n, in the datasets should satisfy a
requirement for a minimum sample size, r, for an appropriate statistical test. This implies that n ≥ r.

Since we are working with small datasets, to build more robust models, we decided on leaving
one instance out, then building models for the remaining instances, and at the end aggregating all
the models to obtain the final rules for imputation. To achieve this, we require an additional instance:
n ≥ r + 1. Lastly, because this methodology needs to be tested on new, unseen instances, we require
one more instance in our final set: n ≥ r + 2. To generate rules for imputation between countries, the
number of countries, m, involved in the comparison should be m ≥ 3. For example, if we have only two
countries, where one should borrow from the other, the user does not have any option for imputation,
so we need at least three. This also comes from the fact that, using the traditional approaches, in most
cases, users calculate either average or median from several countries.

The starting point is a dataset such as the one presented in Table 2, with the restrictions of
n ≥ r + 2 and m ≥ 3. Before an appropriate statistical test is applied, some assumptions (i.e.,
conditions) must be checked. The most common assumptions checked are independence, normality of
the data, and homoscedasticity of the variances [33]. In probability theory, two events are independent
(i.e., statistically or stochastically independent) if the occurrence of one does not affect the probability of
occurrence of the other. Similarly, two random variables are independent if the realization of one does
not affect the probability distribution of the other. A random variable with Gaussian distribution is
said to be normally distributed with some average value, µ, and standard deviation, σ. Normality tests
assess the likelihood that the given dataset comes from a normal distribution, which can be checked by
using one of the following tests: Kolmogorov–Smirnov [34], Anderson–Darling [35], Shapiro–Wilk [36],
and D’Agostino–Pearson [37] test. The assumption of homogeneity of variance is that the variance
within each of the datasets is equal. To test for homogeneity of variance, several statistical tests exist,
such as Cochran’s test [38], Levene’s test [39], and Barlett’s test [40]. The most common assessment
for homogeneity of variance is the Levene’s test, which uses an F-test to test the null hypothesis
that the variance is equal across groups (i.e., datasets). With regard to obtained results for checking
of assumptions, an appropriate statistical test must be selected. Each statistical test has its own
required assumptions. Parametric tests have been commonly used in analyses, however, as a general
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rule, a non-parametric test is less restrictive than a parametric one, although it is less robust than a
parametric when data are well conditioned. For example, if a violation of homogeneity of variance
occurs, it is likely that conducting the non-parametric equivalent of the analysis is more appropriate.

After selecting the appropriate statistical test, we then test the null hypothesis H0. In our case:

• H0: There is no effect/difference between the separate datasets.
• H1: There is an effect/difference between the separate datasets.

Each statistical test has a test statistic, which is a mathematical formula used to obtain a value
using the collected data samples. One way is that this value is then compared with a value from a
table that contains information about the distribution of the test statistic. These tables contain extreme
values (critical values) of the test statistic that are highly unlikely to occur if the null hypothesis is
true (depending of the type I error rate of the test). Before obtaining a value from such a table, we
first need to specify a level of significance (α). This value is a probability threshold below which the
null hypothesis will be rejected. In [41], the authors detailed the selection of the level of significance
(α), and the relation between α and the sample size. From the work in [42], we can get more details
on the choice of α and its connection with sample size. Instead of using critical values, nowadays, in
frequentist statistics, a p-value (i.e., probability value or asymptotic significance) can be used, which
is the probability for a given statistical model that, when the null hypothesis is true, the statistical
summary would be greater or equal to the actual observed results. A smaller p-value indicates that the
null hypothesis is rejected, while a larger p-value indicates that the null hypothesis is not rejected.

After applying the appropriate statistical test, we obtain the result of testing the null hypothesis,
i.e., the p-value, which is then compared with the chosen significance level α to see if the null hypothesis
H0 is rejected (p < α) or not rejected (p ≥ α). If H0 is rejected that means that the result is statistically
significant, thus it is important from which country (or countries) the value is borrowed. Once the
test rejects the null hypothesis, the detection of the specific differences among the countries can be
made with the application of post-hoc statistical procedures, which are methods used for specifically
comparing a country that is a subject of imputation with two or more countries. The post-hoc tests
differ in the way they adjust the value in order to compensate for multiple comparisons [43]. The
results obtained from the post-hoc test are again compared with the significance level, α, and based on
that a matrix of ones and zeros is generated, which represents the rules for borrowing:

• “0”: H0 is not rejected, indicating that the datasets can borrow interchangeably.
• “1”: H0 is rejected, meaning that the datasets cannot borrow from each other.

Figure 1 presents a flowchart of the methodology.
If we have n instances (problems), we repeat the following steps n times:

1. Leave one instance for testing.
2. On the n− 1 instances repeat n− 1 times:

• Leave one instance out.
• Check conditions for the n− 2 instances left.
• Choose the appropriate omnibus test.
• Check p-value:

– If p ≥ α — the null hypothesis H0 is not rejected, indicating that each country can
borrow from any other;

– If p < α — the null hypothesis H0 is rejected, so we need to continue with the appropriate
post-hoc procedure for the previously selected omnibus test.
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Figure 1. Flowchart of the methodology.
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• Apply appropriate post-hoc test [44], and depending on the type of post-hoc procedure
applied, the methodology is split into two versions:

– MIGHTv1: Apply All vs. all type of post-hoc test (simultaneous) on the set and generate
a matrix with the result values. All vs. all type of post-hoc test is a multiple comparison
type of test, multiplicity or multiple testing problem, which occurs when one considers
a set of statistical inferences simultaneously or infers a subset of parameters selected
based on the observed values [45,46].

– MIGHTv2: Apply One vs. all type of post-hoc test (step-down) n− 2 times and generate
a matrix with the result values. One vs. all type of post-hoc test is a multiple test
procedure of the sequentially rejective type, i.e., hypotheses are rejected one at a time
until no further rejections can be done [47–49].

• Compare every value from the two generated matrices from the post-hoc testing with the
selected significance level α and generate new matrices with rules (separate matrix from the
MIGHTv1 and separate matrix from the MIGHTv2 results). The matrices with rules are filled
in according to:

– If H0 is not rejected, then put “0”.This indicates that from the specific model we have
gained information that country x can borrow from country y.

– If H0 is rejected, then put “1”. This means that from the specific model we have gained
information that country x cannot borrow from country y.

Table 3 gives a representation of these matrices, from which we can see that Country1 cannot
borrow from Country2, and Country2 cannot borrow from Countrym.

Table 3. Example table of matrix with rules obtained from one model, where m is the number of
countries, 0 indicates that according to this model the countries from the specified row and column can
borrow from each other, while 1 indicates the opposite, i.e., they cannot borrow from each other, and /
indicates “Not applicable”.

Country Country1 Country2 ... Countrym

Country1 / 1 ... 0
Country2 1 / ... 1

... ... ... ... ...

Countrym 0 0 ... /

3. Generate two final matrices with rules (one for MIGHTv1 and MIGHTv2) from all the separate
matrices with rules. These matrices are generated according to:

• If all the n-2 matrices have “0” in a certain position, then in the final matrix we put “0”.
• If one or more of the n-2 matrices has “1” in a certain position, then in the final matrix we

put “1”.

An example table of a sum from the rules from all the models is presented in Table 4. Here,
“0” indicates that according to all models the countries from the specified row and column can
borrow from each other, while everything else indicates the opposite, i.e., they cannot borrow
from each other.
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Table 4. Matrix formed from summing the rules from all the models, where m is the number of
countries, n is the number of models, a, b ∈ N, and 0 ≤ a, b ≤ n. For MIGHTv1 a = b, for MIGHTv2
a 6= b.

Country Country1 Country2 ... Countrym

Country1 / n− a ... n− a
Country2 n− b / ... n− a

... ... ... ... ...

Countrym n− b n− b ... /

4. Test the rules on the separated, unseen instance. The final rules are incorporated in metrics for
calculating the missing value of the selected nutrient in any food from the corresponding food
group for any of the given countries (Equations (1) and (2)).

Calculatedaverage = Average
{

values from FCDBs eligible for borrowing
}

(1)

Calculatedmedian = Median
{

values from FCDBs eligible for borrowing
}

(2)

5. Compare the results from the rules with the actual value (Equation (3)).

Error =| Actualvalue − Calculatedvalue | (3)

3. Results

For the evaluation of MIGHT, we used the “scmamp” (Statistical Comparison of Multiple
Algorithms in Multiple Problems) [50] package for the R programming language. The idea is that,
when given a matrix with results of different algorithms for different problems, the package uses
statistical tests and corrections to assess the differences between algorithms, which is the main idea
behind MIGHT, except that we are not dealing with algorithm performances.

We evaluated our methodology using eight different experiments on four different datasets.
For each dataset, to create the rules for borrowing, the methodology uses both MIGHTv1 and MIGHTv2.
After creating the rules for each country, its missing value can be either an average or a median of
the values of the countries that are eligible for borrowing. We also calculate the missing value as an
average or a median from the value from all of the countries that are involved in the borrowing process.
This means not only the countries that are eligible and are results from our methodology. We have
done this for each country on each test instance from the dataset, and, in both scenarios, we calculate
the absolute error between the borrowed value and the true analytical value.

For a better understanding of how the methodology works, we present an example dataset and
present the evaluation process in detail. The selected dataset contains nutrient values collected for
Potassium (K) in foods belonging to the food group “Fruits”. The data collection process is as follows:

1. Method type is chosen as “A” (Analytical result/s) or “AG” (Analytical, generic).
2. Food group is “Fruits”.
3. In this example, the food group includes only raw foods, so the separate foods, i.e., fruits,

are chosen aiming towards as much data as possible.
4. The nutrient is Potassium (K), since it is common nutrient in fruit [51]. At the first stage, we

collected data for 18 foods: apple, banana, blueberry, cantaloupe, cherry, grape, grapefruit, lemon,
mango, melon, orange, peach, pear, pineapple, plum, raspberry, strawberry, and tomato.

5. To choose the countries, a binary matrix is constructed. The rows are all the fruits that we have
data for, and the columns are the identification numbers of the national FCDBs. Although this
step is meant for choosing countries, we are also recursively choosing foods, because there is no
point in keeping foods that have missing data for many countries.
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After collecting the Potassium (K) data for the group “Fruits”, we check that all the data are in the
same measure unit (grams, milligrams, etc.), and if needed conversions are made. In this example,
the dataset consists of data for 16 fruits extracted from 9 national FCDBs, i.e., n = 16 and m = 9.
The next step is to apply our methodology to the data. First, we check the restrictions for the number
of problems and datasets (n ≥ r and m ≥ 3). Since m = 9, the condition for the number of datasets
m ≥ 3 is satisfied. The number r depends on the statistical test used, so in order to find r we first need
to know what kind of statistical test to apply. Before testing the null hypothesis, the three conditions
for choosing the appropriate test must be checked:

1. Independence: In our case, events are the processes used to obtain/measure the values of
Potassium (K) in a fruit. Since we are working with data from different national databases, and
we made sure to only include values measured analytically, the datasets in our example are
independent.

2. Normality is checked using the Shapiro–Wilk test from the “stats” package [36]. The test is applied
to each column of experimental data, i.e., for each dataset separately, resulting in not meeting the
requirement for normality for all columns. After this, there is already one condition that is not
satisfied, which means a non-parametric test must be used.

3. Checking for homoscedasticity at this point does not bring any contribution to the result,
but since this is not the only experiment conducted for evaluation it must be mentioned.
The homoscedasticity is checked by applying the Levene’s test from the “lawstat” package [52].
The result from the test indicates that the condition for homoscedasticity is not satisfied.

Since our data do not satisfy the required conditions for the safe use of a parametric test, it is
better to use an analogous non-parametric test. Because the set has more than two columns, we apply
the Friedman test [53]. A requirement for the Friedman test is that the number of problems (in our
case foods) must be greater than 10, so, for our methodology, r > 10 [43] and n = 16, which means
that n ≥ r. Further, we have 16 instances, which means the following is repeated 16 times:

1. One instance is removed for testing.
2. For each of the remaining 15 instances, repeat the following steps 15 times (i.e., perform leave one

out validation):

(a) One instance is removed.
(b) Check conditions for the remaining 14 instances.
(c) Apply Friedman test and obtain p-value.
(d) The p-value is compared with the significance level, which in our case is chosen to be

α = 0.05 [54]. In all of the runs, we obtained a smaller p-value, p < α. As mentioned
above, this indicates that the null hypothesis is rejected, meaning that there is a statistical
significance between the datasets, i.e., between the FCD from the different countries.
Further, to see where this differences come from, we use two different post-hoc procedures,
which makes our methodology branch out into two different versions:

• MIGHTv1: when All vs. all type of post-hoc procedure is applied.
• MIGHTv2: when One vs. all type of post-hoc procedure is applied.

(e) Friedman test post-hoc procedure:

• Nemenyi test [55] is applied as an All vs. all post-hoc procedure for the previously
used Friedman test. The Nemenyi test provides a matrix with p-values for each
pairwise comparison.

• Holm procedure [47] of p-value adjustment is applied nine times, where each time
a different country is selected as a control (One vs. all). The end result is a matrix
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with p-values, where each row corresponds to the results obtained from the Holm
procedure (i.e., the country that represents the row is selected as control country).

(f) Using the p-values obtained in these matrices, for each pairwise comparison we can check
if the null hypothesis is rejected (1), or not rejected (0). If the null hypothesis is rejected,
it means that there is a statistical significance between the FCD, while, if it is not rejected,
it means that there is no statistical significance between the FCD. Table 5 gives an example
of a matrix with rules for one model generated from MIGHTv1. In these tables, we can
see that, for example, for a missing Potassium (K) value in a food from the food group
“Fruits” for the Italian FCDB following the rules of MIGHTv1 we cannot borrow from the
Canadian FCDB and following the rules of MIGHTv2 we cannot borrow from the FCDBs
from Sweden, USA and Canada.

Table 5. Matrix with rules generated from one model form MIGHTv1 for Potassium (K) in foods from
the food group “Fruits”.

Country IT UK CH SE BE DK USA CA NL

IT 0 0 0 0 0 0 0 1 0
UK 0 0 0 0 0 0 0 0 0
CH 0 0 0 0 0 0 0 0 0
SE 0 0 0 0 0 0 0 0 0
BE 0 0 0 0 0 0 0 0 0
DK 0 0 0 0 0 0 0 0 0

USA 0 0 0 0 0 0 0 0 0
CA 1 0 0 0 0 0 0 0 0
NL 0 0 0 0 0 0 0 0 0

(g) The two final matrices with rules are generated by sum the matrices obtained from each
comparison using both versions, respectively. For this example, this type of matrix is
presented in Table 6. In these tables, we can see that, for example, the rule that for a
missing nutrient value of Potassium (K) in a food from the food group “Fruits” from the
Italian FCDB following the rules from MIGHTv1 we cannot borrow from the Canadian
FCDB has appeared in 12 comparisons.

Table 6. Matrix with final rules from MIGHTv1 for Potassium (K) values in foods from the food
group “Fruits”.

Country IT UK CH SE BE DK USA CA NL

IT 0 0 0 0 0 0 0 12 0
UK 0 0 0 0 0 0 0 0 0
CH 0 0 0 0 0 0 0 0 0
SE 0 0 0 0 0 0 0 0 0
BE 0 0 0 0 0 0 0 0 0
DK 0 0 0 0 0 0 0 0 0

USA 10 0 0 0 0 0 0 0 0
CA 12 0 0 0 0 0 0 0 0
NL 0 0 0 0 0 0 0 0 0

3. The final rules from both scenarios are tested on the previously removed instance. As mentioned,
the rules are incorporated in metrics for calculating the missing nutrient value in the selected
food for any of the given countries. The chosen metrics are the median and average, which
are calculated from the values of the FCDBs eligible for borrowing (‘0’ in all models). These
new values are then compared with the true values (analytical values) of the test instances by
calculating the absolute error (Equation (3)).
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Until now, by following the “rules” for borrowing it is not possible to make the right decision
from where to borrow, this is because there is no correct decision, and the most desirable scenario
is to make the best decision for a given situation. The main benefit of using our methodology for
missing value imputation is that the methodology provides countries that are eligible for calculating
the missing value of interest. Using the nutrient values from those countries, descriptive statistics can
be applied for missing value imputation.

To evaluate MIGHT, we compared our results with the averages and medians obtained without
following the rules. In the food group “Fruits”, we predicted the Potassium (K) value for each food
(when it is used for testing) regarding the generated rules, assuming that we have the values from
other countries. The initial step involved calculating the averages and medians of the nutrient values
from all the countries in the study. Next, we calculated the error, i.e., their deviation from the actual
nutrient value, and compared this with the error values obtained using the borrowing rules. From the
nine countries tested for 16 foods, we made 144 predictions.

MIGHTv1 gives better results in 84.0% compared to calculating the nutrient value as an average
from all nine countries (i.e., average with no rules). When we use median instead of average, MIGHTv1
also gives better results (84.7%) versus calculating the nutrient value as a median from all nine countries,
without considering the rules for borrowing. MIGHTv2 provides better results in 66.94% of the cases
compared to calculating the nutrient value as an average without considering the rules, and in 76.0%
of the cases compared to calculating the nutrient value as a median wihout considering the rules. In all
cases better results are measured as smaller absolute error.

The distributions of the absolute error for each version of our methodology and the common
approach using average or median from all of the countries involved in borrowing are presented in
Figures 2 and 3. In the figures, we can see that the distributions of the absolute errors for averages
calculated with MIGHT and regular averages are different. The same is also true for the distributions
of the absolute errors for medians calculated with MIGHT and regular medians. Comparing the
distributions between averages calculated with MIGHT and regular averages (or medians calculated
with MIGHT and regular medians), it becomes obvious that MIGHT provides smaller absolute errors.
In addition, the interquartile range, which is a measure of variability (statistical dispersion), is smaller,
indicating a small variability in the absolute error. This is not the case when using regular averages
or medians.

We selected absolute error for comparison in order to provide a general estimation for the
magnitude of the error, without considering if the value is above or below the true analytical value.
This is done because nutrients are substances used by an organism to survive, grow, and reproduce.
All organisms, including humans, obtain nutrients from the surrounding environment and require
some of the nutrients (i.e., macronutrients, such as fats, carbohydrates, proteins and water) in relatively
large amounts (grams), while other nutrients (i.e., micronutrients, such as vitamins and minerals) are
needed in smaller amounts (milligrams, micrograms or even nanograms).
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Figure 2. Distribution of absolute error of: MIGHTv1 average, regular average, MIGHTv1 median and
regular median calculated for the Potassium (K) content in foods from the food group “Fruits”.
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Figure 3. Distribution of absolute error of: MIGHTv2 average, regular average, MIGHTv2 median and
regular median calculated for the Potassium (K) content in foods from the food group “Fruits”.

Table 7 shows the percentage of cases when MIGHTv1/MIGHTv2 gives a smaller absolute error
than the common approach using either the average or the median from all of the countries. In this
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table, MIGHT with averages is compared to regular averages (measure: average), while MIGHT with
medians is compared to regular medians (measure: median). From these results, it is clear that no
matter the MIGHT version, if the median is used for the eligible countries, the percentage of cases
when the proposed methodology gives a smaller absolute error is higher than the percentage when the
average value from the eligible countries is used. This is expected because it is known that outliers
affect averaging.

Table 7. Percentage of cases when MIGHT gives smaller error than regular averages or medians.

MIGHTv1 MIGHTv2Use Case/Measure Average Median Average Median

Potassium (K) in Fruits 84.0 % 84.7 % 66.9% 76.0%
Sodium (Na) in Fruits 79.9% 88.9% 69.4% 82.6%

Sodium (Na) in Vegetables 82.0% 88.0% 74.0% 78.0%
Protein (PROT) in Meats 87.0% 88.0% 80.9% 82.6%

Because the comparisons presented in Table 7 are made by reporting percentages, we further
investigate if there is a statistical difference between the absolute errors obtained by MIGHTv1,
MIGHTv2 and regular approach using average/median. To perform this, we compare the absolute
errors obtained from the three approaches on the dataset for Potassium (K) in Fruits separately for
three different countries (Italy, UK, and USA). For all comparisons, the assumptions for using the
Friedman test are satisfied and the significance level is set at 0.05 [54]. The obtained p-values are
reported in Table 8, where the comparisons are made between: MIGHTv1 with averages, MIGHTv2
with averages, and regular averages (measure: average); and MIGHTv1 with medians, MIGHTv2 with
medians, and regular medians (measure: median). In the table, we can see that the null hypothesis is
not rejected only in the case when we compare MIGHTv1, MIGHTv2 and regular averages for USA;
in all other cases, the null hypothesis is rejected. Further, to see the specific differences among the
approaches using absolute error, we perform the Nemenyi test as a post-hoc procedure on the data
from the UK. The results are presented in Tables 9 and 10, where we can see that the null hypothesis is
rejected only in the cases when MIGHTv1/v2 is compared to regular averages/medians.

Table 8. Statistical comparison between absolute error obtained from MIGHTv1, MIGHTv2, and
regular averages/medians for three countries by using the Friedman test.

Country/Measure Average Median

Italy 5.82× 10−5 1.14× 10−4

UK 1.36× 10−4 5.02× 10−4

USA 9.90× 10−2 9.90× 10−2

Table 9. Results from Nemenyi post-hoc test for UK obtained by using MIGHTv1 with average,
MIGHTv2 with average, and regular average.

Average MIGHTv1 MIGHTv2 Regular

MIGHTv1 / 5.38× 10−3 2.05× 10−4

MIGHTv2 5.38× 10−3 / 9.89× 10−3

Regular 2.05× 10−4 9.89× 10−3 /
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Table 10. Results from Nemenyi post-hoc test for UK obtained by using MIGHTv1 with median,
MIGHTv2 with median, and regular median.

Median MIGHTv1 MIGHTv2 Regular

MIGHTv1 / 9.82× 10−1 3.08× 10−3

MIGHTv2 9.82× 10−1 / 5.61× 10−3

Regular 3.08× 10−3 5.61× 10−3 /

4. Discussion

To compare our methodology with current state-of-the-art approaches for obtaining missing
values in data tables, we decided to compare MIGHT with NMF. To apply the NMF algorithm we
used the “NNLM” (Non-Negative Linear Models) [56] package for the R programming language. This
implements fast sequential coordinate descent algorithms for non-negative linear regression and NMF.
It is used for fast and versatile NMF. In this case, we used the previous example of Potassium (K)
values in the food group “Fruits”. The algorithm works on the whole set, i.e., table, and can obtain
multiple missing data. To make a fair comparison of the algorithm, we apply it when there is only
one missing data value. The data are looped and in each step of the loop one value is set as “NA”,
which implies a missing value, and then the NMF algorithm is applied on the whole set. The error
is calculated by comparing the obtained value from the algorithm and the actual value. After the
application of the algorithm, the missing value is calculated. At the end of the loop, all the data have
gone through that process and what is left is to compare the calculated values with the actual values
and to calculate the absolute error values for each one. When this has been done, the results from this
method are compared with the results obtained from our methodology.

The results of the comparison are presented in Table 11 when All vs. all post-hoc type procedure
(MIGHTv1) is used, and in Table 12 when One vs. all post-hoc type procedure (MIGHTv2) is used. The
comparison shows that our methodology gives smaller error in around 60% of the cases on average
and wins over the current state-of-the-art methodology for any type of missing values in datasets.
These results are very promising. The NMF has an advantage that it can be applied to a dataset that
has many missing values. Of course, as the number of missing data increases, the precision of the
calculated values will decrease.

Table 11. Percentage of cases when MIGHTv1 gives smaller error than non-negative matrix
factorization.

Use Case/Measure Average Median

Potassium (K) in Fruits 58.4% 57.9%
Sodium (Na) in Fruits 55.8% 52.8%

Sodium (Na) in Vegetables 52.7% 58.0%
Protein (PROT) in Meats 50.9% 52.8%

Table 12. Percentage of cases when MIGHTv2 gives smaller error than non-negative matrix
factorization.

Use Case/Measure Average Median

Potassium (K) in Fruits 58.6% 55.8%
Sodium (Na) in Fruits 59.3% 66.3%

Sodium (Na) in Vegetables 66.0% 69.3%
Protein (PROT) in Meats 59.6% 62.1%

Regarding the time complexity of MIGHT, in Table 13, the execution times for obtaining the rules
for all the use cases are presented. This time was calculated using a computer with a 4-core i5 central
processing unit that runs with a clock rate of 2.6 GHz. The datasets from each use case are with the
following dimensions:
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• Potassium (K) in Fruits — 16× 9;
• Sodium (Na) in Fruits —16× 9;
• Sodium (Na) in Vegetables —15× 9; and
• Protein (PROT) in Meat —13× 9.

Table 13. Execution times for obtaining rules for all use cases.

Use Case Execution Time MIGHTv1 Execution Time MIGHTv2

Potassium (K) in Fruits 4.5 s 4.3 s
Sodium (Na) in Fruits 3.9 s 3.9 s

Sodium (Na) in Vegetables 3.9 s 3.6 s
Protein (PROT) in Meat 2.5 s 3.0 s

In addition, we explored cases where MIGHT gives the greatest absolute error. Such case was
obtained for the use case of Sodium (Na) in Vegetables for the food Spinach. When investigating
why this happens, we found that the root of the problem was the big deviation in the data, which is
presented in Table 14. A big error is bound to happened in such case because of this inconsistency. The
results from MIGHT can be improved if data cleaning approaches are incorporated into the proposed
methodology to produce a methodology that does not require human involvement.

Table 14. Big variations in the data for nutrient values of Sodium (Na) in foods from the food
group “Vegetables”.

Food/Country IT UK CH BE DK SI NL USA CA

Beet root 10 66 58 58 43 58 70 78 77

... ... ... ... ... ... ... ... ... ...
Spinach 100 140 65 105 41 60 13 79 24

5. Conclusions

Focusing on the topic of quality improvement of food composition databases, we present a
methodology which can improve the quality of existing FCDBs. We decided to tackle one of the most
common and quickly growing problems in FCDBs, which is missing food composition data (FCD).
Our proposed methodology, MIGHT, deals with the incomplete coverage of foods or nutrients leading
to missing data by introducing rules for borrowing data for imputation of missing values from other
FCDBs, generated with modeling based on null hypothesis testing.

We explore the idea that proper statistical analysis can decrease the error of borrowing data for
imputation of missing values in FCDBs. The null hypothesis for testing is set to be “There is no effect
difference between the separate datasets”, the datasets being the separate national FCDBs that can
possibly borrow data from each other. On the collected data, adequate statistical analysis are performed
for testing the null hypothesis. After that, based on the post-hoc procedure used, our methodology
goes in two directions: MIGHTv1 uses All vs. all post-hoc procedure and MIGHTv2 uses One vs. all
post-hoc procedure. After the post-hoc procedure application, the rules for borrowing are generated.
These rules are generated as many times as there are instances in the set used for the experiments.
The final rules are a result of summarizing the rules generated by all models. When the final rules are
generated, we introduce measures for calculating the value by using the rules. Our measures of choice
are average and median, because of the fact that current techniques for borrowing data for imputation
of missing FCD most commonly involve these two measures for calculating the nutrient value that has
to be borrowed. The end result for a missing value of a specific nutrient in a food from a given country
is a value obtained from a set of countries whose FCDBs are eligible for borrowing.

For future work, we plan to investigate the properties of the proposed methodology by performing
sensitivity analysis using simulated data with known characteristics. We also plan to extend the
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methodology to work for data imputation of more than one missing value using multivariate statistical
analysis and some modification of the NMF method. On the topic of missing FCD, one of our next
steps is also considering other solutions for missing data—calculating missing data from recipes [16]
or estimating values from a similar food or the same food in different form. In terms of improving
MIGHT, we are planning to work on an extension which will handle situations when more than one
nutrient value is missing, following the idea of non-negative matrix factorization in a combination
with multi-view learning [57,58].
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8. Eftimov, T.; Koroušić Seljak, B. QOL—Quisper Ontology LearninG Using Personalized Dietary Services; JSI
Technical Report; COBISS.SI-ID 29060391; Jožef Stefan Institute: Ljubljana, Slovenia, 2015.
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