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Abstract: Nowadays, more and more online content providers are offering multiple types of data
services. To provide users with a better service experience, Quality of Experience (QoE) has been
widely used in the delivery quality measurement of network services. How to accurately measure the
QoE score for all types of network services has become a meaningful but difficult problem. To solve
this problem, we proposed a unified QoE scoring framework that measures the user experience of
almost all types of network services. The framework first uses a machine learning model (random
forest) to classify network services, then selects different nonlinear expressions based on the type of
service and comprehensively calculates the QoE score through the Quality of Service (QOS) metrics
including transmission delay, packet loss rate, and throughput rate. Experiment results show that
the proposed method has the ability to be applied on almost all the types of network traffic, and it
achieves better QoE assessment accuracy than other works.

Keywords: Quality of Experience; QoE assessment; network traffic classification

1. Introduction

With the growing development of communication and multimedia technology, more and more
people use the Internet to obtain information online, such as browsing the web, listening to music,
watching videos, downloading files, and so on. In this case, understanding and evaluating the network
performance becomes an important task. Traditionally, network operation and maintenance centers
use network technology-centric metrics in terms of quality of service (QoS), such as transmission
delay, packet loss rate, etc., to measure the network quality. However, it has been demonstrated that
the QoS primarily targets at improving the service quality with respect to application-level technical
parameters, which lacks sufficient consideration of the user’s actual perceptions and feelings [1].
To solve this problem, the user-centric measurement of service quality with the notion of quality of
experience (QoE) is introduced, which has drawn much attention in both academia and industry [2–4].
Generally, the assessment of QoE can be done in both subjective and objective ways [5], where
subjective evaluation is usually implemented by questionnaires and rating scales [6], can be treated as
the more direct and reliable way to evaluate QoE scores. However, it is time-consuming, costly, and
inconvenient [7]. Another assessment appraoch of QoE, objective assessment, uses predefined models
to approximate the subjective QoE estimation without human involvement [5].

The existing objective QoE assessment models can be roughly divided into two categories, namely,
signal fidelity based and QoS-based. Generally, playback operations are needed when applying the
signal fidelity methods, but it is difficult in most streaming services. Thus, the signal fidelity methods
cannot be widely applied even if they are highly accurate. In terms of the QoS-based model, the aim is
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to find a mapping relation between QoS and QoE. As QoS is described by the network parameters,
such as network delay, packet loss rate, and network flow throughput rate; once the mapping relation
is built, the QoS-based QoE quantization will be established. Owing to this idea, substantial efforts
have been made by engineers and scholars when exploring the QoS-based model, where some works
have been done for specific types of network service, such as video stream service [8–12], Internet
of Things [13], Instant Messaging [14–16], File Sharing [17], and so on, where proprietary features or
parameters are also used in. In [8], the authors proposed a QoE formulation for encrypted YouTube
video stream, video source quality-oriented factors like video codec, codec profile, video resolution,
bitrate, and video viewing-oriented factors like initial buffering latency, stalling ratio score are both
considered into establishing the QoE equation. Chervenets et al. also proposed a QoE evaluation
model by using relevant QoS parameters for video service [10], where the QoS formula takes into
account the parameters of packet loss, burst level, packet jitter, packet delay, and bandwidth, as well as
the weights for each parameters. In [11], a joint framework of QoS and QoE for video transmission over
wireless multimedia sensor networks (WMSNs) is proposed, which can support QoS in WMSNs with
a lightweight error concealment and utilize the maximum network throughput. The authors of [12]
analyzed the streaming video service performance with both the subjective and objective QoS factors
(network delay, jitter, and packet loss rate) that affect QoE, which is an inspiration in the processes of
both forming QoE model and doing experiments. Li et al. developed a regression equation between
QoE and the principal QoS parameters of IoT applications [13].

It should be pointed out that, in the QoE model based on the features of a particular service, it
cannot be extended to other network services; however, network operation and maintenance centers
often need to ensure that the QoE of all types of network services can be effectively evaluated, thus
they can provide users with a better network experience. Therefore, the QoE evaluation model for a
single specific service type does not meet the needs of the network operation and maintenance center.
To solve this problem, some works have been done on the QoE evaluation algorithms that applicable to
multiple service types [18–24]. In [20], Hsu et al. proposed an implementation of QoS/QoE mapping
in software-defined networks for ISP to moniter the user-perceived QoE after accessing the service. The
authors of [24] also presented some parameteric QoE evaluation for VoIP, online video, FTP services,
etc., where only specific part of network parameters are used for different services, such as transmission
rate factor in VoIP and rate of correctly received data in FTP. In this paper, we proposed a network
traffic classification-based nonlinear mathematical QoE quantization model for universal traffic types,
which can be seen as a QoS-based QoE quantization method. For a network data flow, we first classify
its traffic type by using a machine learning classifier, then extract its QoS metric values into the
corresponding QoE quantization model, after that the QoE score will be obtained. The proposed QoE
model has a nonlinear mapping relation with QoS, which will be less influenced by the “marginal
effect” than other existing linear mapping quantization approaches. In addition, the proposed model
has earned good quantization accuracy and engineering feasibility.

The main contributions of this paper can be listed as follows. (1) An end-to-end QoE score
measurement method is proposed. (2) A machine learning classifier (random forest) is used to
identify the type of network traffic, where the network traffics are categorized into 11 main types,
including on-demand streaming media and live streaming media. (3) More elaborate QoE mathematical
quantization formulae of different types of network traffic are given, the way in which different QoS
metrics affect QoE is fully considered into the QoE formulas.

The rest of this paper is organized as follows. Section 2 shows some preliminaries about QoS
and QoE. In Section 3, we introduce the whole structure of our QoE quantization system, and then the
three key procedures, namely, flow features and QoS metrics extraction, random forest classifier, and
QoE quantization model, are presented. The experiment details including traffic classification results
and QoE quantization results will be given in Section 4. At last, we will summarize the whole paper in
Section 5 and give the conclusions.
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2. Preliminaries

2.1. Quality of Service (QoS)

QoS was firstly defined by ITU (International Telecommunication Union) in 1994 as a
comprehensive measurement of a service’s performance in mobile telecommunication, computer
networks, or other digital signal transmission systems. QoS mechanism provides different priorities
to different applications, network sessions, or users to guarantee a certain level of performance to
a data flow. Most commercial multimedia service providers have applied QoS-oriented optimizing
method on effective data flow delivering through resource (bandwidth, throughput, etc.)-limited
network, especially for real-time multimedia applications such as IPTV [25], VoIP, online meeting, and
multiplayer online games.

QoS mechanism generally uses numeric scores to quantify the network transmission quality
of services, which is referred as QoS score. QoS score is usually valued by some related aspects of
the network service, like transmission delay, packet loss rate, throughput, network jitter, resource
availability, etc. [26]. Typically, a general assessment model is designed as

QoS =
N

∑
k=1

ωk · fk(xk) (1)

where xk is a network influencing factor, N denotes the number of network influencing factors, ωk is
their corresponding weight, and fk(·) represents a mapping function.

In the literature, the mapping function is a linear function; however, the linear mapping method
ignores the “marginal effect” of some network parameters, which, in fact, cannot fully describe the
relation between the network parameters and QoS score; for example, an extreme case, assuming
that a certain kind of service is less sensitive to the network transmission delay, namely, it has a
relatively small weight in influencing QoS score, and we further assume the network packet loss rate
is 100%, which means packet loss will happen with a probability of 100%, with the throughput rate of
100 Mbps. It is clear that the aforementioned network will fail to deliver any packet, and theoretically
the QoS scores will rise with the timeline, but unfortunately, a linear mapping function cannot indicate
such trend.

2.2. Quality of Experience (QoE)

QoE refers to the user’s assessment of the network service experience under the overall network
environment, which is a vital way for content providers and operators to evaluate and improve their
service. Generally, we use subjective evaluation–MOS (Mean Opinion Score) to quantify QoE; MOS
denotes the levels of experience and can be represented by a single number for evaluation in the range
of 1 to 5, as in Table 1.

Table 1. Mean opinion score (MOS) scoring.

Experience Excellent Good Fair Poor Bad

Score 5 4 3 2 1

However, obtaining QoE by subjective evaluation method is complex, as well as time-consuming
and costly; therefore, realization of real-time quality monitoring is difficult. In order to overcome these
difficulties, a series of objective evaluation methods are proposed, via some objective key performance
indicators (KPIs) of network service. Remember that the QoE itself is a subjective perceptual score, so
one can barely replace it with objective system attributes, directly. What we can do is to describe QoE
to a certain degree, with a suitable mapping between objective parameters and QoE.
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2.3. Random Forest Classifier

In general, random forest can be seen as a set of unpruned inference trees, who together will
vote for the final decision in classification tasks, namely, “majority vote”. Assume a training dataset
consisting of N samples with M features in full dimension. Each inference tree in random forest (RF)
grows with n(n < N) bootstrap samples randomly selected from the same dataset, which can be
described as random variable selection; note that only n training samples randomly selected from the
dataset is used to build a single tree. Due to the two selection randomness of both the training sample
and feature subsets and the advantage of the ensemble learning method, random forest obtains the
capability of avoiding the problem of overfitting, high noise immunity, and outstanding computational
accuracy. Furthermore, RF can also achieve extremely speedy computation on a parallel architecture,
which allows each inference tree to run independently on a CPU core. Because of the excellent
classification performance, random forest classifier has been widely used in various applications
and tasks.

3. Proposed Method

The proposed method of QoE score measurement, presented in Figure 1, can be divided into
three main steps, namely, flow features and QoS metrics extraction, flow traffic classification, and QoE
quantization. The features are selected to describe the flow behavior and feed into the “Machine
Learning Model” for traffic type classification, QoS metrics (such as time delay, loss rate, and
throughput rate) are used in the “QoE Quantization Model” to calculate the QoE score for a network
flow with the traffic type identified.

Figure 1. System work flow of our proposed method.

3.1. Flow Features and QoS Metrics Extraction

The network flow features, as shown in Table 2, are extracted as the input of machine learning
model, and further labeled to train or validate the model, which can be summarized as the
following steps.

(1) Connect users’ terminal devices (smart phones and tablets) to the wireless network server; here,
we use the Wi-Fi hotspot.

(2) Run the first target APP (application) on the users’ terminal devices, and start to capture the
network packet data.

(3) After a period, e.g., 3 min, restore the captured packet data of the first kind of APP, let users stop
running the current APP and open another, collect packet data of the next APP, and repeat such
process on each APP one by one until the packet data collection and storage are completed.

(4) Extract the data features of each kind of APP from its captured data flow.
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(5) Combine the features data of each APP together, as a feature dataset, and divide it into two
sub-datasets: training dataset and test dataset.

(6) Label the training dataset.
(7) Train the machine learning model with training dataset, and then verify its accuracy with

test dataset.

Table 2. Selected features for our proposed random forest-based classification model.

Feature Category Description Number of Feature

Packets bidirectional packet number 2
Bytes bidirectional Max, Min, Mean, and Var of packet bytes 8

Inter-Arrival Time bidirectional Max, Min, Mean, and Var of inter-arrival time 8

Total 18

3.2. QoE Quantization Model

Here, we capture ground truth of < QoS metrics : QoE > data to estimate the coefficients of the
QoE quantization model (such as Equations (5) and (7)) of different services, which can be described
as a QoE model estimation experiment taking the following steps.

(1) Connect user terminal devices to the wireless network (the Wi-Fi hotspot).
(2) Generate ~90–100 different network environments by varying network parameters

(DL, LR, and TH) at the Wi-Fi server terminal, where DL, LR, and TH denote the packet delay,
loss rate, and flow throughput rate, respectively.

(3) Collect the QoS data and its corresponding MOS score under different environment, which will
then be used as the training/test data and labels.

(4) Also, here, we need to divide the QoS data into training subset and test dataset without overlap,
so the test dataset can help to check and improve model accuracy.

(5) Label the QoS training dataset and estimate the coefficients through machine learning algorithm.
(6) Test model accuracy and update the coefficients into a certain extent that meet the

practical demand.

To solve the drawback that mentioned in Section 2.2 of the linear mapping function fk (·),
we consider the relations between QoS and network parameters separately.

For the network packet delay, DL,

QoS(DL) = a · exp(b · DL) + φ1 (2)

For the packet loss rate, LR,

QoS(LR) =
c

LR + d
+ φ2 (3)

And for the flow throughput rate, TH,

QoS(TH) = p · log(TH) + φ3 (4)

After merging and combining the three influencing factors, we get the QoS expression as follows,

QoS = QoS(DL) + QoS(LR) + QoS(TH)

= a · exp(b · DL) +
c

LR + d
+ p · log(TH) + q (5)

where DL, LR, and TH denote the transmission delay, packet loss rate, and data throughput rate,
respectively. q = φ1 + φ2 + φ3 and the parameters a, b, c, d, p, q need to be determined latter for different
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types of network services. Markus et al. [27] has demonstrated that when the current QoE value is
high, a tiny perturbation in QoS can cause a significant fluctuation, whereas when the current QoE
value is low, even a significant change pales; the relation can be described with a formula as follows,

∂QoE
∂QoS

= −(QoE− γ) (6)

The solution of the above differential formula is

QoE = 〈α · exp(−β ·QoS) + γ〉 (7)

where 〈·〉 is the rounding function, α > 0, β > 0 also varies in different types of network traffic,
i.e., on-demand video, on-demand audio, live video, live audio, etc. Using Equations (5) and (7), we
establish the mathematical formulations between the values of QoE and QoS metrics (DL, LR, TH).

3.3. Determining the Model Parameters

To describe the QoE with mathematical formulas, function fitting methods, such as the least
square method and nonuniform rational basis spline (NURBS) fitting method, are usually used
to determine the hyperparameter in the formulas. These function fitting methods work well on
continuous-value data sets. However, it should be noted that MOS-based QoE scores are discrete
integer values in the range of 1 to 5, directly applying these conventional fitting methods on QoE
task may cause high computation error. To solve this issue, in this paper, we propose an adaptive
hyperparameter calculation algorithm inspired by artificial neural network training method.

Let Ω be the dataset with N samples consists of the network QoS metrics < DLi, LRi, THi > and
its labeled QoE score QoEi, i = 1, 2, ..., N.

According to (7), we define continuous-value variable

S = α · exp(−β ·QoS) + γ (8)

where S̄, S denotes the upper rounding and down rounding function of S. With < DLi, LRi, THi >,
we can calculate the corresponding values of Si, S̄i and Si.

Then, define the predicted output vector Oi = [oi,1, oi,2, oi,3, oi,4, oi,5], where oS̄i
= S̄i − S, oSi

=

S− S, and the rest of the elements of O are set as 0. Further, define the target output vector Ti =

[ti,1, ti,2, ti,3, ti,4, ti,5] where ti,QoEi = 1 and the other elements of T are also set as 0. To set an example,
for predicted output S = 2.4, and its target output QoEi = 3, we have S̄ = 3, S = 2, then the predicted
output vector O = [0, 0.4, 0.6, 0, 0] and the target output vector T = [0, 0, 1, 0, 0].

Define the output error using cross entropy and L2 regularization error:

lossi = −
5

∑
k=1

(
ti,k log oi,k + (1− ti,k) log (1− oi,k)

)
+ l2 ·∑

k
Θ2

k (9)

where l2 is the regularization factor and Θ denotes the set of all the hyperparameters.
Calculating the gradient of lossi to model hyperparameters, we have

∂lossi
∂α

=
∂lossi
∂Oi

· ∂Oi
∂Si
· ∂Si

∂α
= −

5

∑
k=1

(( ti,k

oi,k
−

1− ti,k

1− oi,k

)∂oi,k

∂Si
· exp(−β ·QoSi)

)
(10)

Let gi,k =
( ti,k

oi,k
− 1−ti,k

1−oi,k

) ∂oi,k
∂Si

, similarly, we can derive
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∂lossi
∂β

=
∂lossi
∂Oi

· ∂Oi
∂Si
· ∂Si

∂β
=

5

∑
k=1

(
gi,k · αQoSi exp(−β ·QoSi)

)
∂lossi

∂γ
=

∂lossi
∂Oi

· ∂Oi
∂Si
· ∂Si

∂γ
= −

5

∑
k=1

(
gi,k

)
∂lossi

∂a
=

∂lossi
∂Oi

· ∂Oi
∂Si
· ∂Si

∂QoSi
· ∂QoSi

∂a
=

5

∑
k=1

(
gi,k · αβ exp(−β ·QoSi + b · DLi)

)
∂lossi

∂b
=

∂lossi
∂Oi

· ∂Oi
∂Si
· ∂Si

∂QoSi
· ∂QoSi

∂b
=

5

∑
k=1

(
gi,k · αβa · DLi exp(−β ·QoSi + b · DLi)

)
∂lossi

∂c
=

∂lossi
∂Oi

· ∂Oi
∂Si
· ∂Si

∂QoSi
· ∂QoSi

∂c
=

5

∑
k=1

(
gi,k · αβ exp(−β ·QoSi) ·

1
LRi + d

)
∂lossi

∂d
=

∂lossi
∂Oi

· ∂Oi
∂Si
· ∂Si

∂QoSi
· ∂QoSi

∂d
= −

5

∑
k=1

(
gi,k · αβ exp(−β ·QoSi) ·

c
(LRi + d)2

)
∂lossi

∂p
=

∂lossi
∂Oi

· ∂Oi
∂Si
· ∂Si

∂QoSi
· ∂QoSi

∂p
=

5

∑
k=1

(
gi,k · αβ exp(−β ·QoSi) · log(THi)

)
∂lossi

∂q
=

∂lossi
∂Oi

· ∂Oi
∂Si
· ∂Si

∂QoSi
· ∂QoSi

∂q
=

5

∑
k=1

(
gi,k · αβ exp(−β ·QoSi)

)

(11)

With Equations (10) and (11), we can calculate the gradient of each hyperparameter reflecting
to the QoE score fitting error, the hyperparameter determination algorithm is abstracted by the
pseudocode presented in Algorithm 1, where parameters bs, eps, and λ are set to 16, 100, and 0.01 in
our implementation, respectively.

Algorithm 1: Model Parameter Determination Algorithm.

Input: Dataset Ω =
{

DLi, LRi, THi : QoEi
}

, i = 1, · · · , N.
Output: Model determined hyperparameters: Θ =

{
α, β, γ, a, b, c, d, p, q

}
.

Θ = Train(Ω): Set batch size bs, epoch size eps, and learning rate λ;
for i = 1 to eps do

for j = 1 to int( N
bs ) do

Initialize loss = 0; for each sample
{

DLk, LRk, THk : QoEk
}

in Ω[bs ∗ (j− 1) + 1 : bs ∗ j]
do

According to (9), loss+ = lossk;
end
Calculate average loss by loss = loss

bs ; for each hyperparameter θk in Θ do
According to (10) and (11), update θk by gradient: θk ← θk − λ · ∂loss

∂θk

end
end

end
return Θ

4. Results

4.1. Data Collection

To verify our proposed method, we select 11 different types of traffic service: on-demand video,
on-demand audio, live video, live audio, web browsing, instant message, file sharing, online game,
location, meeting video, and voice call. Here, experiments are conducted with the ground truth
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data captured from internet with the “.pcap” file format. The data is collected from a university
campus, for each type of network traffic, 9-11 different corresponding APPs are used. Details of the
collected network flow data has been presented in Table 3, where “APP Number” denotes the number
of different APPs used for a service type and “File Number” denotes the number of the collected
“.pcap” files.

Table 3. Details of APP flow data collection.

APP Number File Number Total Size

on-demand video 10 357 17.9 GB
on-demand audio 10 285 4.05 GB

live video 9 300 16.6 GB
live audio 11 354 1.41 GB

web browsing 10 368 2.87 GB
instant message 10 342 0.41 GB

file sharing 10 331 12.49 GB
online game 10 194 0.95 GB

location 10 351 0.56 GB
meeting video 10 244 9.12 GB

voice call 10 255 2.47 GB

Total 110 3781 67.83 GB

4.2. Traffic Classification Performance

The confusion matrix of classification results is presented in Figure 2, where the tick label
annotations are OA: on-demand audio; WB: web browsing; IM: instant message; FS: file sharing;
OG: online game; LV: live video; LO: location; LA: live audio; OV: on-demand video; MV: meeting
video; and VC: voice call. Further, Table 4 shows the Precision, Recall Rate, and F1 Score of all the
network service types, where Precision, Recall Rate, and F1 Score are defined as

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1Score =
2× Precision× Recall

Precision + Recall
(14)

where TP (True Positive) is the number of instances correctly classified as X, FP (False Positive) is the
number of instances incorrectly classified as X, and FN (False Negative) is the number of instances
incorrectly classified as Not-X. Precision means the proportion of the true positive samples that are
determined by the classifier to be positive; the recall rate reflects the proportion of true positive samples
that are correctly determined to the total positive samples. The F1 score is the harmonic average of the
precision and the recall rate, when only both metrics are high, the F1 score will achieve a high value.

On the test dataset of almost all network traffic types, our approach can achieve a competitive
average classification accuracy of nearly 90%. From Figure 2, we find that the misclassification error
rate between voice call and meeting video is significantly higher than that of other services; the most
likely reason is that some of the voice call and meeting video use the same network transmission
protocols, such as RTP, H.323, and SIP. Moreover, in some meeting video services, the voice call is
integrated as one of the basic services, which means the two service flows have overlaps, thus higher
classification error occurs.
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Table 4. Classification performance of all the network traffic types.

Precision Recall F1-Score

on-demand audio 87.98% 79.65% 83.61%
web browsing 87.68% 81.25% 84.34%

instant message 98.34% 95.69% 96.99%
file sharing 91.49% 90.94% 91.21%
online game 87.10% 83.51% 85.26%

live video 91.03% 91.33% 91.18%
location 92.02% 95.56% 93.79%

live audio 85.19% 90.96% 87.98%
on-demand video 75.57% 84.03% 79.58%

meeting video 73.80% 69.26% 71.46%
voice call 66.67% 78.43% 72.07%

Average 88.90% 90.11% 89.51%

We compare the classification performance between our applied random forest and other popular
classifiers, e.g., support vector machine (SVM), feedforward neural network (NN), and top-K nearest
neighbors (top1-NN and top5-NN); the results shown in Figure 3 suggest that the random forest
classifier outperforms the other classifiers in Precision, Recall Rate, and F1-Score.

OA WB IM FS OG LV LO LA OV MV VC

OA
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IM

FS

OG

LV

LO

LA

OV

MV

VC
0

50

100

150

200

250

300

Figure 2. Confusion matrix of the classification results.
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Figure 3. Traffic classification performance comparison between our applied random forest method
and other classifiers.

4.3. QoE Quantization Performance

In Tables 5 and 6, the central subfigures present the scores of the labeled and predicted QoE
scores of the different network services in the test scenario, and the traffic model hyperparameters are
also presented. Meanwhile, the central subfigures also provide an insight into the absolute prediction
errors for test scenarios. Additionally, normalized root-mean-squared error (NRMSE) is used to
measure error between the model predicted MOS score and the ground truth MOS score, NRMSE is
calculated by

NRMSE =
1
N

√
N

∑
(
QoEp −QoET

)2 (15)

where N denotes the number of test samples, QoEp and QoET are the model predicted QoE and the
ground truth QoE value, respectively. In Table 7, we compare the NRMSE of our model with the other
five works. It can be seen that among the 11 types of traffics, the model we propose achieves the
seven smallest values of NRMSE, whereas the difference of the other four NRMSE with minimum
values are not large (0.1581 vs. 0.1327 [28] in file sharing, 0.1768 vs. 0.1699 [29] in live video, 0.1803 vs.
0.1722 [24] in live audio, 0.2151 vs. 0.1856 [24] in meeting video).

Further, one may notice that the NRMSEs are lower in on-demand multimedia services than those
in live multimedia, online games, and meeting video services. It can be interpreted that, nowadays,
on-demand steaming services have a much higher proportion than live streaming services, and people
are familiar with them. Therefore, users’ will have consistent senses toward on-demand streaming
services, which allows a higher quantization accuracy with the mathematical model. In addition,
to improve the accuracy of MOS prediction, we should ensure that the QoS metric range is fully covered
by the labeled dataset and cross validation methods can be applied to check the MOS inconsistency
caused by individual’s subjective fluctuations.



Appl. Sci. 2019, 9, 4107 11 of 17

Table 5. Flow characteristics of different network service types. For each type of network service, we
selected three APP packet streams to demonstrate the flow distribution over time.

Service Type Labeled QoE vs. Predicted QoE Parameter Values

on-demand audio

1

2

3

4

5

Q
oS

 / 
M

O
S

Target QoE
Predicted QoE α = 1.1466, β = 0.0299,

γ = −0.3209,
a = 7.6178, b = 0.5831,

c = −15.2617, d = 0.6199,
p = −12.1927, q = −0.0103

web browsing

1

2

3

4

5

Q
oE

 / 
M

O
S

Target QoE
Predicted QoE α = 0.5003, β = 13.0852,

γ = −0.0488,
a = 0.0136, b = 0.9295,

c = −0.0420, d = 0.4487,
p = −0.0182, q = −0.0703

instant message

1

2

3

4

5

Q
oS

 / 
M

O
S

Target QoE
Predicted QoE α = 0.2375, β = 1.2047,

γ = 2.0718,
a = 0.3321, b = 1.2422,

c = −0.4628, d = 0.3522,
p = −0.0937, q = −1.0115

file sharing

1

2

3

4

5

Q
oS

 / 
M

O
S

Target QoE
Predicted QoE α = 1.4757, β = 0.4038,

γ = 2.0749,
a = 0.5913, b = 1.1134,

c = −1.2989, d = 0.4902,
p = −0.3592, q = 0.4521

online game

1

2

3

4

5

Q
oS

 / 
M

O
S

Target QoE
Predicted QoE α = 0.8771, β = 1.9647,

γ = 0.5635,
a = 0.2743, b = 0.9683,

c = −0.0212, d = −0.8657,
p = −0.0033, q = 0.0893

live video

1

2

3

4

5

Q
oS

 / 
M

O
S

Target QoE
Predicted QoE α = 1.6466, β = 0.0293,

γ = 0.1270,
a = 4.3215, b = 0.7696,

c = −14.1519, d = 0.4361,
p = −8.6823, q = 0.0838

location

1

2

3

4

5

Q
oE

 / 
M

O
S

Target QoE
Predicted QoE

α = 1.0901, β = 0.2868,
γ = 1.5876,

a = 0.7781, b = 1.0480,
c = −1.9215, d = 0.4574,
p = −0.1893, q = 0.5047
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Table 6. Flow characteristics of different network service types. For each type of network service, we
selected three APP packet streams to demonstrate the flow distribution over time.

Service Type Labeled QoE vs. Predicted QoE Parameter Values

live audio

1

2

3

4

5

Q
oS

 / 
M

O
S

Target QoE
Predicted QoE α = 1.1085, β = 0.7593,

γ = 1.5062,
a = 0.3965, b = 1.0749,

c = −0.8575, d = −0.7646,
p = −0.0445, q = −2.7661

on-demand video

1

2

3

4

5

Q
oE

 / 
M

O
S

Target QoE
Predicted QoE α = 1.3566, β = 0.0424,

γ = −0.0199,
a = 2.8019, b = 0.8041,

c = −8.3946, d = 0.2898,
p = −5.6192, q = 0.3479

meeting video

1

2

3

4

5

Q
oS

 / 
M

O
S

Target QoE
Predicted QoE α = 1.1468, β = 0.2167,

γ = 1.8257,
a = 0.7221, b = 1.1079,

c = −1.4156, d = 0.1628,
p = −1.9646, q = 1.8747

voice call

1

2

3

4

5

Q
oE

 / 
M

O
S

Target QoE
Predicted QoE α = 1.2947, β = 0.1943,

γ = 0.8373,
a = 1.1351, b = 1.2000,

c = −2.6529, d = 0.4672,
p = −0.4855, q = 1.0115

Table 7. Comparison of Quality of Experience (QoE) assessment performance with other works, in
terms of normalized root-mean-squared error (NRMSE). For each type of traffic, the minimum NRMSE
value is marked in bold.

Ref On-Demand Audio Web Browsing Instant Messaging File Sharing Online Game Live Video

[30] 0.3213 0.2122 0.3198 0.2355 0.3476 0.2316
[31] 0.1654 0.1922 0.1909 0.1327 0.2728 0.2061
[29] 0.1662 / / / / 0.1699
[18] 0.1688 / / / / 0.2715
[24] 0.1529 0.1688 / 0.1821 / 0.1933
ours 0.1471 0.1500 0.1803 0.1581 0.2669 0.1768

Ref Location Live Audio On-Demand Video Meeting Video Voice Call

[30] 0.2527 0.2961 0.1420 0.3092 0.1983
[31] 0.2314 0.1738 0.1785 0.1925 0.2082
[29] / / 0.1538 0.2363 /
[18] / 0.1966 0.1689 0.2209 0.1735
[24] / 0.1722 0.1382 0.1856 0.1775
ours 0.1871 0.1803 0.1369 0.2151 0.1696

4.4. Sensitivity Analysis of QoS Metrics

To verify the rationality of QoE quantization models, we analyze the QoE sensitivities of different
services over the fluctuations of QoS metrics (DL, LR, and TH).
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4.4.1. Time Delay

The sensitivity of QoE to time delay can be calculated by

ΨDL =
∂QoE
∂DL

= −αβab · exp(−β ·QoS + b · DL) (16)

We assume that DL lays in the range of [0, 1000], meaning the time delay is between 0 and 1000
milliseconds. The sensitivity curves of five services are drawn in Figure 4, and it can be seen that

their absolute values have the following relation,
{
|ΨDL|(IM), |ΨDL|(VC), |ΨDL|(LA), |ΨDL|(OG)

}
>{

ΨDL(LO), |ΨDL|(MV), |ΨDL|(LV)
}
>
{
|ΨDL|(OV), |ΨDL|(OA), |ΨDL|(FS), |ΨDL|(WB)

}
. Also, note

that in the range [0, 400] ms of DL, the on-demand video service and on-demand audio service curves
are approximately coincident, which lead to the following conclusions.

(1) The values of all the curves in the entire time delay analysis domain (0 to 1000 ms) are less than 0,
indicating that the increase of time delay has a negative effect on all QoEs of the network services,
and will lead to the attenuation of QoE.

(2) The QoE of IM, VC, LA, and OG is the most susceptible to time delay, followed by LO, MV,
and LV. Live services are most sensitive to time delay, whereas other traffic, like OV, OA, FS,
and WB services, are the least affected, which correctly matched with our intuitive experience.
For instance, web pages opening one second earlier will lead to the same reading experience
as the one opened a second later, but people will certainly feel bad for the buffer time while
watching live video.

(3) In the range of 0 to 400 ms, the effect of time delay on the on-demand services (on-demand
video and on-demand audio) is almost the same, but when the time delay continues to increase,
the QoE deterioration of on-demand video is more pronounced. A reasonable explanation to
this phenomenon is the time-out retransmission mechanism. The amount of data that the video
service has to retransmit is larger than other services, and due to the limitation of the throughput
rate, it is unable to meet a high-load data transmission.
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Figure 4. Effects of the packet time delay on QoE attenuating.

4.4.2. Loss Rate

The sensitivity of QoE to packet loss rate (LR) is

ΨLR =
∂QoE
∂LR

=
αβc

(LR + d)2 · exp(−β ·QoS) (17)
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Here, we assume that LR is between 0 and 50%, the QoE changing slope values in Figure 5

can be described as
{
|ΨLR|(MV), |ΨLR|(OV)

}
>
{
|ΨLR|(FS), |ΨLR|(LO), |ΨLR|(LV), |ΨLR|(VC)

}
>{

|ΨLR|(WB), |ΨLR|(OA), |ΨLR|(LA), |ΨLR|(OG)
}

. Further, we can draw the following conclusions.

(1) The values of all the curves are less than 0 in the entire packet loss rate analysis domain, which
indicates that the increasing packet loss rate has a negative effect on all QoEs of the data service,
which will lead to the attenuation of QoE.

(2) For most types of data services, in the range of [0, 10%], a slight increase in the packet loss rate
leads to a sharp drop in QoE. When the packet loss rate reaches to a relative high level, the impact
on QoE will be less obvious than it in the range of 0− 20%, which is mainly reflected in the range
of 20 to 30%.

(3) From high to low order, it can be seen that the more data to be transmitted, the less dependable
a certain kind of service is. As example, live audio requires less data flow due to its high
compression rate.
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Figure 5. Effects of the packet loss rate on QoE attenuating.

4.4.3. Throughput Rate

QoE sensitivity to throughput rate (TH):

ΨTH =
∂QoE
∂TH

= −αβp
TH
· exp(−β ·QoS) (18)

We assume that TH takes the range from 0 to 500 Kbps, the QoE changing slope values in Figure 6

can be described as
{

ΨTH(LV), ΨTH(OV)
}
>
{

ΨTH(MV), ΨTH(OA), ΨTH(WB), ΨTH(LA), ΨTH(FS)
}

>
{

ΨTH(VC), ΨTH(IM), ΨTH(LO), ΨTH(OG)
}

. Further, we can make the following conclusions:

(1) The values on the curves are greater than 0 in the entire analysis domain, indicating that the
increase in throughput rate has a positive effect on the QoE of all network services.

(2) At the initial stage of the throughput rate, the values of curves are relatively large, but then
drop quickly to ~0, except in network traffic of the video service. This implies that for all
network services, QoE will increase significantly when the throughput rate starts to increase
from 0. However, the increase in QoE will become less obvious when the throughput rate reaches
a certain level. Therefore, we can conclude that increasing throughput rate will not lead to
increasing QoE, as long as the throughput rate meeting the service requirement.
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Figure 6. Effects of the flow throughput rate on QoE attenuating.

5. Conclusions

In this paper, we proposed a QoE quantization method based on network traffic classification and
nonlinear mathematical model. For network packet flow, we first identify the flow type provided by
this session through a random forest model. Simultaneously, network QoS metrics are also measured,
including time delay, packet loss rate, and throughput rate. According to the service type of the session
flow and its corresponding QoS metrics, we use the QoE description mathematical model to quantify
its QoE score. Experiment results show that compared with other works, our proposed method is more
suitable for almost all the types of network traffic and further achieves better measurement accuracy.
On the other hand, the QoE sensitivity to time delay, packet loss rate and throughput rate are also
analyzed, respectively. Results suggest that the QoE sensitivity to QoS metrics varies with the types
of network traffics according to the model parameters. Our future research will consider using some
network traffic specific features to measure the QoE score in addition to the QoS metrics.
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