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Abstract: Plasmonic metal nanoparticle (NP)–graphene (G) systems are of great interest due their
potential role in applications as surface-enhanced spectroscopies, enhanced photodetection, and
photocatalysis. Most of these studies have been performed using noble metal NPs of silver and gold.
However, recent studies have demonstrated that the noble metal–graphene interaction leads to strong
distortions of the graphene sheet. In order to overcome this issue, we propose the use of Ga NPs that,
due to their weak interaction with graphene, do not produce any deformation of the graphene layers.
Here, we analyze systems consisting of Ga NP/G/metal sandwich coupling structures, with the metal
substrate being, specifically, copper (Cu) and nickel (Ni), i.e., Ga NP/G/Cu and Ga NPs/G/Ni. We
experimentally show through real-time plasmonic spectroscopic ellipsometry and Raman spectroscopy
measurements of the quenching of the Ga NP localized surface plasmon resonance (LSPR) depending
on the wetting of the graphene by the Ga NPs and on the electron transfer through graphene.
Theoretical finite-difference time-domain (FDTD) simulations supportively demonstrate that the
LSPR in such sandwich structures strongly depends on the contact angle of the NP with graphene.
Finally, we also provide evidence of the electron transfer from the Ga NPs into the graphene and
into the metal substrate according to the work function alignments. These considerations about the
contact angle and, consequently, geometry and wetting of the metal NPs on graphene, are useful to
guide the design of those plasmonic systems to maximize electromagnetic enhancement.

Keywords: graphene; gallium nanoparticles; plasmonics; copper; nickel

1. Introduction

Several plasmonic metal nanoparticle–graphene systems have been reported in the literature
for applications in surface-enhanced Raman spectroscopy (SERS) [1,2], photodetection [3], enhanced
biosensing, and photocatalysis, among others. Indeed, in analyzing this literature, the use of pristine
graphene (G) or graphene oxide (GO) should also be noted [4,5], the latter always presenting some
defects and some oxygen functional groups such as COOH, COH, and COH at the reduced graphene
oxide surface. Different oxidizing agents lead to various carbon-to-oxygen ratios and chemical
compositions in GO and, consequently, to a different surface energy of graphene and GO, which
contributes to the hydrophobic character of graphene and to the hydrophilic character of GO, thereby
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differently affecting the anchoring and coupling to plasmonic metal nanoparticles (NPs). Furthermore,
most of these systems rely on noble plasmonic metals such as gold (Au) and silver (Ag), and again,
in comparing literature in the field of graphene-plasmonic Au NPs, attention should be paid to whether
Au NPs are pure or stabilized/decorated by surfactant and functionalizing agents, which also affects
the graphene/NP interface and coupling [6]. Indeed, the use of Au and Ag metals on pristine graphene
entails some problems. For instance, when Au film is in physical contact with graphene, delamination
can easily occur at the contact interface. Furthermore, d-valence electrons of noble metals exhibit
covalent bonding on the top (T) site of the graphene structure with strong hybridization of the adatom
and graphene electronic states, which leads to a strong distortion and changes the graphene sp2-like C
to a more covalent reactive sp3-like C [3,7]. This strong interaction has also been reported to significantly
modify the band structure and Dirac cones of graphene [8]. For example, in Ag NP/G/Ag systems
the appearance of the D band in the Raman spectra of graphene has been reported due to the defects
caused by the graphene–Ag interaction [2]. On the contrary, research on finding non-noble plasmonic
metals is expanding [9], and among these, elements from groups XIII (i.e., Ga) are interesting since
calculations predict [7] that Ga adsorbs on the hollow (H) site of graphene and does not distort the
graphene sheet, so the C–C bonds near the adatom retain their sp2 character. Therefore, the use of this
type of plasmonic metals presents advantages with respect to the widely used noble metals. Moreover,
the plasmonic properties of Ga have been demonstrated to be superior to those of Ag, Au, or Cu due to
its chemical stability (Ga forms a 1 nm oxide shell thickness that protects and keeps the NPs stable for
years [10]) and the spectral tunability of the plasmon peak from the near-IR to the UV [11] (Ag, Au, and
Cu have an interband transition in UV that inhibit a plasmonic response in this spectral region [12]).

Furthermore, among the various configurations, the metal/graphene/metal sandwich coupling
system has gained interest for using the graphene layer as a controlled nano-spacer [1,2,13,14].
The reason for this is the strong local field enhancement achieved by the multiple couplings produced,
including the NP–NP coupling and NP–metal film coupling through the graphene that further
strengthens the electromagnetic field [1,2]. Examples of this sandwich plasmonic graphene system are
the all-Ag Ag NP/G/Ag [2] and all-Cu Cu NP/G/Cu [1] sandwich systems, which can be considered
almost symmetric configurations in the sense that the metals on the two sides of graphene have the
same work function.

In this work, we analyze the Ga NP/graphene/Cu and the Ga NP/graphene/Ni sandwich structures.
These systems present several advantages: (i) Ga NPs do not damage the graphene structure [15];
(ii) the used pristine graphene is directly chemical vapor deposition (CVD)-grown on Cu and Ni
substrates, consequently avoiding its transfer, a process that can introduce defects and impurities into
the graphene [16] and lead to imperfect contact between graphene and the metal layer underneath,
generating an additional barrier, and increases the contact resistance for electrons when passing
through the graphene/metal layer contact interface; (iii) the Ga NPs are evaporated directly on graphene
under vacuum, without the use of any surfactant or capping/functionalizing agents, allowing the
investigation of the bare graphene/NP interface. Therefore, the idea consists of investigating the
plasmonic coupling of Ga NPs on pristine CVD-grown graphene/Cu and graphene/Ni, those two
systems also being characterized by an asymmetry in work function of the two metals in contact with
graphene and by different layers of the grown graphene spacer, monolayer in the former case and
multilayer in the latter case.

The additional peculiarity of this study is the in-situ real-time probing of the Ga NP/G interaction
during the growth of the Ga NPs on the graphene surface. Specifically, the interaction of the Ga NP/G/Cu
and Ga NP/G/Ni systems with light and the generation of surface plasmon resonances are studied in
real time by spectroscopic ellipsometry and compared with Ga NP/G/glass [15]. We demonstrate that
there is no appearance of surface plasmon resonances in the work-function asymmetric graphene–metal
sandwich systems, and we theoretically show that this process strongly depends on the contact angle
between the metal NPs and the G/metal substrate, a parameter determined by the interfacial free
energy between the nanoparticle and the graphene layer. The quenching of the localized surface
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plasmon resonance (LSPR) of the Ga NPs is also corroborated by evidence based on Raman and X-Ray
photoelectron spectroscopies of the electron transfer from the Ga NPs into the graphene and, finally,
into the metallic substrate.

2. Materials and Methods

2.1. Sample Preparation

Graphene (G) was grown by chemical vapor deposition (CVD) from mixtures of CH4:H2 = 100:0–50
sccm gases at a temperature of 900 ◦C and at a total pressure of 4 Torr. The samples were then cooled
at a rate of ≈2 ◦C min−1 in 1 Torr of H2 [16].

Copper (Cu) foils of 30 µm thickness from Alfa Aesar (Ward Hill, MA, U.S.) and 300 nm Ni/300 nm
SiO2/Si obtained by sputtering were used as substrates. They were pre-annealed at 400 ◦C in ultra-high
vacuum (UHV) for nickel and copper oxide desorption and then heated to 900 ◦C in 1 Torr of H2

for recrystallization. As verified by Raman spectroscopy analysis, the graphene grown on Cu was a
monolayer (1L), while the graphene on Ni was a non-homogeneous distribution of monolayer, bilayer,
and multilayer graphene [11].

After graphene growth, the samples were transferred under vacuum in a Veeco GEN II molecular
beam epitaxial system where Ga nanoparticles (Ga NPs) were deposited onto the graphene under
UHV conditions. The nanoparticles were deposited at room temperature with a constant Ga flux
equivalent to 82 monolayers (MLs) per minute as determined using a thin film approximation. This
process assured very clean interfaces between the Ga NPs and the graphene, as well as between the
graphene and the underlying metallic layer.

For comparison, Ga NPs were also simultaneously deposited on 1 ML graphene grown on Cu
and transferred by the tape method [15] on a glass substrate to be used as a control sample for the
plasmon resonance of the Ga NPs.

2.2. Sample Characterization

Raman spectroscopy has proven to be a powerful tool to evaluate the quality and thickness
of graphene layers [17]. Raman spectra were collected using a LabRAM HR Horiba-Jobin Yvon
spectrometer with 532 nm excitation under ambient conditions at low laser power (<1 mW).

The chemical species analysis was carried out using X-ray photoelectron spectroscopy (XPS) using
a monochromatic Al Kα source (PHI 5400 VERSAPROBE) at a take-off angle of 45◦. The main core
photoelectron levels investigated were the C1s and the Ga3d, to evaluate the metallicity of the Ga NPs
and any electron transfer between the Ga NPs and the graphene layer.

The Ga NPs were imaged using atomic force microscopy (AFM) performed using an AutoProbe
CP ThermoMicroscope.

Ellipsometric spectra of the complex pseudo dielectric function, 〈ε〉 = 〈ε1〉 + i〈ε2〉, and of
the extinction coefficient 〈k〉, being 〈ε〉 = 〈ε1〉+ i〈ε2〉 = (〈n〉+ i〈k〉)2, where n is the real part of
the refractive index, were acquired using a phase-modulated spectroscopic ellipsometer (UVISEL,
Horiba-Jobin Yvon) in the 0.75–6.0 eV spectral range with a resolution of 0.01 eV to monitor the plasmon
resonance behavior of the Ga NPs on G/Cu and Ga NPs on G/Ni structures. Ellipsometric spectra were
also acquired in real time during the Ga NP deposition, with each spectrum acquired every 1 s.

2.3. Electromagnetic Simulations

Maxwell’s equations were solved using finite-difference time-domain (FDTD) methods as
implemented in the commercial software FDTD solutions Version 8.16 from Lumerical Inc. The dielectric
function of Ga, Cu, and Ni was taken from different sources in the literature [10,18]. The graphene
monolayer was modeled using a surface conductivity approach. The surface conductivity for a single
layer of graphene is given by the expression provided by Hanson in [19].
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Total field/scattered field light source conditions were used in all simulations. An illuminating
linearly polarized plane-wave was set to propagate perpendicular to the substrate. The wavelength
spectral range analyzed was from 200 to 1000 nm to mimic experimental conditions. A non-uniform
mesh was used in the simulation region. A finer mesh was defined in the vicinity of the NPs. In this
region, the mesh step was fixed to dx = dy = dz = 1 nm. The absorption cross-section was calculated
within the total-field/scattered-field formalism.

3. Results

3.1. Ga Nanoparticles on Graphene/Glass

First, as a reference system, we consider the case of Ga NPs deposited on a monolayer (ML) of
graphene on an insulating glass substrate. Figure 1a shows the real-time evolution of the pseudo
extinction coefficient 〈k〉 during the Ga NP deposition on the G/glass substrate. As the Ga deposition
over the substrate increases (white arrow in the figure), a peak associated with an LSPR appears in the
〈k〉 spectra. The LSPR peak red-shifts and increases in amplitude with deposition time, consistently
with the increase in the size of the Ga NPs [10,11], whose final morphology is shown as an inset in the
same figure. The Ga NPs have a hemispherical shape, and their diameter has been estimated to be
50–60 nm through AFM. The excited LSPR corresponds to the so-called longitudinal (LO) mode, while
the transverse mode (TO) is at energies higher than 7 eV and, therefore, is out of the measurement
range [10,11]. Figure 1b shows the typical near-field distribution of a hemispherical Ga NP on a
G/glass substrate excited at the LO mode. The near-field map shows a strong localization of the
electromagnetic field (hotspots) at the interface between the Ga NPs and the G/glass substrate. In fact,
these hotspots have been proven to enhance the Raman signal of the graphene layer. Figure 1c shows
the graphene Raman spectra before and after Ga NP deposition. Interestingly, the spectra are dominated
by the characteristic G and 2D bands of graphene, respectively at 1583 cm−1 and 2698 cm−1, with a
characteristic intensity ratio typical of 1 monolayer (1ML) graphene and without any significant peak D
(at ~1350 cm−1) indicative of defects, demonstrating that the good quality of the graphene CVD-grown
on Cu foil is preserved after being transferred to the glass substrate and the Ga NP deposition. It can
also be seen how the intensity of the Raman peaks of graphene on glass is significantly enhanced by
the Ga NPs due to the electromagnetic enhancement and hot spots localized at the Ga NP/G interface,
as shown in Figure 1b. For both the G and 2D peaks, the intensity increases more than one order
of magnitude.
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Figure 1. Ga nanoparticles (NPs) on G/glass substrate. (a) Extinction coefficient spectra 〈k〉 recorded in
real time during Ga NP deposition on the G/glass substrate; the first blue spectrum refers to G/glass,
while the last black spectrum refers to the Ga NPs/G/glass; the arrow indicates Ga NP deposition. As an
inset is shown an atomic force microscopy (AFM) image of the Ga NP morphology. (b) Near-field
distribution of the electromagnetic field when the Ga NPs are excited at their longitudinal (LO) mode.
(c) Raman spectra of the graphene layer/glass before and after Ga NP deposition.
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3.2. Ga Nanoparticles on Graphene/Cu

In contrast to the glass insulating substrate, here we study the effect of having a conducting
substrate such as Cu. Specifically, the system analyzed consists of Ga NPs on monolayer graphene/Cu.
In this system, the Ga NPs are deposited directly on the CVD-grown graphene/Cu. In this way, we avoid
the graphene transfer that could contaminate or damage it. Figure 2a shows the real-time evolution of
the pseudo-extinction coefficient 〈k〉 during Ga NP deposition on the G/Cu support. For comparison,
the spectrum 〈k〉 of equivalent Ga NPs simultaneously deposited on G/glass is also plotted, showing
that the same NPs should give an LSPR peak at approximately 3.3 eV. The first spectrum (blue in
Figure 2a) represents the G/Cu system, and its overall shape is significantly different from that of
G/glass in Figure 1a because of the dielectric function of copper, i.e., the spectral region below 2 eV
is representative of the Drude component of Cu free carriers, while above 2eV, the spectra show the
Cu interband transitions [13] smoothed and decreased by the absorption of graphene. Although Ga
NPs are formed on the G/Cu, as shown by the SEM tilted picture shown in Figure 2a, it is clear that
when the Ga NPs are on the G/Cu support, there is no excitation of the LO mode. Figure 2b shows the
calculated absorption cross-section spectra of Ga NPs on G/glass and G/Cu substrates. It can be seen
that when going from the G/glass to the G/Cu substrate, the LSPR is completely quenched. This is
consistent with the fact that both G and Cu are conducting, and thus no confinement is produced at the
Ga NP-graphene/Cu interface. These results are corroborated by electromagnetic simulations on a
Ga hemisphere on the G/Cu substrate illuminated under normal incidence. As shown in Figure 2c,
the near-field maps are completely different for the two cases.

Specifically, while Ga NPs on G/glass show a high near-field enhancement at the interface between
NP and substrate, for the G/Cu the near-field distribution is uniform around the particle, being minimal
at the top of NPs. Therefore, in this case, hotspots at the NP–substrate interface that can enhance the
Raman signal of the graphene layer are not produced. Consistently, as shown in Figure 2d, there is no
enhancement of the Raman signal of the graphene layer before and after deposition of the Ga NPs on
the G/Cu substrate. A deeper analysis of the position of the 2D peak measured for different deposited
Ga amounts, as reported in Figure 2e, shows a shift of the 2D peak to a lower wavenumber with the
increase of Ga. This phenomenon can be explained considering electron transfer from the Ga NPs
into the graphene layer and, consequently, an n-type doping of the graphene layer [20]. This electron
transfer is also supported by the XPS analysis. Figure 2f shows the spectra of the photoelectron core
level Ga3d on G/Cu (red curve) compared to that of Ga NPs on an insulating glass substrate (blue
curve). It can be seen that in both cases, the Ga3d photoelectron level shows two main components,
namely, the component at binding energy BE = 18 eV due to metallic gallium, Ga0, and the one at a the
higher binding energy BE= 20.8 eV due to oxidized gallium, Ga3+ [21]. For Ga NPs on insulating glass,
the Ga is mainly in the metallic state, which is consistent with the evidence of the localized plasmon
resonance peak; conversely, for Ga NPs on G/Cu, the Ga3+ is the main component, which is consistent
with the loss of electrons in the Ga NPs deriving into cationic character. This electron transfer from Ga
NPs to graphene and then into the Cu substrate, due to the conductivity of substrates, is consistent
with the values of the work function φF of each of the involved materials (φGa

F = 4.2 eV, φG
F = 4.5 eV and

φCu
F = 4.9 eV), as depicted in the schema in Figure 3a. Therefore, the transferred electrons are moved

into lower energy states.
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Figure 2. Ga NPs on G/Cu support. (a) Experimental extinction coefficient spectra 〈k〉 recorded in real
time during Ga NP deposition on the G/Cu substrate. Each spectrum is acquired every 1 sec; the blue
spectrum refers to the initial G/Cu sample, while the last yellow spectrum refers to the Ga NP/G/Cu;
the arrow indicates Ga NP deposition. For comparison, the 〈k〉 spectra for Ga NPs on G/glass are
also shown. As an inset is shown an SEM image of the NP morphology. (b) Calculated absorption
cross-section of a R = 55 nm Ga hemisphere on G/Cu and G/glass substrates illuminated under normal
incidence. (c) Near-field distribution of the electromagnetic field when the Ga NPs are excited at 3 eV
when deposited on G/Cu (bottom) and G/glass substrates (top). (d) Raman spectra of the graphene
layer before and after Ga NP deposition. (e) Graphene 2D band position as a function of Ga deposition
time. (f) X-ray photoelectron spectroscopy (XPS) spectra of the photoelectron core level Ga3d on G/Cu
(red curve) compared to that of Ga NPs on an insulating glass substrate (blue curve).
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Figure 3. Schema of the work function φF and of electron transfer in the systems (a) Ga NP/G/Cu and
(b) Ga NP/G/Ni

3.3. Ga Nanoparticles on Graphene/Ni

In order to demonstrate that the Ga NP/G/Cu is not a particular case and to investigate the
role of the thickness of graphene, we also investigated Ga NPs on G/Ni, since it is known that the
main difference between the CVD growth of graphene on Cu and Ni is that graphene is limited to
a monolayer on Cu, while multilayer graphene grows on Ni. Results very similar to those of the
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Ga NP/G/Cu system were obtained for Ga NP/G/Ni, although in the latter, the graphene layer is a
non-homogeneous mixture of bilayer and multilayer regions. Figure 4a shows the real-time evolution
of the pseudo-extinction coefficient 〈k〉 during Ga NP deposition on G/Ni. For comparison, the 〈k〉
spectrum of equivalent Ga NPs grown simultaneously on G/glass is also shown. As in the case of
G/Cu, there is no plasmon resonance peak coming from the excitation of the LSPR LO mode of the
Ga NPs, although Ga NPs are clearly formed on the substrate, as demonstrated by the AFM image
in the inset of Figure 4c. This behavior is consistent with the fact that G/Ni is also a conductor, like
G/Cu. The experimental spectra show a damping of the Ni’s characteristic Drude-like behavior at low
photon energies as well as of the peak above 4 eV coming from the interband transition of Ni [18] due
to the effective thickness of the Ga NPs. The absence of any localized surface plasmon resonance in the
extinction coefficient spectra is consistent with the absence of any enhancement of the Raman signal of
the graphene layer, as shown in Figure 4b. Here, the variation of the intensity ratio between the G
and 2D peak is not speculated because it might be due to the non-homogeneity of the graphene layer
thickness. Moreover, the XPS analysis of the photoelectron core lever Ga3d also shows, in this case, a
strong Ga3+ (BE = 20.8 eV) component and a quenched metallic Ga component (BE = 18 eV) [21]. This
puts in evidence the loss of the metallic character of the Ga NPs due to electron transfer from the Ga
NPs into the graphene and finally into the Ni substrate, according to the schema sketched in Figure 3.
As shown in Figure 3b, Ga, G, and Ni have values of their work functions of φGa

F = 4.2 eV, φG
F = 4.5 eV,

and φCu
F = 5.4 eV, respectively; thus, electrons transfer from the Ga NPs to graphene and to nickel.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 10 

[21]. This puts in evidence the loss of the metallic character of the Ga NPs due to electron transfer 256 
from the Ga NPs into the graphene and finally into the Ni substrate, according to the schema sketched 257 
in Figure 3. As shown in Figure 3b, Ga, G, and Ni have values of their work functions of 𝜙  = 4.2 258 
eV, 𝜙 = 4.5 eV, and 𝜙 = 5.4 eV, respectively; thus, electrons transfer from the Ga NPs to graphene 259 
and to nickel. 260 

 261 
Figure 4. Ga NPs on G/Ni support. (a) Experimental extinction coefficient spectra 〈𝑘〉 recorded in 262 
real time during Ga NP deposition on the G/Ni substrate. Each spectrum is acquired every 1 sec; the 263 
black spectrum refers to the initial G/Ni sample; the final yellow spectrum refers to Ga NP/G/Ni; the 264 
arrow indicates Ga NP deposition. For comparison, the 〈𝑘〉 spectra for equivalent Ga NPs on G/glass 265 
is also shown. (b) Raman spectra of the graphene layer before and after Ga NP deposition. (c) XPS 266 
spectra of the photoelectron core level Ga3d for Ga/G/Ni. The inset shows the AFM image of the Ga 267 
NP morphology. 268 

4. Effect of Nanoparticle Shape: Contact Angle between Ga NPs and Graphene 269 
A critical issue when considering the near-field enhancement produced in metal nanoparticle–270 

graphene–metal substrate systems is the contact angle, 𝜃 , between the NP and the graphene (see 271 
Figure 5a). When metal NPs are evaporated on graphene, as in Refs. [1–3], their contact angle with 272 
the graphene layer is related to their interfacial free energy. Common plasmonic noble metals such 273 
as Au, Ag, and Cu present values of the contact angle with graphene of 113˚ [22], 114˚ [23], and 122˚ 274 
[24], respectively. It is also worth mentioning that while for Ag the contact angle remains stable in 275 
time [23], for copper the contact angle progressively reduces to a value of 60˚ in 30 min [24]. In the 276 
case of Ga, the contact angle with smooth graphene layers, like the ones in our experiments, is close 277 
to a hemispherical NP shape, ∼80˚. However, for rough and rippled graphene surfaces, the value of 278 
the contact angle can go up to 150˚. The contact angle that defines the shape of the NP is a key 279 
parameter to be considered when modeling the electromagnetic interactions in this type of system 280 
[25]. 281 

In light of this, Figure 5b shows the absorption cross-section Cabs of spherical Ga NPs of R = 55 282 
nm illuminated at normal incidence (see sketch in Figure 5a) forming different contact angles with a 283 
G/Cu substrate: 90˚ (hemisphere), 120˚, 150˚ and 180˚ (sphere). The Cabs spectra for the sphere (𝜃  = 284 
180˚) show two clear resonant peaks: a low-energy peak associated with a dipolar mode (related to 285 
the LO mode in the hemisphere), and a high-energy one associated with a higher-order mode (related 286 
to the TO mode in the hemisphere). The dipolar mode (LO) progressively quenches and slightly blue-287 
shifts with the decrease of 𝜃 , while the higher-order plasmon mode (TO) is severely blue-shifted 288 
and damped. The near-field distribution in Figure 5c shows high enhancement at the NP–substrate 289 
boundary for the spherical nanoparticle, which decreases with the decrease in 𝜃  (going from the 290 
spherical to the hemispherical geometry). One of the factors affecting the near-field enhancement is 291 
the contrast between the optical properties of the NP and its surrounding medium (electromagnetic 292 
boundary conditions). Dipolar modes are produced by oscillations of the electrons at the equatorial 293 
plane of the spherical NP. For high values of 𝜃 , the effective surrounding medium around the 294 
equatorial plane of the NP is air (high contrast, metal–insulator) leading to high near-field 295 
enhancements. This effect is additionally enhanced by the coupling of the mode to the cavity formed 296 
in the NP–air–substrate region. Moving to the hemispherical shape (decreasing values of 𝜃 ), the 297 

Figure 4. Ga NPs on G/Ni support. (a) Experimental extinction coefficient spectra 〈k〉 recorded in real
time during Ga NP deposition on the G/Ni substrate. Each spectrum is acquired every 1 sec; the black
spectrum refers to the initial G/Ni sample; the final yellow spectrum refers to Ga NP/G/Ni; the arrow
indicates Ga NP deposition. For comparison, the 〈k〉 spectra for equivalent Ga NPs on G/glass is
also shown. (b) Raman spectra of the graphene layer before and after Ga NP deposition. (c) XPS
spectra of the photoelectron core level Ga3d for Ga/G/Ni. The inset shows the AFM image of the Ga
NP morphology.

4. Effect of Nanoparticle Shape: Contact Angle between Ga NPs and Graphene

A critical issue when considering the near-field enhancement produced in metal
nanoparticle–graphene–metal substrate systems is the contact angle, θc, between the NP and the
graphene (see Figure 5a). When metal NPs are evaporated on graphene, as in Refs. [1–3], their contact
angle with the graphene layer is related to their interfacial free energy. Common plasmonic noble
metals such as Au, Ag, and Cu present values of the contact angle with graphene of 113◦ [22], 114◦ [23],
and 122◦ [24], respectively. It is also worth mentioning that while for Ag the contact angle remains
stable in time [23], for copper the contact angle progressively reduces to a value of 60◦ in 30 min [24].
In the case of Ga, the contact angle with smooth graphene layers, like the ones in our experiments, is
close to a hemispherical NP shape, ~80◦. However, for rough and rippled graphene surfaces, the value
of the contact angle can go up to 150◦. The contact angle that defines the shape of the NP is a key
parameter to be considered when modeling the electromagnetic interactions in this type of system [25].
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Figure 5. Electromagnetic simulations for the Ga NP/G/Cu system at different values of contact angle,
θc, between Ga NPs and the G/Cu substrate. (a) Schema of the simulated geometry: Ga NP on G/Cu
forming a contact angle θc illuminated under normal incidence (k, blue arrow) with linearly polarized
light (E, red arrow). (b) Absorption cross-section, Cabs, of Ga NPs on G/Cu with different contact angles
θc. (c) Near-field maps, log10(|E|2), at the longitudinal (LO) and transverse mode (TO) modes of Ga
NPs on G/Cu with different contact angles θc.

In light of this, Figure 5b shows the absorption cross-section Cabs of spherical Ga NPs of R = 55 nm
illuminated at normal incidence (see sketch in Figure 5a) forming different contact angles with a G/Cu
substrate: 90◦ (hemisphere), 120◦, 150◦ and 180◦ (sphere). The Cabs spectra for the sphere (θc = 180◦)
show two clear resonant peaks: a low-energy peak associated with a dipolar mode (related to the LO
mode in the hemisphere), and a high-energy one associated with a higher-order mode (related to the TO
mode in the hemisphere). The dipolar mode (LO) progressively quenches and slightly blue-shifts with
the decrease of θc, while the higher-order plasmon mode (TO) is severely blue-shifted and damped.
The near-field distribution in Figure 5c shows high enhancement at the NP–substrate boundary for
the spherical nanoparticle, which decreases with the decrease in θc (going from the spherical to the
hemispherical geometry). One of the factors affecting the near-field enhancement is the contrast
between the optical properties of the NP and its surrounding medium (electromagnetic boundary
conditions). Dipolar modes are produced by oscillations of the electrons at the equatorial plane of the
spherical NP. For high values of θc, the effective surrounding medium around the equatorial plane of
the NP is air (high contrast, metal–insulator) leading to high near-field enhancements. This effect is
additionally enhanced by the coupling of the mode to the cavity formed in the NP–air–substrate region.
Moving to the hemispherical shape (decreasing values of θc), the contrast between the NP and the
surrounding medium decreases due to the proximity of the conducting substrate, and the near-field
enhancement becomes lower. Moreover, the cavity region becomes smaller, hampering the coupling of
the mode until its full disappearance at θc = 90◦. It is worth mentioning that this mode is relevant
for SERS applications [1,2]. The high-energy mode (TO mode) also shows a near-field enhancement
distribution concentrated at the NP–substrate interface for the spherical case (θc = 180◦), due to its
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coupling with the cavity. As θc decreases, the mode gets concentrated at the nanoparticle surface,
which is consistent with its TO-mode character [26].

5. Conclusions

Ga NPs were deposited on CVD graphene grown on Cu and Ni substrates. These Ga NP/ G/Cu
and Ga NP/G/Ni systems present two advantages: (i) Ga NPs do not distort the graphene layer, and
(ii) the graphene layers are directly CVD-grown on the Cu and Ni, consequently avoiding a transfer
step that may introduce defects and impurities in graphene. Using spectroscopy ellipsometry and
Raman spectroscopy, we demonstrated that neither an LSPR peak is present in the ellipsometric
spectra nor is enhancement of the graphene Raman signal produced. It was shown that a critical
factor to achieve LSPR and electromagnetic enhancement in these metal NP/G/metal layer sandwich
systems is the contact angle between the NPs and the G/metal, which in turn is determined by the
interfacial free energy between the two media. NPs need to have a high contact angle with graphene
to produce high near-field enhancements at the NP–substrate interface. Finally, through Raman and
X-ray photoelectron spectroscopies, we demonstrated that for hemispherical NPs, when the contact
area between the NP and the graphene is highest, electron transfer from the Ga NPs to graphene
and to the Cu or Ni substrate also contributes to the LSPR quenching. This phenomenon is clearly
evidenced by the Ga3d photoelectron core level of the nanoparticles, showing a decrease in the metallic
Ga0 component and an increase in the Ga3+ component. These considerations may be used to guide
the design of plasmonic NP/graphene/metal layer systems to achieve maximum electromagnetic
enhancement, by increasing the contact angle between the NPs and the graphene/metal support.
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