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Abstract: News currently spreads rapidly through the internet. Because fake news stories are
designed to attract readers, they tend to spread faster. For most readers, detecting fake news can
be challenging and such readers usually end up believing that the fake news story is fact. Because
fake news can be socially problematic, a model that automatically detects such fake news is required.
In this paper, we focus on data-driven automatic fake news detection methods. We first apply
the Bidirectional Encoder Representations from Transformers model (BERT) model to detect fake news
by analyzing the relationship between the headline and the body text of news. To further improve
performance, additional news data are gathered and used to pre-train this model. We determine that
the deep-contextualizing nature of BERT is best suited for this task and improves the 0.14 F-score
over older state-of-the-art models.

Keywords: fake news; fake information; fake news detect; fake news challenge; fake news
classification; deep learning

1. Introduction

Fake information appears in a variety of forms, including videos, audio, images, and text.
Furthermore, fake information in text form can be classified as news, social network services, speeches,
documents, and so on. This study proposes a model for fake news detection by focusing on text-based
fake news. Fake news has recently become a widespread problem worldwide. Fraudulent or falsified
information can spread rapidly and become a problem if readers fail to detect, at a glance, whether or
not the given information is fake news.

In 2015, the International Fact-Checking Network (IFCN) was established by Poynter, an American
media education agency. IFCN observes fact check trends and provides training programs for fact
checkers. In addition, various efforts have been undertaken to prevent the spread of fake news
by providing a code of principles that fact check organizations around the world can use. Politifact
(https://www.politifact.com) and snopes (https://www.snopes.com) developed a Fake news detection
tool to classify the level of fake news in stages based on the presented criteria. However, these tools are
time-consuming and expensive as they require manual work and judgment. Therefore, a model that
automatically detects fake news is required.

There are several tasks involved in detecting fake news. Fake news challenge stage 1 (FNC-1)
(www.fakenewschallenge.org) involves classifying the stance of a body text from a news article relative
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to a headline. The body text may agree, disagree, discuss or be unrelated to the headline. The Web
Search and Data Mining (WSDM) 2019 fake news challenge (www.kaggle.com/c/fake-news-pair-
classification-challenge) detects fake news by classifying the title of a news article. Given the title of
a fake news article A and the title of a coming news article B, participants were asked to classify B into
one of the three categories [1–3]. In addition, there are other tasks involved in fake news detection
using Social Network Services (SNS) data. This task of the challenge (www.clickbait-challenge.org) is
to develop a classifier that rates how clickbaiting a social media post is [4–6]. Finally, one of the tasks
in the artificial intelligence research and development challenge (www.ai-challenge.kr) in Korea
involves the detection of unrelated contextual news content in the news bodytext. This is done to
prevent a situation in which the reader is exposed to unintended information.

However, the results of these challenges and tasks do not exhibit good performance and can
be improved. In addition, word embedding is an important factor for improving the performance
of the model. word2vec [7] and fastText [8] were previously used for word embedding. These do
not exhibit good performance because they employ fixed vector values rather than fluid vector
values for words. To complement this, we use contextual word embedding. Typical models include
Embeddings from Language Models (ELMO) [9], BERT [10], and Generative Pre-Training (GPT) [11].
ELMO uses a bi-LSTM structure [12] and a feature-based approach that requires the application of
many hyperparameters. The feature-based approach includes a pre-trained language representation of
an additional feature of networks that perform specific tasks. On the other hand, BERT and GPT used
a transformer structure and a fine-tuning approach to minimize the hyperparameters. The fine-tuning
approach involves reducing the parameter of a specific task as much as possible and slightly changing
the pre-trained parameters by training downstream tasks. We considered the above factors and applied
fake news data to the BERT model, allowing us to better analyze the meaning of the news article.

In this paper, we propose BAKE, an automatic fake news detection model that improves
upon BERT by mitigating the data imbalance problem. Furthermore, we also propose a model that
incorporates extra unlabeled news copora into BAKE, which we term exBAKE.

Our key contributions are summarized as follow:

• We use BERT [10], which was the first to study on fake news detection using a headline-body text
dataset. BERT includes pre-training language representations developed by Google.

• We recognize that the data are unstable, and therefore to develop the BAKE model to classify
the data using weighted cross entropy (WCE).

• We include CNN and Daily Mail news data for BAKE pre-training. Greater amounts of news data
are used to detect fake news more efficiently.

• Finally, we evaluate the performance of the proposed model exBAKE, and demonstrate that it
performs better than other models that use FNC-1 data.

The remainder of this paper is organized as follows. In Section 2, we present an overview of the
related works. Section 3 presents the data used in this study. In Section 4, we analyze the structures
of the proposed model, and, in Section 5, we present the experiments and their results. Finally, we
conclude the paper and highlight several future research directions in Section 6.

2. Related Works

Fake news detection has been examined using several methods in accordance with the scope and
format of available fake news data and technical approaches [13–15]. Tasks to be performed on fake
news datasets include verifying whether the headline matches the body text, finding mismatched
sentences in the body text, and identifying dissemination of fake news over SNS. In this study, we
use a data set for the first task. Such methods generally employ techniques like deep learning [16,17],
machine learning [18,19], or rule-based methods [20] for the purpose of detection. In this study, we use
deep learning to train the data.

A majority vote includes FNC-1 baseline features. The co-occurrence (COOC) of character n-grams
and word from the document, headline and two lexicon based features (i.e., polarity (POLA) words and
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count the number of refuting (REFU) based on small word lists used gradient-boosting baseline from
which the FNC-1 organizers are provided. By observing the FNC-scores of the system performance,
it is determined that both lexicon-based features and the majority vote baseline operate comparably.
On the other hand, COOC exhibits comparatively better performance.

In the fake news challenge, the first place was secured by the SWEN team that used TalosComb.
The TalosComb model is an average weighted model of TalosCNN and TalosTree [21]. Talostree is
based on the gradient-boosted decision tree model, which consists of singular-value decomposition
(SVD) [22], word count, term frequency-inverse document frequency (TF-IDF) [23], and sentiment
features using word2vec embeddings. TalosCNN is based on deep convolutional neural networks
and uses pre-trained word2vec embeddings. It uses several convolutional layers comprising three
fully-connected ones and a final softmax layer for classification.

In the fake news challenge, the second place was secured by the Athene team that proposed
a multi-layer perceptron (MLP) [24]. It extends the original model structure to six hidden layers and one
softmax layer and incorporates multiple manually engineered features from the Athene team—namely,
unigrams, the cosine similarity of word embeddings of verbs and nouns between document tokens
and headlines, latent Dirichlet allocation, topic models based on non-negative matrix factorization,
and latent semantic indexing. Moreover, the baseline features are provided by the FNC-1 organizers.
These feature types either form separate feature vectors or a joint feature vector [25]. From the results
obtained from the FNC-1 test dataset, it is determined that featMLP exhibits good overall performance
but is still not the best. As with other systems, there were multiple differences between the performance
of featMLP during development and on test datasets. Owing to the 100 new topics, which had not been
included in the training dataset, the stackLSTM model was merged with a stacked long short-term
memory (LSTM) [26] network and the best feature set was derived from an ablation test [27]. The DSC
class performs the best in terms of stackLSTM. This is an important feature of stackLSTM. As there
are a few instances of the DSG class, DSG is difficult to classify. In other words, stackLSTM correctly
detects more complex negation instances.

In the fake news challenge, the third place was secured by the UCL Machine Reading (UCLMR)
team. The team suggested MLP using a single hidden layer [28]. The team used a term frequency
(TF) and TF-IDF to express text inputs. TF vectors were extracted from a vocabulary of the 5000 most
frequently occurring words in the training set, and the TF-IDF vectors were obtained from a vocabulary
of the 5000 most frequently occurring words in both the training and test datasets.

The result of using BERT in this paper is higher performance than existing models. Since news data
are composed of various words and sentences, it is important to clearly understand the relationship
between words for accurate analysis. BERT is designed to clearly identify the relationship between
words in a sentence. BERT adopts semi-supervised learning and a language representation model that
uses only the encoder portion of the transformer [29]. In particular, BERT is based on a multi-layer
bidirectional transformer encoder that jointly conditions both the left and the right contexts in all
layers. BERT performs pre-training using an unsupervised prediction task, which includes a masked
language model (MLM) and a next sentence predictor. MLM is about understanding context first and
then predicting words. First, we randomly mask several tokens at 15% probability from the word piece
applied input. The input is included in the Transformer structure to predict the masked words based
on the context of the surrounding words. Through these processes, BERT understands the context more
accurately. The next sentence predictor is for identifying the relationship between sentences. This task
is important for language understanding tasks such as Question Answering (QA) or Natural Language
Inference (NLI). BERT includes a binarized next sentence prediction task, which combines the two
sentences in corpus with the original sentence. This model structure allows BERT to perform very
well in various NLP tasks. We use BERT base model, which includes a base model and a large model,
and, depending on the size of the model, we use a different number of layers for the transformer block,
a hidden size, and self-attention heads. Data used in the BERT model comprises 800 M words from the
Book Corpus and 2500 M words from Wikipedia.
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3. Data

In this study, we included the CNN (www.cnn.com) and Daily Mail (www.dailymail.co.uk)
datasets (https://github.com/abisee/cnn-dailymail) for additional learning during BERT’s
pre-training stage to improve its detection capabilities. The data that the training and testing processes
employ are used to fine-tune news articles. BERT’s pre-training exhibits good performance in other
prior natural language processing (NLP) tasks [30–32]. However, the data used in BERT model is based
on 2500 M words of general data obtained from Wikipedia and 800 M words from the Book Corpus.
While this data includes a wide range of information, it still lacks detailed information on individual
domains. To address this shortcoming, news data have been added at the pre-training level in this
study to improve its fake news detection capabilities. Summarization data [33–36] from CNN included
approximately 90,000 documents and 380,000 questions (with a vocabulary size of 118,497), while
the Daily Mail dataset included 197,000 documents and 879,000 questions (with a vocabulary size of
208,045). The CNN articles were collected from the period between April 2007 and the end of April
2015 from the CNN website. Daily Mail articles were collected from the period between June 2010 and
the end of April 2015 from the Daily Mail website [37].

FNC-1 data were used for fine-tuning. The training set comprises corresponding pairs of headlines
and body texts, including the appropriate class label for each pair. In addition, the test set comprises
pairs of the headlines and body texts without class labels to help evaluate the systems. In total,
2587 headlines and 2587 body texts were used, and the data can be found at the FNC-1 github
(https://github.com/FakeNewsChallenge/fnc-1).

4. Methods

The model we propose is presented in Figure 1. It is comprised primarily of two parts.
In the fine-tuning process, we used WCE [38–40] to classify the dataset into four groups: Agrees
(AGR), Disagrees (DSG), Discusses (DSC), and Unrelated (UNR). Even though this is essentially a
BERT model, we call it BAKE because we first applied it to the task of fake news detection in our case.
In the pre-training process, we experimented with extra the CNN and Daily Mail news data to our
BAKE model, creating the exBAKE model.

Figure 1. This is a figure that describes BAKE and exBAKE proposed by us.

www.cnn.com
www.dailymail.co.uk
https://github.com/abisee/cnn-dailymail
https://github.com/FakeNewsChallenge/fnc-1
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In other words, the data were classified into four multi-classes using Linear and Softmax layers,
and WCE was used as training loss. This training loss, as indicated below, is characterized by different
weight values according to the corpus statistics and the label distribution analyzed for each class.
The FNC-1 dataset is unbalanced to AGR 7.4%, DSG 2.0%, DSC 17.7%, and UNR 72.8%. Cross
Entropy (CE) [41,42] is the most widely used loss function. It is a method of calculating the amount of
information existing between two probability distributions, the true probability P and the predicted
probability Q:

LWCE = − 1
N

N

∑
i=1

wi · LCEi, (1)

wi =
∑N

i=1 xi

xi
, (2)

LCEi = −[yilog(pi) + (1 − yi)log(1 − pi)]. (3)

We denote news sentences containing headline and body text by si = wi, 1, . . . wi, li and denote
the input of BERT by x = ([CLS], s1, [EOP], s2, [EOP], . . . , [SEP]). As in the input, the news sentences,
including the headlines and body texts, were divided based on the tag (EOP) (i.e., End Of Paragraph).

5. Experiment

5.1. Evaluation Method

The FNC organizers proposed the hierarchical evaluation metric FNC, but they did not consider
the fact that the FNC-1 dataset is very imbalanced. Achieving a high score in FNC is not difficult, since
only performing well on the majority task (UNR) and randomly predicting on the others would still
lead to a good score. Therefore, the hierarchical evaluation metric FNC is inappropriate for validating
the document-level stance detection task [25].

In this study, we used the macro-averaged F1-score (F1) evaluation method [43]. F1 can be
interpreted as a weighted average of precision and recall. F1 calculates the metrics for each label and
obtains the unweighted mean. It is obtained using the formula given below:

Precision =
Precision1 + Precision2

2
, (4)

Recall =
Recall1 + Recall2

2
, (5)

F1 = 2 · Precision · Recall
Precision + Recall

. (6)

5.2. Comparative Model

The results are reported in Table 1. We prove that BERT is best suited for this task due to its deep
contextualizing nature. We already outperformed our previous models by applying BERT, and further
improved BAKE performance by using WCE, and exBAKE is a state-of-the-art result of learning more
news data.

We compare the performance of our methods with previous approaches in Table 1. BAKE and
exBAKE surpass the performance of the previous state-of-the-art (stackLSTM) by 0.125 and 0.137 F1
scores, respectively. The proposed methods also surpasses BERT, which is already a strong baseline.
This indicates that the use of WCE is crucial for showing competitive results in fake news detection.
The exBAKE model has shown the best overall F1 score, which suggests that incorporating extra
knowledge from large news corpora is beneficial to this task.
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Table 1. Model performance. We improve the 0.14 F-score over prior state-of-the-art results.

Models F1 AGR DSG DSC UNR

Majority vote 0.210 0.0 0.0 0.0 0.839
TalosComb [21] 0.582 0.539 0.035 0.760 0.994
TalosTree [21] 0.570 0.520 0.003 0.762 0.994

TalosCNN [21] 0.308 0.258 0.092 0.0 0.882
Athene [25] 0.604 0.487 0.151 0.780 0.996
UCLMR [28] 0.583 0.479 0.114 0.747 0.989

featMLP [24,25] 0.607 0.530 0.151 0.766 0.982
stackLSTM [25,27] 0.609 0.501 0.180 0.757 0.995

BERT 0.656 0.651 0.145 0.839 0.989
BAKE 0.734 0.667 0.463 0.822 0.986

exBAKE 0.746 0.684 0.501 0.813 0.988
Upper bound 0.754 0.588 0.667 0.765 0.997

Overall, our method was able to achieve state-of-the-art performance in three out of four news
categories. Furthermore, the proposed methods surpassed the upper bound (the score of human
annotators), in AGR and DSC. The performance difference is most dramatic in the minority categories,
again demonstrating that WCE plays an important role in overcoming the data imbalance problem.
This comes in the price of a small drop in performance in the majority categories. Still, the performance
on these majority categories are superior or comparable to previous state-of-the-art.

6. Conclusions

A majority of the data collected for fake news detection are written in English. As the spread
of fake news has a negative impact on society, several studies have been conducted, and numerous
technologies have been introduced to deal with such falsified texts. It is imperative to enable readers
to distinguish between real and fake news.

In this study, we proposed an improved exBAKE model by using pre-training based on a BERT
model to accurately understand the contents of such articles. The results indicate that the model
worked best on the FNC-1 dataset, which detected fake news by analyzing the relationships between
headlines and the corresponding body texts of news articles.

No automated tools had previously been created to check the authenticity of a news article in real
time. Our proposed model will help readers and other journalists to avoid having to manually go
through the process of distinguishing fake news from real news.

In the future, we will experiment with various cases of fake news detection tasks using
the pre-trained BERT model proposed in this study. We only analyzed the relationship between
the headline and the body text of an article. Further experimentation is needed to apply data from other
fake news detection tasks to BERT model, which will use additional news data in the pre-training phase.
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