
applied  
sciences

Article

Control Technology of Ground-Based Laser
Communication Servo Turntable via a Novel Digital
Sliding Mode Controller

Jianqiang Zhang 1,2 , Yongkai Liu 1,2,* , Shijie Gao 1 and Chengshan Han 1

1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,
Changchun 130033, China; zhangjq7170@163.com (J.Z.); 13604329504@163.com (S.G.);
han_chengshan@163.com (C.H.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: liuyk@ciomp.ac.cn; Tel.: +86-0431-86708237

Received: 21 August 2019; Accepted: 18 September 2019; Published: 27 September 2019
����������
�������

Abstract: In this study, a sliding mode control (SMC) algorithm was proposed based on a novel
reaching law to solve the nonlinear disturbance problem of a ground-based laser communication
turntable. This algorithm is a chatter-free method, in which the coefficient of sliding mode variable
structure function is designed as an adaptive function, so the chattering of the sliding mode approaches
zero. For any perturbed system, this algorithm can ensure a finite time for the system state to reach the
sliding mode surface from any initial state. Additionally, the system will stabilize in the quasi-sliding
mode domain (QSMD) with O(T3) width, where a narrower QSMD width corresponds to stronger
robustness toward nonlinear disturbances. Both mathematical calculations and simulations verified
the sliding mode and stability of this control algorithm. Experimental results of the velocity closed-loop
of pitch axis show that the proposed algorithm effectively improved the anti-nonlinear disturbance
ability of the control system compared with the effects of the traditional digital PID and the existing
chatter-reduced SMC algorithms, for smooth system operation.

Keywords: reaching law; sliding mode control (SMC); ground-based laser communication turntable;
chatter-free; quasi-sliding mode domain (QSMD)

1. Introduction

Ground-based laser communication is the communication between two or more terminals on
the ground, using the atmosphere as the medium and a laser beam as the carrier. Compared
with the traditional microwave communication, laser communication offers advantages of low power
consumption, high bandwidth, and strong anti-jamming ability, making development of this technology
an important focus in the field of information and communication technology [1–3].

The communication distance between ground-based laser communication terminals can be
extensive, the divergence angle of a laser beam is quite small, and the laser can also be affected by
atmospheric turbulence, presenting several challenges to this technology [4,5]. Therefore, to meet the
power requirements of laser communication, the servo control system requires micro-radian optical
axis alignment accuracy. Currently, coarse and fine two-stage tracking technology is used in most
ground-based laser communication systems to ensure alignment accuracy [6–8]. Objectively, the coarse
tracking control system is the most important part of the control strategy, allowing the isolation of
external disturbances to ensure the stability of the optical axis, and the control accuracy determines
if the optical axis can be coupled into the fine tracking field of view required for a fine tracking
control strategy. A servo turntable is selected here as the actuator, with nonlinear factors such as
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unbalanced internal torque, friction, torque ripple, model identification error of the control system, and
parameter changes, which can lead to unstable operation of the system and restricting system accuracy.
Traditional linear control technologies such as use of a digital proportion-integral-differential controller
(PID) and lead-lag compensation are unable to meet the accuracy requirements of a coarse tracking
system, therefore, a high precision and strong robustness control technology is required to restrain the
influence of nonlinear factors on the system and ensure smooth operation of the servo turntable [4].

Several methods have been proposed to suppress the nonlinear disturbance and improve system
accuracy, which can be divided into three main approaches. First, the control algorithm structure
and the dynamic performance of the control system can be improved by adding a current loop [9],
or feedforward compensators [10,11]. Second, the traditional control algorithm can be improved by the
incorporation of aspects of modern algorithms, such as fuzzy control [12–14] or adaptive control [15,16],
which can be applied to improve the robustness of traditional algorithms. Improved algorithms can
restrain the influence of nonlinear disturbance on the system, but this approach cannot overcome all the
shortcomings of traditional algorithms. Third, the design of a nonlinear controller based on the modern
control algorithms, such as active disturbance rejection [17,18], adaptive [19,20], and predictive [11,21]
control strategies can avoid the shortcomings of traditional algorithms, effectively compensate for
nonlinear disturbances in the system, and improve the accuracy and stability of the system.

Siding mode control (SMC) is an effective approach for a robust control algorithm, and can
effectively suppress the nonlinear disturbance of a system. This anti-disturbance control algorithm can
ensure that the system state reaches the sliding surface in a finite time and is stable in the quasi-sliding
mode domain (QSMD). Once the system state stabilizes at the QSMD, the system state is invariant
to system parameter variations and other nonlinear disturbances such as friction [21]. The narrower
the QSMD width, the stronger the system robustness to nonlinear disturbances [22]. However,
the direct application of the SMC algorithm to ground-based laser communication servo turntable has
been a challenge. Large and high frequency chattering of the controller is caused by the switching
function in the traditional SMC algorithm, which affect the overall accuracy and stability of the system,
and may lead to damage of experimental equipment [23]. Therefore, improving the traditional SMC
algorithm to avoid sliding mode chattering is critical for the effective application of SMC algorithm in
specific projects.

Several algorithms have been proposed to improve the sliding mode control. The terminal
sliding mode algorithm improves the sliding mode surface function design method, and eliminates
sliding mode chattering of the controller output by design of a nonlinear sliding mode surface [24–27].
A higher-order SMC algorithm is applied to extend the design method of traditional SMC output,
which eliminates the sliding mode chattering by application of discontinuous control variables to
the higher derivatives of sliding mode functions [28]. A robust adaptive second-order SMC was
tested to address the tracking problem of uncertain linear systems with both matched and unmatched
disturbances, and the results showed that the chattering was removed by applying the sign function
for the time-derivative of the control signal [29]. A global SMC was applied to an uncertain chaotic
system, and resulted in robustness to multiple delays, parametric uncertainties, and other nonlinear
disturbances [30]. A composite nonlinear feedback technique based on a self-tuning integral SMC
algorithm was proposed for the robust tracking control of switched systems with uncertainties and
input saturation; this technique guaranteed robustness against uncertainties, removed reaching phase,
and avoided the chattering problem of sliding mode [31]. A novel adaptive super-twisting-based
global-SMC algorithm was proposed to remove the reaching interval and confer robustness and stability
to underactuated systems; chatter-free operation was guaranteed by integration of the discontinuous
sign function in the control signal [32]. Of these methods, the reaching law function directly defines
the approaching movement and sliding mode, making it the most direct, effective, and simple method
among the described improved sliding mode algorithms. In this work, a novel chatter-free reaching
law algorithm with a disturbance compensation based on the exponential reaching law is proposed for
the application in a ground-based laser communication rough tracking control system. This algorithm
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guarantees that the sliding mode chattering approaches zero and the system state is stabilized in the
QSMD with O(T3) (T is the sampling period) width, resulting in superior control that is robust to
nonlinear disturbances and model parameter variations.

The main findings of this work can be summarized as follows:

(1) The frequency domain characteristic of the turntable pitch axis is tested by the classical sweep
method [33]. According to the frequency domain characteristic curve, the system model is
obtained by the traditional identification method, which is the precondition for the design of SMC.

(2) A novel reaching law with a disturbance compensator is proposed to solve the chattering problem,
which is robust to system model identification error, friction, and other nonlinear disturbances.
Both mathematical calculation and simulation support the effectiveness of the algorithm.

(3) The proposed digital SMC algorithm, the traditional digital PID algorithm, and the existing
chatter-reduced SMC algorithm were compared. The experimental results show that the proposed
algorithm provides higher control accuracy, stronger anti-interference ability, better frequency
domain characteristics, and also suppresses chattering for an improved ground-based laser
communication servo turntable control system.

2. Model Identification of Ground-Based Laser Communication Servo Turntable

2.1. System Frequency Domain Characteristic Test

The azimuth or pitch axis control structure of ground-based laser communication servo turntable
is shown in Figure 1. The system is composed of a velocity loop controller, a power amplifier, a torque
motor, a circular grating encoder, and other parts.
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Figure 1. Control structure of the pitch axis servo turntable system.

Traditionally, the sinusoidal sweep method is used to test the frequency domain characteristics of
the system. As shown in Figure 1, point A indicates the application of the sinusoidal sweep signal, and
the speed record at point B encoder feedback value. The input and output data can be used to obtain
the system frequency characteristic curve, and the measured frequency domain characteristics include
the power amplifier, motor, mechanical structure, and encoder components.

The sinusoidal sweep signal is input at point A, and its digital sequence is expressed as:

u(k) = A(k) sin[2πω(k)]
ω(k) = f1

(
1 + c(k) · (k · t)n

)
, c(k) = f2/ f1−1

(n+1)Tn
, (1)

where f 1 is the sweep signal starting frequency, f 2 is the sweep signal termination frequency, t is the
sampling time, n is the order of the sweep signal, and T is the sweep signal duration.

Considering the pitch axis of ground-based laser communication servo turntable as an example,
a frequency sweep experiment was carried out. During the experiment, the frequency range of
sinusoidal sweep signal [f 1, f 2] was set to [0.5, 200], the signal amplitude A(t) was set to 10◦/s, the
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sweep duration T was set to 25 s, and the signal sweep order n was set to the third to ensure sufficient
low-frequency data. The sweep input signal and system response curve are shown in Figure 2.
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According to the input and output data, the open-loop transmission Bode diagram of the system
can be obtained by discrete Fourier transform and power spectrum estimation, as shown in Figure 3.
The following conclusions can be drawn explicitly: the turntable pitch axis tends to be linear in the low
and middle frequency bands, but there are many nonlinear factors in the system because of the friction
of the axis and other factors. There are multi-order resonance links in the high frequency band, and the
third-order locked rotor frequency at 105 Hz and the resonant frequency at 113.3 Hz are the main
frequencies that affect the system performance. The mechanical structure cannot achieve absolute
rigid connection, because of torque imbalance and other nonlinear factors, but the numerical difference
between the locked rotor frequency and the resonant frequency is small resulting in strong stiffness.
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Remark 1. It is worth noting that the inverse tangent function is adopted for phase calculation in this method.
If the phase difference is less than 90◦, the angle value will jump, so ± n180◦ (n = 1, 2 . . . ) should be applied
according to the phase angle data value.

2.2. System Model Identification

For practical engineering application, system model identification utilized the mathematical
method of medium-low frequency linear fitting and high-frequency two-order model fitting.
The essence of this method is to consider the middle and low frequency bands of the system as
an ideal linear model and then a polynomial mathematical model is adopted to fit the frequency
characteristic curve of the middle and low frequency bands. For the high frequency band, the
multi-order resonance frequency in the frequency characteristic curve is fitted by one or more two-order
mathematical models. Therefore, the ideal mathematical model of the system can be expressed
as follows:

G(s) = GL(s)GH1(s)GH2(s) · · ·GHn(s). (2)

In view of Equation (2), GL(s) represents the transfer function model of ideal linear link in middle
and low frequency band, which is composed of inertial link. GHi(s) (i = 1, 2, . . . , n) represents the
transfer function model of the resonance link in high frequency band, which is composed of a two-order
mathematical model in series, and its mathematical model is expressed as:

GH(s) =

1
ω2

z
s2 + 2 ζz

ωz
s + 1

1
ω2

p
s2 + 2

ζp
ωp

s + 1
. (3)

The transfer function shown in Equation (3) includes a pair of conjugate complex zero and a pair
of complex poles. The complex zeros correspond to systems of high frequency locked rotor frequency
ωz and damping coefficient ζz. The double pole corresponds to the resonance frequency ωp and the
damping coefficient ζp.

According to the frequency characteristic curve of the pitch axis as shown in Figure 3, the linear
transfer function of the middle and low frequency band system can be obtained by the polynomial
fitting method as follows:

GL(s) =
3.5

0.264s + 1
. (4)

Shown in the frequency characteristic curve, the third-order resonance mode can have the greatest
influence on the high frequency band, and the other modes can be ignored. Therefore, only a
second-order mathematical model is sufficient to fit the high-frequency characteristic curve. The high
frequency mathematical model is expressed as:

GH1(s) =
(0.0095s)2 + 0.00054s + 1

(0.0088s)2 + 0.00066s + 1
. (5)

In conclusion, the system model is expressed by the transfer function as:

G(s) = GL(s) ·GH1(s). (6)

The continuous time equation of state corresponds to the transfer function as shown in Equation (6)
and can be expressed as: { .

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

, (7)
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where x(t) ε Rn×1 is the state vector, y(t) ε Rn×1 is the output vector, and A ε Rn×n, B ε Rn×n, and C ε R1×n

are system model parameter matrices. Therefore, according to Equations (5) and (6), the parameter
matrixes in Equation (7) can be specifically expressed as follows:

A = 104
×


−0.0012 −1.295 −4.89
0.0001 0 0

0 0.0001 0

, B =


1
0
0


C = 105

×

[
0.0002 0.0009 1.7123

] .

The characteristic of the open loop frequency domain of the mathematical model shown in
Equation (7) has been tested. Given the data presented in Figure 3, the frequency characteristic fitting
curve of model identification was constructed and is shown in Figure 4 and the model identification
error frequency characteristic curve is presented in Figure 5.
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According to the comparison curve of frequency characteristics, the following conclusions can
be drawn. The frequency is less than 2 Hz, and the motor is in the running start stage. There is an
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effect of the static friction force, and the running state is unstable, with obvious amplitude-frequency
characteristic curve fluctuation and phase-frequency hysteresis characteristics. The frequency is
greater than 2 Hz, and the model frequency characteristic curve can better fit the trend of the actual
frequency characteristic curve, however nonlinear disturbances such as friction force and torque
imbalance in the system can significantly affect the identification accuracy. The absolute value of the
amplitude frequency characteristic curve identification error is less than 8.7 dB. For engineering practice,
model identification error and nonlinear disturbance restrict dramatic improvement of the control
performance, but a traditional PID controller cannot effectively suppress low and medium frequency
nonlinear disturbance, so cannot meet the requirements of high control accuracy of ground-based laser
communication. Therefore, it is important to develop a high-precision control algorithm that can better
suppress the nonlinear disturbance.

3. Design and Simulation of a Velocity Loop Controller Based on Discrete SMC

This section presents a novel discrete SMC algorithm with a disturbance compensator for
low-frequency nonlinear disturbances and model identification error.

3.1. Basic Theory of Discrete SMC

3.1.1. System Discrete Time Ideal Equation of State

According to the identification model equation of state shown in Equation (7), the ideal state
equation of the system can be expressed as follows:

.
x(t) = Ax(t) + Bu(t) + ζ(t). (8)

For the digital control system, the sampling frequency is 1 KHz, and the discretized equation of
state is expressed as:

x(k + 1) = Akx(k) + Bku(k) + ζ(k), (9)

where Ak = Ao + ∆A(k), Bk = Bo + ∆B(k) are respectively represented as the real state matrix and output
matrix of the system. Ao, Bo are nominal parts of Ak and Bk respectively, which can be obtained by
Matlab as follows:

Ao =


0.98 −12.87 −48.52

0.001 0.99 −0.024
0 0.001 1

, Bo = 103
·


0.992

0.0005
0

.
The modeling error and the parameter variation ∆A(k), ∆B(k) are assumed to be differentiable

with respect to temporal series k, and ζ(k) represents nonlinear factors of the system.

Assumption 1. The uncertainties ∆A(k), ∆B(k), and ζ(k) are bounded and satisfy the “matching” condition
that ∆A(k), ∆B(k), and ζ(k) ε span{Bk}.

Therefore, ∆A(k), ∆B(k), and ζ(k) must be able to be unified as nonlinear factors for theoretical
research [34–38], as follows:

ε(k) = ∆A(k)x(k) + ∆B(k)u(k) + ζ(k), (10)

where ζ(k) satisfies ‖ζ(k)‖<ζmax with ‖·‖∞ being the vector infinity norm and ζmax being an
unknown constant.

Therefore, the discrete equation of state shown in Equation (9) can be rewritten as:

x(k + 1) = Akx(k) + Bku(k) + ε(k). (11)
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3.1.2. Discrete Sliding Mode Function and the Sliding Mode Surface

In this study, the classical sliding mode function was adopted, which is defined as follows:

s(k) = Cee(k) = Ce(x(k) −Rn(k)), (12)

where Ce = [Ce(1), Ce(2), . . . , Ce(n−1), 1] is the sliding mode coefficient matrix, and e(k) represents the
error matrix between the ideal state and the actual state. Therefore, the sliding mode surface can be
defined as:

S =
{
e(k)

∣∣∣Cee(k) = 0
}
. (13)

Lemma 1. The sliding mode coefficient matrix parameters Ce(1),Ce(2), . . . ,Ce(n−1) satisfy the polynomials pn−1 +

Ce(n−1)pn−2+ . . . + Ce(2) + Ce(1), and must be Hurwitz polynomials; p is the Laplace operator [35].

3.1.3. The Quasi Sliding Mode Domain

Definition 1. For the perturbed system, the system will be in a quasi-sliding-mode (QSM) in the ∆ vicinity
of the sliding surface, not at the sliding surface. This specified domain where the QSM occurs is called
the quasi-sliding-mode domain (QSMD) s∆, the positive constant ∆ is the QSMD width, and s∆ is the
QSMD [39–41],

s∆ =
{
s(k)

∣∣∣∣∣∣s(k)∣∣∣ ≤ ∆
}

(14)

The condition in which the system state is stable in the QSMD is defined as:
−∆ < s(k + 1) < s(k), s(k) > ∆
s(k) < s(k + 1) < ∆, s(k) < −∆∣∣∣s(k + 1)

∣∣∣ ≤ ∆,
∣∣∣s(k)∣∣∣ < ∆

.

3.2. A Novel Chatter-Free Approach Law Sliding Mode Control Based on Disturbance Compensator

The SMC algorithm is widely applied in control systems because of its simple structure and good
dynamic performance. After stabilization of the system states in the QSMD, the SMC is consistent
with the nonlinear disturbance, and the smaller the width of the QSMD, the stronger the robustness of
the system to the nonlinear factors. However, chattering is the main problem of SMC, which can lead
to high frequency noise in the system, with adverse effects on the stability and control accuracy of
the system. In this section, a novel chatter-free SMC algorithm is proposed to reduce the effects of
chattering on the system and to suppress nonlinear disturbances in the low and medium frequency
bands of the system.

The novel chatter-free sliding mode approach law based on exponential approach law is shown
as follows: 

s(k + 1) = (1− λT)s(k) − κT · η(k) · sgn[s(k)] +ω(k)

η(k) = |e1(k)|
α

δ+
(
1+|e1(k)|

α−1
−δ

)
e−µ·|s(k)|

γ
, (15)

in this formula, κ > 0 is the coefficient of variable structure function; T is the sampling time of the
system; η(k) is the error-related adaptive function, where 0 < δ < 1, γ > 1, µ > 0; |e1(k)| represents the
first state error of the state error vector, if |e1(k)| > 1, 0 < α<1,if 0 < |e1(k)| ≤ 1, α > 1; ω(k) represents the
disturbance compensator, which can be expressed as:

ω(k) = Ce(ε(k) − 2ε(k− 1) + ε(k− 2)). (16)
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Remark 2. If the system state is far away from the sliding mode surface, according to formula (12), s(k) and
|e1(k)| tend to be great, so the coefficient of the switching function sgn[s(k)] tends to be κT·|e1|α/δ, which is greater
than κT. The approaching movement is the state of the system that gradually approaches the sliding mode surface
driven by the reaching law. If the system state is near the sliding surface, s(k) ≈ 0, and the coefficient of the
switching function sgn[s(k)] tends to κT·|e1|α/(1+|e1|α), which is far smaller than κT, so the system state is stable
in the QSMD for sliding mode motion. Thus, chattering on the sliding surface is reduced.

Lemma 2. According to [22,42], ε(k) = O(T), ε(k) − ε(k−1) = O(T2), (T is the sampling period), where O(T),
and O(T2) represent the disturbance estimation error and are the first-order O(T) and the second-order O(T),
respectively; O(T) > O(T2). Therefore, the magnitude of the disturbance estimation error shown in Equation (16)
is the third-order O(T), ε(k) − 2ε(k−1) + ε(k−2) = O(T3), O(T3) < O(T2).

According to Equation (11), (12), (15), and (16), the sliding mode controller can be deduced
as follows:

u(k) = (CeBk)
−1[Ce(Rn(k + 1) −Akx(k)) + (1− λT)s(k)

−κT · η(k)sgn[s(k)] −Ce(2ε(k− 1) − ε(k− 2))]
(17)

Remark 3. The disturbance function ε(k−1) of the sliding mode controller (17) is usually deduced or calculated
by the “time delay estimation method” [22,39,42–44]:

ε(k− 1) = x(k) −Akx(k− 1) − Bku(k− 1). (18)

Remark 4. According to Lemma 2, the width of the QSMD of the proposed SMC is related to the disturbance
compensator, and its width is O(T3) order, which is smaller than the O(T2) order width described in [23,42,45].
Therefore, the proposed algorithm attains stronger robustness and higher control accuracy.

3.3. Proof of Robustness and Stability of SMC

Theorem 1. The absolute value of the system’s nonlinear function equation as shown in Equation (16) has an
upper bound, and this upper bound is assumed as ω. The trajectories of the system from any initial state must
arrive at the sliding mode surface driven by the proposed algorithm.

Proof. There must be an initial state such that the sign of the sliding mode switching functions s(0),
s(1), . . . s(n) does not change, where n is a positive integer. The following proofs are discussed for two
cases: s(0) < 0 and s(0) ≥ 0.

1. If s(k) ≥ 0 (k = 0, 1, . . . n)
Assuming that the system does not cross the sliding surface within the n step, recursive formulas

can be obtained according to formula (15).

s(1) = (1− λT)s(0) − (κT · η(0) +ω(0))
s(2) = (1− λT)2s(0) − (1− λT)(κT · η(0) −ω(0)) − κT · η(1) −ω(1)
...

s(n) = (1− λT)ns(0) −
n−1∑
i=0

(1− λT)n−1−i(κT · η(i) −ω(i))

(19)

There must be a positive number δ so that the following formula is workable:

n−1∑
i=0

(1− λT)n−1−i(κT · η(i) −ω(i)) =
n−1∑
i=0

(1− λT)n−1−iδ. (20)
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Assuming that the system trajectory reaches the sliding mode surface at time m, then s(m) = 0,
and according to Equations (19) and (20), the following equation can be obtained,

s(m) = (1− λT)ms(0) − δ ·
m−1∑
i=0

(1− λT)m−1−i = (1− λT)ms(0) − δ
1− (1− λT)m

λT
(21)

Therefore, the arrival time m can be expressed as:

m = log1−λT
1

λT · s(0)/δ+ 1
. (22)

2. Similarly, if s(k) < 0 (k = 0, 1, . . . n), the moment that the system state reaches the sliding mode
surface can be expressed as:

m = log1−λT
1

−λT · s(0)/δ+ 1
. (23)

Above all, driven by the sliding mode controller shown in formula (17), the state trajectory of the
system from any initial position can reach the sliding mode surface in a limited time, and the arrival
time is expressed as follows:

m = log1−λT
1

λT ·
∣∣∣s(0)∣∣∣/δ+ 1

. (24)

Theorem 1 has been proved. �

Theorem 2. Driven by the sliding mode controller, once the system state reaches the sliding mode surface, it will
be stable in the QSMD and cannot escape, the control system is bounded. The QSMD can be expressed as:

Φ =
{
s(k)

∣∣∣∣∣∣s(k)∣∣∣ ≤ ∆ = κT · η+ω
}
, (25)

where ω/κT ≤ η < 1, ω is the upper of the disturbance.

Proof. The proof process can be divided into two cases: s(0) < 0 and s(k) ≥ 0 (k = 0, 1, . . . n).
1. If s(k) ≥ 0 (k = 0, 1, . . . n), it can be obtained that

s(k + 1) = (1− λT)s(k) − κT · η(k)sgn[s(k)] +ω(k)
< s(k) − κT · η+ω < s(k)

(26)

Therefore, when s(k) ≥ 0, the value of s(k) decreases successively. Assuming that the system state
is in the QSMD at time n, the system state at time n + 1 must be in the QSMD.

2. If s(k) < 0 (k = 0, 1, . . . n), similar conclusions can be drawn that

s(k + 1) = (1− λT)s(k) − κT · η(k)sgn[s(k)] +ω(k)
> s(k) + κT · η+ω > s(k)

(27)

Therefore, when s(k) < 0, the value of s(k) increases successively. When the system state is in the
QSMD at time n, the system state at time n + 1 must also be in the QSMD.

Above all, |s(k)| deceases with time. Once the trajectory of the system reaches the sliding surface,
the system state will stabilize in the QSMD. At this moment, the system is strongly robust to nonlinear
disturbances. Therefore, the control algorithm is stable, and Theorem 2 is proved. �

Remark 5. In view of [36,44,46–49], the overestimation and underestimation problems may exist when the
state is stable in the QSMD, we will study it in the future work.
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3.4. Sliding Mode Simulation

In this section, using the pitch axis system model of the ground-based laser communication servo
turntable shown in Equation (11) as the simulation model, the stability of the proposed sliding mode
algorithm was analyzed as follows. Assuming that the nonlinear disturbance of the system is ε(k) =

[0;0;2.5sin(2kπ) + 0.5], the initial state of the system is [−1;−0.8;0], and the target state is [0;0;0].
According to the discrete state equation of the system, the sliding mode coefficient shown in

Equation (12) is a three-order matrix such that Ce = [Ce1,Ce2,1], the parameters should be chosen as
[1,2,1] to satisfy lemma 1. The parameters of the sliding mode controller (17) were selected as: λ = 5, δ
= 0.15, α = 2, µ = 10, and γ = 2. To assess the proposed algorithm, it was compared to the classical
exponential reaching law (28) with a O(T2) disturbance compensator and the chatter-reduced reaching
law (29) with the O(T3) disturbance compensator described in Ref. [22]. The exponential function
coefficients are the same, with values of λc = 5, λ[22] = 5, and the variable structure function coefficients
κ, κc, κ[22] are determined by the disturbance estimation error in the next section. Other coefficients in
the algorithm of Ref. [22] were set to δ[22] = 0.15, µ[22] = 10, and γ[22] = 2.

s(k + 1) = (1− λcT)s(k) − κcT · sgn[s(k)] + Ceε(k− 1). (28)
s(k + 1) =

(
1− λ[22]T

)
φ[22](k) · s(k) −

κ[22]T
φ[22](k)

sgn[s(k)] + Ce[ε(k) − 2ε(k− 1) + ε(k− 2)]

φ[22](k) = δ[22] +
(
1− δ[22]

)
e−µ[22] |s(k)|

γ[22]
. (29)

The comparison curves of disturbance estimation errors between the three algorithms were
determined and are shown in Figure 6. The maximum O(T3) amplitude was 0.01 for the algorithm
disturbance estimation error curve for both the proposed algorithm and the Ref. [22] algorithm. This
value is much smaller than that of the classical exponential reaching law algorithm, which exhibits a
maximum O(T2) amplitude of 0.15. Therefore, the variable structure function coefficients κ and κ[22]

of both algorithms are set as 0.012, and the variable structure function coefficient κc of the classical
algorithm is set as 0.17. According to Theorem 2, utilization of this parameter, larger than the maximum
perturbation estimation, can ensure the stability of the sliding mode trajectory in the QSMD.
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Figure 7 shows the sliding mode trajectory contrast curves. Three reaching law algorithms can
ensure that the system state arrives at the sliding mode surface in a limited time and is stable in
the QSMD with a fixed width. Theorems 1 and 2 are proved here. Compared with the traditional
exponential reaching law algorithm, the QSMD width of the proposed reaching law algorithm is
narrower, ∆p ≈ 0.038, compared to the QSMD width of the traditional algorithm of ∆c ≈ 0.31. It should
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be noted that a smaller QSMD width correlates to stronger robustness of the system to nonlinear
disturbances. Compared with the chatter-reduced reaching law algorithm of Ref. [22], chattering in
sliding mode can change to be continuous around the sliding surface, and the widths of both algorithms
are almost equal. The proposed algorithm obviously eliminates sliding mode chattering and improves
the stability of the system without reducing the robustness of the system.
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4. Experimental Verification of Control Algorithm

In this study, a velocity closed-loop experiment was performed, based on the servo turntable
pitch axis system for ground-based laser communication. The experimental setup is shown in Figure 8.
The experimental devices include the pitch axis motor, which is a DC torque motor (J175LYX04,
Chengdu Precision Motor Factory, China), and a C01 motor drive module as the power amplifier
(Chengdu Precision Motor Factory, China). The angle value of the pitch motor is set using an encoder
(RA26BEA115B05F, Renishaw, UK). The digital controller is composed of a DSP (TMS320F2812) and
FPGA (Altera EP1C12Q240). The DSP was used to store the control algorithm, which calculated the
control and attitude signals. The FPGA was used to receive and transmit command signals to achieve
logic control of the circuit.
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The experimental structure is shown in Figure 1, and the input speed signals are fixed, sinusoidal,
or closed-loop sweep frequency signals for the speed closed-loop performance test. The classical
incremental digital PID controller, the chatter-reduced sliding mode controller of Ref. [22], and the
proposed discrete sliding mode controller with disturbance compensation algorithm were tested for
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application as the speed loop controller. The parameters of the incremental PID controller were set
as kp = 0.8 and ki = 0.16. The variable structure function coefficients of the proposed and Ref. [22]
controllers were set to κT = 0.56, and the other parameters were set in accordance with the sliding
mode simulation setting.

4.1. Closed-Loop Experiment of Fixed Speed Signal

For the closed-loop experiment of fixed speed signal, the fixed speed signal of 0.1 mrad/s was
input into the pitch axis control system of the ground-based laser communication servo turntable.
Under the control of the proposed chatter-free sliding mode controller, the Ref. [22] chatter-reduced
sliding mode controller, or the incremental digital PID controller, the motor operation was compared,
as shown in Figure 9.Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 19 
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Comparison reveals that all three algorithms can guarantee operation of the motor at the target
speed of 0.1 mrad/s. However, there are obvious nonlinear noises in the operation curve of the digital
PID controller, the maximum absolute speed error of the PID control accuracy is 37.3 µrad/s, with an
absolute error root of mean square (RMS) of 8.3 µrad/s and an average absolute error of 6.5 µrad/s.
The nonlinear noise was obviously suppressed for both the proposed method and the method described
in Ref. [22]. The maximum absolute speed error of the proposed SMC is 6.9 µrad/s, the absolute error
RMS is 1.5 µrad/s and the average absolute error is 1.2 µrad/s. These values are much higher than
those obtained for classical PID algorithm, and are slightly smaller than that obtained for the Ref. [22]
algorithm, which exhibited a maximum error of 8.3 µrad/s, an average error of 2.3 µrad/s, and RMS of
2.9 µrad/s. Therefore, highest control accuracy was obtained for the proposed chattering-free algorithm,
with slightly reduced the performance of the chatter-reduced algorithm described in Ref. [22] because
of chattering.

4.2. Sinusoidal Guidance Experiments

For the sinusoidal guidance experiments, the input signal was set to sinusoidal 0.1 mrad/s·sin(2
Tk), for a sampling time T = 0.001. The velocity sinusoidal guidance contrast curve and sinusoidal
guidance error curve are shown as follows.

According to the data presented in Figure 10, the pitch axis motor exhibits smooth sinusoidal
operation driven by three controllers, but there are large torque ripples because of nonlinear factors
such as friction and nonuniform torque. The data presented in Figure 11 show the absolute value of
error. When the servo turntable stably tracks the sinusoidal guidance signal, the absolute error RMS of
the PID algorithm is 13.7 µrad/s, the average absolute error is 9.9 µrad/s, and the maximum absolute
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error is 46 µrad/s. The absolute error RMS of the chatter-reduced algorithm described in Ref. [22] is
2.8 µrad/s, the average absolute error is 2.4 µrad/s, and the maximum absolute error is 15.6 µrad/s.
The absolute error RMS of the proposed chatter-free algorithm is 2.3 µrad/s, the average absolute
error is 2.1 µrad/s, and the maximum absolute error is 8.1 µrad/s. There is obvious high frequency
noise caused by chattering using the algorithm from [22], but this noise is not present when using the
proposed chatter-free algorithm. Therefore, to more clearly analyze the frequency distribution of noise,
the sinusoidal guidance absolute error was next analyzed by single-sided Fourier transform in the
frequency domain, as shown in Figure 12.
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According to the results presented in Figure 12, nonlinear disturbance can be effectively suppressed
by both the proposed and the algorithm described in [22]. The PID linear controller exhibits limited
ability to suppress medium and low frequency noise. There is obvious high frequency noise in the
error curve caused by the sliding mode chattering of the Ref. [22] chatter-reduced algorithm, reducing
the accuracy and the stability of the system. The high frequency noise is significantly reduced by the
proposed chatter-free algorithm.

Meanwhile, it is noted that the biased error generated by the proposed algorithm means that
the switching gain is not the optimal, but it is sufficient to prove the advancement of the proposed
algorithm. If the switching gain is set to be larger, κT = 0.7, the biased error can be eliminated as shown
in Figure 13.
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4.3. Closed-Loop Sweep Experiment

In the closed-loop sweep experiment, the input sweep signal was set as shown in Equation (1),
the amplitude was set to 1 mrad/s, and the frequency range was set to 0.01 Hz–200 Hz. The closed-
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loop sweep curve of pitch axis and the frequency characteristic curve of control system are shown in
Figures 14 and 15.
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According to the frequency characteristic curves shown in Figures 14 and 15, the closed-loop
bandwidth of the proposed algorithm is ~9.85‘Hz, slightly higher than that of the digital PID, ~9.05 Hz.
The closed-loop bandwidth using the Ref. [22] algorithm is the smallest, ~8.7 Hz. Therefore, the
dynamic performance of the proposed chatter-free algorithm is much better than that of the previously
described chatter-reduced algorithm [22]. The resonance peak of the proposed algorithm is ~1.41 dB,
which is much smaller than that of the previous algorithm [22] of ~3.87 dB. The resonance peak of
the digital PID is the largest, ~8.05 dB. The smaller the resonance peak is, the better the stability of
the system.
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4.4. Summary

All results of the three experiments are shown in Table 1.

Table 1. Summary of experimental results.

Value Fixed Speed Signal (µrad/s) Sinusoidal Guidance (µrad/s) Closed-loop Sweep

Algorithms RMS Average Maximum RMS Average Maximum Closed-loop
Bandwidth

Resonance
Peak

PID 8.3 6.5 37.3 13.7 9.9 4.6 9.05Hz 8.05dB
Ref. [22] 2.9 2.3 10.5 2.8 2.4 15.6 8.7Hz 3.87dB
Proposed 1.5 1.2 6.9 2.3 2.1 8.1 9.85Hz 1.41dB

5. Conclusion

In this study the pitch axis of the ground-based laser communication servo turntable was
considered as the research object, and the frequency domain characteristic of the pitch axis was tested
by the sweeping frequency method. Based on the frequency domain characteristic curve, the pitch axis
system model was established using a classical model identification method and analyzing the influence
of nonlinear disturbance on the system. To address the problems of model identification error and
nonlinear disturbance, a novel chatter-free SMC algorithm with a disturbance compensator is proposed.
The new algorithm is robust to the system model identification error, friction, and other nonlinear
disturbances, and shows good stability by both theoretical calculation and simulation techniques.
Finally, the digital PID controller, the chatter-reduced sliding mode controller [22], and the proposed
chatter-free sliding mode controller were tested in closed-loop control experiments of pitch axis speed
with rated, sinusoidal, or sweep input. The experimental results show that the proposed chatter-free
algorithm exhibits higher control accuracy, stronger anti-interference ability, better frequency domain
characteristics, and also suppresses chattering for an effective ground-based laser communication
servo turntable control system.

The study of the overestimation and underestimation problems of the switching gain when the
states are stable in the QSMD will be explored in our future work.
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