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Abstract: Speech synthesis, also known as text-to-speech (TTS), has attracted increasingly more
attention. Recent advances on speech synthesis are overwhelmingly contributed by deep learning
or even end-to-end techniques which have been utilized to enhance a wide range of application
scenarios such as intelligent speech interaction, chatbot or conversational artificial intelligence (AI).
For speech synthesis, deep learning based techniques can leverage a large scale of <text, speech>
pairs to learn effective feature representations to bridge the gap between text and speech, thus better
characterizing the properties of events. To better understand the research dynamics in the speech
synthesis field, this paper firstly introduces the traditional speech synthesis methods and highlights
the importance of the acoustic modeling from the composition of the statistical parametric speech
synthesis (SPSS) system. It then gives an overview of the advances on deep learning based speech
synthesis, including the end-to-end approaches which have achieved start-of-the-art performance in
recent years. Finally, it discusses the problems of the deep learning methods for speech synthesis,
and also points out some appealing research directions that can bring the speech synthesis research
into a new frontier.
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1. Introduction

Speech synthesis, more specifically known as text-to-speech (TTS), is a comprehensive technology
that involves many disciplines such as acoustics, linguistics, digital signal processing and statistics.
The main task is to convert text input into speech output. With the development of speech synthesis
technologies, from the previous formant based parametric synthesis [1,2], waveform concatenation
based methods [3–5] to the current statistical parametric speech synthesis (SPSS) [6], the intelligibility
and naturalness of the synthesized speech have been improved greatly. However, there is still a long
way to go before computers can generate natural speech with high naturalness and expressiveness
like that produced by human beings. The main reason is that the existing methods are based on
shallow models that contain only one-layer nonlinear transformation units, such as hidden Markov
models (HMMs) [7,8] and maximum Entropy (MaxEnt) [9]. Related studies show that shallow models
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have good performance on data with less complicated internal structures and weak constraints.
However, when dealing with the data having complex internal structures in the real world (e.g., speech,
natural language, image, video, etc.), the representation capability of shallow models will be restricted.

Deep learning (DL) is a new research direction in the machine learning area in recent years.
It can effectively capture the hidden internal structures of data and use more powerful modeling
capabilities to characterize the data [10]. DL-based models have gained significant progress in many
fields such as handwriting recognition [11], machine translation [12], speech recognition [13] and
speech synthesis [14]. To address the problems existing in speech synthesis, many researchers have
also proposed the DL-based solutions and achieved great improvements. Therefore, to summarize the
DL-based speech synthesis methods at this stage will help us to clarify the current research trends in
this area. The rest of the article is organized as follows. Section 2 gives an overview of speech synthesis
including its basic concept, history and technologies. In Section 3, this paper introduces the pipeline
of SPSS. A brief introduction is given in Section 4 about the DL-based speech synthesis methods
including the end-to-end ones. Finally, Section 5 provides discussions on new research directions.
Finally, Section 6 concludes the article.

2. An Overview of Speech Synthesis

2.1. Basic Concept of Speech Synthesis

Speech synthesis or TTS is to convert any text information into standard and smooth speech in
real time. It involves many disciplines such as acoustics, linguistics, digital signal processing, computer
science, etc. It is a cutting-edge technology in the field of information processing [15], especially for
the current intelligent speech interaction systems.

2.2. The History of Speech Synthesis

With the development of digital signal processing technologies, the research goal of speech
synthesis has been evolving from intelligibility and clarity to naturalness and expressiveness.
Intelligibility describes the clarity of the synthesized speech, while naturalness refers to ease of
listening and global stylistic consistency [16].

In the development of speech synthesis technology, early attempts mainly used parametric
synthesis methods. In 1971, the Hungarian scientist Wolfgang von Kempelen used a series of delicate
bellows, springs, bagpipes and resonance boxes to create a machine that can synthesize simple words.
However, the intelligibility of the synthesized speech is very poor. To address this problem, in 1980,
Klatt’s serial/parallel formant synthesizer [17] was introduced. The most representative one is the
DECtalk text-to-speech system of the Digital Equipment Corporation (DEC) (Maynard, MA, USA).
The system can be connected to a computer through a standard interface or separately connected
to the telephone network to provide a variety of speech services that can be understood by users.
However, since the extraction of the formant parameters is still a challenging problem, the quality of
the synthesized speech makes it difficult to meet the practical demand. In 1990, the Pitch Synchronous
OverLap Add (PSOLA) [18] algorithm greatly improved the quality and naturalness of the speech
generated by the time-domain waveform concatenation synthesis methods. However, since PSOLA
requires the pitch period or starting point to be annotated accurately, the error of the two factors
will affect the quality of the synthesized speech greatly. Due to the inherent problem of this kind of
method, the synthesized speech is still not as natural as human speech. To tackle the issue, people
conducted in-depth research on speech synthesis technologies, and used SPSS models to improve
the naturalness of the synthesized speech. Typical examples are HMM-based [19] and DL-based [20]
synthesis methods. Extensive experimental results demonstrate that the synthesized speech of these
models has been greatly improved in both speech quality and naturalness.
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2.3. Traditional Speech Synthesis Technology

To understand why deep learning techniques are being used to generate speech today, it is
important to know how speech generation is traditionally done. There are two specific methods for
TTS conversion: concatenative TTS and parametric TTS. This paper will give a brief introduction to
the two kinds of methods in the following sections.

2.3.1. Concatenative Speech Synthesis

The waveform concatenation based synthesis method directly concatenates the waveforms in the
speech waveform database and outputs a continuous speech stream. Its basic principle is to select the
appropriate speech unit from the pre-recorded and labeled speech corpus according to the context
information analyzed from the text input, and concatenate the selected speech unit to obtain the final
synthesized speech. With the guidance of the context infomation, the naturalness of the synthesized
speech has been improved greatly.

There are two different schemes for concatenative synthesis: one is based on linear prediction
coefficients (LPCs) [21], the other is based on PSOLA. The first method mainly uses the LPC coding of
speech to reduce the storage capacity occupied by the speech signal, and the synthesis is also a simple
decoding and concatenation process. The speech synthesized by this method is very natural for a single
word because the codec preserves most of the information of the speech. However, since the natural
flow of words when people actually speak is not just a simple concatenation of individual isolated
speech units, the overall effect will be affected by the concatenative points. To address this problem,
PSOLA, which pays more attention to the control and modification of prosody, has been proposed.
Different from the former method, PSOLA adjusts the prosody of the concatenation unit according to
the target context, so that the final synthesized waveform not only maintains the speech quality of the
original pronunciation, but also makes the prosody features of the concatenation unit conform to the
target context. However, this method also has many defects: (1) as stated in Section 2.2, the quality
of the synthesized speech will be affected by the pitch period or starting point; and (2) the problem
of whether it can maintain a smooth transition has not been solved. These defects greatly limit its
application in diversified speech synthesis [22].

2.3.2. Parametric Speech Synthesis

The parametric speech synthesis refers to the method that uses digital signal processing
technologies to synthesize speech from text. In this method, it considers the human vocal process as
a simulation that uses a source of glottal state to excite a time-varying digital filter which characterizes
the resonance characteristics of the channel. The source can be a periodic pulse sequence that is
used to represent the vocal cord vibration of the voiced speech, or a random white noise to indicate
undefined unvoiced speech. By adjusting the parameters of the filter, it can synthesize various types
of speeches [15]. Typical methods include vocal organ parametric synthesis [23], formant parametric
synthesis [24], HMM-based speech synthesis [25], and deep neural network (DNN)-based speech
synthesis [26,27].

3. Statistical Parametric Speech Synthesis

A complete SPSS system is generally composed of three modules: a text analysis module,
a parameter prediction module which uses a statistical model to predict the acoustic feature parameters
such as fundamental frequency (F0), spectral parameters and duration, and a speech synthesis
module. The text analysis module mainly preprocesses the input text and transforms it into linguistic
features used by the speech synthesis system, including text normalization [28], automatic word
segmentation [20], and grapheme-to-phoneme conversion [29]. These linguistic features usually
include phoneme, syllable, word, phrase and sentence-level features. The purpose of the parameter
prediction module is to predict the acoustic feature parameters of the target speech according to
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the output of the text analysis module. The speech synthesis module generates the waveform of
the target speech according to the output of the parameter prediction module by using a particular
synthesis algorithm. The SPSS is usually divided into two phases: the training phase and the synthesis
phase. In the training phase, acoustic feature parameters such as F0 and spectral parameters are firstly
extracted from the corpus, and then a statistical acoustic model is trained based on the linguistic
features of the text analysis module as well as the extracted acoustic feature parameters. In the
synthesis phase, the acoustic feature parameters are predicted using the trained acoustic model with
the guidance of the linguistic features. Finally, the speech is synthesized based on the predicted
acoustic feature parameters using a vocoder.

3.1. Text Analysis

Text analysis is an important module of the SPSS model. Traditional text analysis methods
are mainly rule-based, which require a lot of time to collect and learn these rules. With the
rapid development of data mining technology, some data-driven methods have been gradually
developed, such as the bigram method, trigram method, HMM-based method and DNN-based
method. When using the latter two methods for text analysis, the Festival [4] system is usually used to
perform phoneme segmentation and annotation on the corpus, which mainly includes the following
five levels:

Phoneme level: the phonetic symbols of the previous before the previous, the previous, the current,
the next or the next after the next; the forward or backward distance of the current phoneme
within the syllable.

Syllable level: whether the previous, the current or the next syllable is stressed; the number of
phonemes contained in the previous, the current or the next syllable; the forward or the backward
distance of the current syllable within the word or phrase; the number of the stressed syllables before
or after the current syllable within the phrase; the distance from the current syllable to the forward or
backward most nearest stressed syllable; the vowel phonetics of the current syllable.

Word level: the part of speech (POS) of the previous, the current or the next word; the number of
syllables of the previous, the current or the next word; the forward or backward position of the current
word in the phrase; the forward or backward content word of the current word within the phrase;
the distance from the current word to the forward or backward nearest content word; the POS of the
previous, the current or the next word.

Phrase level: the number of syllables of the previous, the current or the next phrase; the number
of words of the previous, the current or the next phrase; the forward or backward position of the
current phrase in the sentence; the prosodic annotation of the current phrase.

Sentence level: The number of syllables, words or phrases in the current sentence.

3.2. Parameter Prediction

Parameter prediction is used to predict acoustic feature parameters based on the result of the
text analysis module and the trained acoustic model. For the SPSS, there are usually two kinds
of parameter prediction methods: HMM-based parameter prediction and DNN-based parameter
prediction. This paper will give a review of these methods in the following.

3.2.1. HMM-Based Parameter Prediction

The HMM-based parameter prediction method mainly generates the sequence of F0 and spectral
parameters from the trained HMMs. It is achieved by calculating the sequence of acoustic features
with the maximum likelihood estimation (MLE) algorithm given a Gaussian distribution sequence.
Due to the differences between F0 and spectral parameters, different methods have been adopted to
model the two kinds of feature parameters. For the continuous spectral parameters, the continuous
density hidden Markov model (CD-HMM) is used and the output of each HMM state is a single
Gaussian or a Gaussian mixture model (GMM) [27]. However, for the variable-dimensional F0
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parameters which include voiced and unvoiced regions, it is difficult to apply discrete or continuous
HMMs because the values of F0 are not defined in unvoiced regions. To address this problem,
the HMM-based method adopts multi-space probability distribution to model the voiced and unvoiced
regions (e.g., voiced/unvoiced (V/UV) parameters), separately. To improve the accuracy and flexibility
of acoustic parameter prediction, the authors in [28] introduce the articulatory feature that is related to
the speech generation mechanism and integrates it with the acoustic features.

3.2.2. DNN-Based Parameter Prediction

It is well known that the acoustic features of a particular phoneme will be affected by the
context information associated with the phoneme [30]. It means that the context information plays
a significant role in the prediction of the acoustic features. Researchers show that the human speech
generation process usually uses a hierarchical structure to convert the context information into a speech
waveform [31]. Inspired by this idea, the deep structure models have been introduced in predicting
acoustic feature parameters for speech synthesis [32]. The framework of the DNN-based parameter
prediction progress can be seen in [20].

To compare with the HMM-based parameter prediction methods, the DNN-based methods can
not only map complex linguistic features into acoustic feature parameters, but also use long short-term
context information to model the correlation between frames which improves the quality of speech
synthesis. In addition, for the HMM-based methods, the principal of MLE is used to maximize
the output probability which makes the parameter sequence a mean vector sequence, resulting in
a step-wise function. The jumps cause discontinuities in the synthesized speech. To address this
problem, the maximum likelihood parameter generation (MLPG) algorithm is used to smooth the
trajectory by taking the dynamic features including the delta and delta–delta coefficients into account.
However, the DNN-based methods cannot suffer from this problem.

3.3. Vocoder-Based Speech Synthesis

Speech synthesizer or vocoder is an important component of statistical parametric speech
synthesis, which aims at synthesizing speech waveform based on the estimated acoustic feature
parameters. Traditional methods usually use the HTS_engine [33] synthesizer since it is free and
fast to synthesize speech. However, the synthesized speech usually sounds dull, thus making the
quality not good. To improve the quality of the synthesized speech, STRAIGHT [34,35] is proposed
and used in various studies, making it easy to manipulate speech. Other methods such as phase
vocoder [36], PSOLA [18] and sinusoidal model [37] are also proposed. Legacy-STRAIGHT [38] and
TANDEM-STRAIGHT [38] were developed as algorithms to meet the requirements for high-quality
speech synthesis. Although these methods can synthesize speech with good quality, the speed still
cannot meet the real-world application scenarios. To address this problem, real-time methods remain
a popular research topic. For example, the authors in [34] proposed the real-time STRAIGHT as a way
to meet the demand for real-time processing. The authors in [38] proposed a high-quality speech
synthesis system which used WORLD [39] to meet the requirements of not only high sound quality
but also real-time processing.

4. Deep Learning Based Speech Synthesis

It is known that the HMM-based speech synthesis method maps linguistic features into probability
densities of speech parameters with various decision trees. Different from the HMM-based method,
the DL-based method directly perform mapping from linguistic features to acoustic features with
deep neural networks which have proven extraordinarily efficient at learning inherent features of
data. In the long tradition of studies that adopt DL-based method for speech synthesis, people have
proposed numerous models. To help readers better understand the development process of these
methods (Audio samples of different synthesis methods are given at: http://www.ai1000.org/sampl
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es/index.html.), this paper gives a brief overview of the advantages and disadvantages in Table 1 and
makes a detailed introduction in the following.

Table 1. The advantages and disadvantages of different speech synthesis methods, including
hidden Markov model (HMM), restrictive Boltzmann machine (RBM), deep belief network (DBN),
deep mixture density network (DMDN), deep bidirectional long short-term memory (DBLSTM),
WaveNet, Tacotron and convolutional neural network (CNN).

Methods Advantages Disadvantages

HMM Flexible with changing voice characteristics and the
system is robust

The acoustic features are oversmoothed,
making the generated speech sounds muffled

RBM Can better describe the distribution of high-dimensional
spectral envelopes to alleviate the over-smooth problem

Suffer from the fragementation problem of
training data

DBN Cannot suffer from the training data fragementation
problem and reduce the over-smoothing problem

The quality of generated speech
will be degraded

DMDN Can solve the single modality problem Can only leverage limited contexts and each
frame is mapped independently

DBLSTM Can fully leverage contextual information Still needs a vocoder to synthesize waveform

WaveNet Can produce high-quality speech waveforms Too slow and the errors from the front-end
will affect the synthesis effect

Tacotron Fully end-to-end speech synthesis model and
can produce high-quality speech waveforms Quite costly to train the model

CNN Fast to train the model The speech quality might be degraded

4.1. Restrictive Boltzmann Machines for Speech Synthesis

In recent years, restricted Boltzmann machines (RBMs) [40] have been widely used for
modeling speech signals, such as speech recognition, spectrogram coding and acoustic-articulatory
inversion mapping [40]. In these applications, RBM is often used for pre-training of deep
auto-encoders (DAEs) [41,42] or DNNs. In the field of speech synthesis, RBM is usually regarded as
a density model for generating the spectral envelope of acoustic parameters. It is adopted to better
describe the distribution of high-dimensional spectral envelopes to alleviate the over-smooth problem
in HMM-based speech synthesis [40]. After training the HMMs, a state alignment is performed for
the acoustic features and the state boundaries are used to collect the spectral envelopes obtained from
each state. The parameters of the RBM are estimated using the maximum likelihood estimation (MLE)
criterion. Finally, RBM–HMMs are constructed to model the spectral envelopes. In the synthesis
phase, the optimal spectral envelope sequence is estimated based on the input sentence and the
trained RBM–HMMs. Although the subjective evaluation result of this method is better than that of
traditional HMM–GMM systems, and the predicted spectral envelope is closer to the original one, this
method still cannot solve the fragementation problem of training data encountered in the traditional
HMM-based method.

4.2. Multi-Distribution Deep Belief Networks for Speech Synthesis

The multi-distribution deep belief network (DBN) [43] is a method of modeling the joint
distribution of context information and acoustic features. It models the coutinuous spectral, discrete
voiced/unvoiced (V/UV) parameters and the multi-space F0 simultaneously with three types of RBMs.
Due to the different data types of the 1-out-of-K code, the F0, the spectral and the V/UV parameters,
the method uses the 1-out-of-K code of the syllable and its corresponding acoustic parameters as
the visible-layer data of the RBM to train the RBMs. In DBNs, the visible unit can obey different
probability distributions; therefore, it is possible to characterize the supervectors that are composed of
these features. In the training phase, given the 1-out-of-K code of the syllable, the network fixes the
visible-layer units to calculate the hidden-layer parameters firstly, and then uses the parameters of
the hidden layers to calculate the visible-layer parameters until convergence. Finally, the predicted
acoustic features are interpolated based on the length of the syllable.

http://www.ai1000.org/samples/index.html
http://www.ai1000.org/samples/index.html
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The advantage of this method is that all the syllables are trained in the same network, and all
the data are used to train the same RBM or DBN. Therefore, it cannot suffer from the training data
fragementation problem. In addition, modeling the acoustic feature parameters of a syllable directly
can describe the correlation of each frame of the syllable and the correlation of different dimensions
of the same frame. The method avoids averaging the frames corresponding to the same syllable,
thus reducing the over-smooth phenomenon. However, since this method does not distinguish
syllables in different contexts, it still averages the acoustic parameters corresponding to the same
syllable. In addition, compared to the high-dimensional spectral parameters, the one-dimensional F0s
don’t contribute much to the model, thus making the predicted F0s contain a lot of noise that reduces
the quality of the synthesized speech.

4.3. Speech Synthesis Using Deep Mixture Density Networks

Although the DNN-based speech synthesis model can synthesize speech with high naturalness,
it still has some limitations to model acoustic feature parameters, such as the single modality
of the objective function and the inability to predict the variance. To address these problems,
the authors in [44] proposed the parameter prediction method based on a deep mixture density
network, which uses a mixture density output layer to predict the probability distribution of output
features under given input features.

4.3.1. Mixture Density Networks

Mixed density networks (MDNs) [45] can not only map input features to GMM parameters
(such as the mixture weights, mean and variance), but also give the joint probability density function
of y given input features x. The joint probability density function is expressed as follows:

p(y|x, M) =
M

∑
m=1

wm(x) · N
(
y; µm(x), σ2

m(x)
)
, (1)

where M is the number of mixture components, and wm(x), µm(x) and σ2
m(x) are the mixture weights,

mean and variance of the m-th Gaussian component of GMM, respectively. The parameters of the
GMM can be calculated based on MDN with Equations (2)–(4):

wm(x) =
exp
(
z(w)

m (x, M)
)

∑M
l=1 exp

(
z(w)

l (x, M)
) , (2)

σm(x) = exp
(
z(σ)m (x, M)

)
, (3)

µm(x) = z(µ)m (x, M), (4)

where z(w)
m (x, M), z(µ)m (x, M) and z(σ)m (x, M) are the excitation of the MDN output layer corresponding

to the mixture weights, mean and variance of the m-th Gaussian component, respectively. Finally,
given the input/output pair of the training data in Equation (5), the model is trained by maximizing
the log likelihood of M, which is expressed as Equation (6):

D =
{(

x(1)1 , y(1)1

)
, ...,

(
x(1)T(1), y(1)T(1)

)
, ...,

(
x(N)

1 , y(N)
1

)
, ...,

(
x(N)

T(N)
, y(N)

T(N)

)}
, (5)

M̂ = arg max
M

N

∑
n=1

T(n)

∑
t=1

logp
(

y(n)t |x
(n)
t , M

)
, (6)

where N is the number of sentences and T(n) is the number of frames in the nth sentence.
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4.3.2. Deep MDN-Based Speech Synthesis

When predicting speech parameters with deep MDN, the text prompt is first converted into
a linguistic feature sequence {x1, x2, ..., xT}, and then the duration of each speech unit is predicted
using a duration prediction model. The acoustic features including the F0, spectral parameters and
their corresponding dynamic features are estimated with the forward algorithm and the trained deep
MDN. Finally, the acoustic feature parameters are generated by the parameter generation algorithm
and speech is synthesized with a vocoder.

4.4. Deep Bidirectional LSTM-Based Speech Synthesis

Although the deep MDN speech synthesis model can solve the single modality problem of the
objective function and predict the acoustic feature parameters accurately to improve the naturalness
of the synthesized speech, there are still some problems as elaborated in the following. Firstly,
MDN can only leverage limited contextual information since it can only model fixed time span
(e.g., fixed number of preceding or succeeding contexts) for input features. Secondly, the model
can only do frame-by-frame mapping (e.g., each frame is mapped independently). To address these
problems, the authors in [46] proposed a modeling method based on recurrent neural networks (RNNs).
The advantage of RNN is the ability to utilize context information when mapping inputs to outputs.
However, traditional RNNs can only access limited context information since the effects of a given
input on the hidden layer and the output layer will decay or explode as it propagates through the
network. In addition, this algorithm also cannot learn long-term dependencies.

To address these problems, the authors in [47] introduced a memory cell and proposed the long
short-term memory (LSTM) model. To fully leverage contextual information, bidirectional LSTM [48]
is mostly used for mapping the input linguistic features to acoustic features.

4.4.1. BLSTM

BLSTM-RNN is an extended architecture of bidirectional recurrent neural network (BRNN) [49].
It replaces units in the hidden layers of BRNN with LSTM memory blocks. With these memory
blocks, BLSTM can store information for long and short time lags, and leverage relevant contextual
dependencies from both forward and backward directions for machine learning tasks. With a forward
and a backward layer, BLSTM can utilize both the past and future information for modeling.

Given an input sequence x = (x1, x2, ..., xT), BLSTM computes the forward hidden sequence
→
h

and the backward hidden sequence
←
h by iterating the forward layer from t = 1 to T and the backward

layer from t = T to 1:

→
h t= φ

(
W

x
→
h

xt + W→
h
→
h

→
h t−1 +b→

h

)
, (7)

←
h t= φ

(
W

x
←
h

xt + W←
h
←
h

←
h t+1 +b←

h

)
. (8)

The output layer is connected to both forward and backward layers, thus the output sequence
can be written as:

yt = W→
h y

→
h t +W←

h y

←
h t +by. (9)

The notations of these equations are explained in [49] and φ(·) is the activation function which
can be implemented by the LSTM block with equations in [49].

4.4.2. Deep BLSTM-Based Speech Synthesis

When using a deep BLSTM-based (DBLSTM) model to predict acoustic parameters, first we need
to convert the input text prompt into a feature vector, and then use the DBLSTM model to map the
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input feature to acoustic parameters. Finally, the parameter generation algorithm is used to generate
the acoustic parameters and a vocoder is utilized to synthesize the corresponding speech. For instance,
the authors in [48] proposed a multi-task learning [50,51] of structured output layer (SOL) BLSTM
model for speech synthesis, which is capable of balancing the error cost functions associated with
spectral feature and pitch parameter targets.

4.5. Sequence-to-Sequence Speech Synthesis

Sequence-to-sequence (seq2seq) neural networks can transduce an input sequence into an output
sequence that may have a different length and have been applied to various tasks such as machine
translation [52], speech recognition [53] and image caption generation [54], and achieved promising
results. Since speech synthesis is the reverse process of speech recognition, the seq2seq modeling
technique has also been applied to speech synthesis recently. For example, the authors in [55] employed
the structure with content-based attention [56] to model the acoustic features for speech synthesis.
Char2Wav [16] adopted location-based attention to build an encoder–decoder acoustic model. To tackle
the instability problem of missing or repeating phones that current seq2seq models still suffer from,
the authors in [57] proposed a forward attention approach for the seq2seq acoustic modeling of speech
synthesis. Tacotron, which is also a seq2seq model with an attention mechanism, has been proposed to
map the input text to mel-spectrogram for speech synthesis.

4.6. End-to-End Speech Synthesis

A TTS system typically consists of a text analysis front-end, an acoustic model and a speech
synthesizer. Since these components are trained independently and rely on extensive domain expertise
which are laborious, errors from each component may compound. To address these problems,
end-to-end speech synthesis methods which combine those components into a unified framework
have become mainstream in the speech synthesis field. There are many advantages of an end-to-end
TTS system: (1) it can be trained based on a large scale of <text, speech> pairs with minimum human
annotation; (2) it doesn’t require phoneme-level alignment; and (3) errors cannot compound since
it is a single model. In the following, we will give a brief introduction to the end-to-end speech
synthesis methods.

4.6.1. Speech Synthesis Based on WaveNet

WaveNet [58], which is evolved from the PixelCNN [59] or PixelRNN [60] model applied in
image generation field, is a powerful generative model of raw audio waveforms. It was proposed
by Deepmind (London, UK) in 2016 and opens the door for end-to-end speech synthesis. It is
capable of generating relatively realistic-sounding human-like voices by directly modeling waveforms
using a DNN model which is trained with recordings of real speech. It is a complete probabilistic
autoregressive model that predicts the probability distribution of the current audio sample based on
all samples that have been generated before. As an important component of WaveNet, dilated causal
convolutions are used to ensure that WaveNet can only use the sampling points from 0 to t− 1 while
generating the tth sampling point.

The original WaveNet model uses autoregressive connections to synthesize waveforms one
sample at a time, with each new sample conditioned on the previous ones. The joint probability of
a waveform X = {x1, x2, ..., xT} can be factorised as follows:

p(X) =
T−1

∏
i=0

p(xi+1|x1, x2, ..., xi). (10)

Like other speech synthesis models, WaveNet-based models can be divided into training phase
and generation phase. At the training phase, the input sequences are real waveforms recorded from
human speakers. At the generation phase, the network is sampled to generate synthetic utterances.



Appl. Sci. 2019, 9, 4050 10 of 16

To generate speech of the specified speaker or the specified text, global and local conditions are usually
introduced to control the synthesis contents.

While the WaveNet model can produce high-quality audios, it still suffers from the following
problems: (1) it is too slow because the prediction of each sampling point always depends on the
predicted sampling points before; (2) it also depends on linguistic features from an existing TTS
front-end and the errors from the front-end text analysis will directly affect the synthesis effect.

To address these problems, the parallel WaveNet is proposed to improve the sampling efficiency.
It is capable of generating high-fidelity speech samples at more than 20 times faster [61]. Another neural
model, Deep Voice [62], is also proposed to replace each component including a text analysis front-end,
an acoustic model and a speech synthesizer by a corresponding neural network. However, since each
component is trained independently, it is not a real end-to-end synthesis.

4.6.2. Speech Synthesis Based on Tacotron

Tacotron [63,64] is a fully end-to-end speech synthesis model. It is capable of training a speech
synthesis model given <text, audio> pairs, thus alleviating the need for laborious feature engineering.
In addition, since it is based on character level, it can be applied in almost all kinds of languages
including Chinese Mandarin.

Like WaveNet, the Tacotron model is also a generative model. Different from WaveNet, Tacotron
uses a seq2seq model with an attention mechanism to map text to a spectrogram, which is a good
representation of speech. Since a spectrogram doesn’t contain phase information, the system uses
the Griffin–Lim algorithm [65] to reconstruct the audio by estimating the phase information from the
spectrogram iteratively. The overall framework of the Tacotron speech synthesis model can be seen
in [63].

Since Tacotron is a fully end-to-end model that directly maps the input text to mel-spectrogram,
it has received a wide amount of attention of researchers and various improved versions have been
proposed. For example, some researchers implemented open clones of Tacotron [66–68] to reproduce
the speech of satisfactory quality as clear as the original work [69]. The authors in [70] introduced deep
generative models, such as Variational Auto-encoder (VAE) [71], to Tacotron to explicitly model the
latent representation of a speaker state in a continuous space, and additionally to control the speaking
style in speech synthesis [70].

There are also some works that combine Tacotron and WaveNet for speech synthesis, such as
Deep Voice 2 [72]. In this system, Tacotron is used to transform the input text to the linear scale
spectrogram, while WaveNet is used to generate speech from the linear scale spectrogram output of
Tacotron. In addition, the authors in [73] also proposed the Tacotron2 system to generate audio signals
that resulted in a very high mean opinion score (MOS) comparable to human speech [74]. The authors
in [73] described a unified neural approach that combines a seq2seq Tacotron-style model to generate
mel-spectrogram and a WaveNet vocoder to synthesize speech from the generated mel-spectrogram.

4.6.3. Speech Synthesis Based on Convolutional Neural Networks (CNNs)

Although the Tacotron-based end-to-end system has achieved promising performance recently,
it still has a drawback that there are many recurrent units. This kind of structure makes it quite costly to
train the model and it is also infeasible for researchers without high-performance machines to conduct
further research on it. To address this problem, a lot of works have been proposed. The authors
in [69] proposed a deep convolutional network with guided attention which can be trained much faster
than the RNN-based state-of-the-art neural system. Different from the WaveNet model, which utilized
the fully-convolutional structure as a kind of vocoder or a back-end, Ref. [69] is rather a frond-end
(and most of back-end processing) that can synthesize a spectrogram. The authors in [75] used
CNN-based architecture for capturing long-term dependencies of singing voice and applied parallel
computation to accelerate the model train and acoustic feature generation processes. The authors
in [76] proposed a novel, fully-convolutional character-to-spectrogram architecture, namely Deep
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Voice 3, for speech synthesis, which enables fully parallel computation to make the training process
faster than that of using recurrent units.

5. Discussion

Compared with the concatenative speech synthesis method, the SPSS system can synthesize
speech with high intelligibility and naturalness. Due to the limitations of the HMM-based speech
synthesis model (such as the use of context decision trees to share speech parameters), the synthesized
speech is not vivid enough to meet the requirements of expressive speech synthesis. The DL-based
speech synthesis models adopt complete context information and distributed representation to replace
the clustering process of the context decision tree in HMM, and use multiple hidden layers to map
the context features to high-dimensional acoustic features, thus making the quality of the synthesized
speech better than the traditional methods.

However, the powerful representation capabilities of DL-based models have also brought some
new problems. To achieve better results, the models need more hidden layers and nodes, which will
undoubtedly increase the number of parameters in the network, and the time complexity and space
complexity for network training. When the training data are insufficient, the models usually have
over-fitting. Therefore, it requires a large amount of corpora and computing resources to train the
network. In addition, the DL-based models also require much more space to store the parameters.

There is no doubt that the existing end-to-end models are still far from perfect [77]. Despite many
achievements, there are still some challenging problems. Next, we will discuss some research directions:

• Investigating context features hidden in end-to-end speech synthesis. The end-to-end TTS
system, mostly back-end, has achieved state-of-the-art performance since it was proposed.
However, there is little progress in front-end text analysis, which extracts context features or
linguistic features that are very useful to bridge the gap between text and speech [78]. Therefore,
demonstrating what types of context information are utilized in end-to-end speech synthesis
system is a good direction in future.

• Semi-supervised or unsupervised training in end-to-end speech synthesis. Although end-to-end
TTS models have shown excellent results, they typically require large amounts of high-quality
<text, speech> pairs for training, which are expensive and time-consuming to collect.
It is important and of great significance to improve the data efficiency for end-to-end TTS training
by leveraging a large scale of publicly available unpaired text and speech recordings [79].

• The application of other speech related scenarios. In addition to the application of text-to-speech
in this paper, the application to other scenarios such as voice conversion, audio-visual speech
synthesis, speech translation and cross-lingual speech synthesis is also a good direction.

• The combination of software and hardware. At present, most deep neural networks require a lot
of calculations. Therefore, parallelization will be an indispensable part of improving network
efficiency. In general, there are two ways to implement parallelization: one is the parallelization
of the machines; the other is to use GPU parallelization. However, since writing GPU code
is still time-consuming and laborious for most researchers, it depends on the cooperation of
hardware vendors and software vendors, to provide the industry with more and more intelligent
programming tools.

6. Conclusions

Deep learning that is capable of leveraging large amount of training data has become an important
technique for speech synthesis. Recently, increasingly more researches have been conducted on
deep learning techniques or even end-to-end frameworks and achieved state-of-the-art performance.
This paper gives an overview to the current advances on speech synthesis and compare both of the
advantages and disadvantages among different methods, and discusses possible research directions
that can promote the development of speech synthesis in the future.
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