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Abstract: Ultrasonography or fluoroscopy-guided needle injection has been used for intra-articular
injection therapy against adhesive capsulitis and joint diseases. To improve the image-guided
intra-articular injection therapy, electrical impedance measurement based positioning of the needle
tip in the target tissue can be applied. The feasibility of the discrimination for the tissue layer at which
the disposable monopolar injection needle tip position was investigated using the discrete Fourier
transform (DFT)-based impedance measurement system and the ultrasound imaging device. The
electrical impedance spectra of the pork tissue measured in the frequency range of 200 Hz to 50 kHz
were characterized by designed equivalent circuit modeling analysis. The normalized impedance
data of the tissue layers (dermis, hypodermis, and muscle) were significantly different from each
other (p-value < 0.001). The DFT-based impedance measurement system with a monopolar injection
needle can be complementary to the image-guided intra-articular injection therapy.

Keywords: intra-articular injection therapy; monopolar needle; skin tissue of pork; ultrasonography;
electrical impedance monitoring

1. Introduction

Intra-articular injection therapy is used for the treatment of adhesive capsulitis [1] and joint diseases,
including rheumatoid arthritis and osteoarthritis [2]. In contrast to blind injections, imaging-guided
(ultrasonography or fluoroscopy) injections ensure better needle insertion and placement of injections
at target sites, thereby minimizing injection-induced adverse effects [3]. Ultrasound-guided injections
are a rapid and radiation-free technique; however, limited resolution in deep structures reduces the
accuracy of this modality. Additionally, greater operator effort is required to skillfully maneuver and
coordinate the movements of the probe held in one hand with the needle in the other [1]. Fluoroscopy
guided injections are associated with radiation exposure, and visualization of soft tissue structures
(particularly nerves and blood vessels) is limited with this modality [2]. Due to the limitations of
imaging-guided injections described above, the development of complementary methods for precise
needle positioning and effective drug administration in the pathological tissues is still required.
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To accurately detect the needle position in vivo, electrical impedance characterization of tissues can
be applied, which non-destructively measures in real-time the electrical properties of the tissue by using
a weak alternating electric field [4,5]. Kalvøy et al. reported the feasibility of the needle guidance in
clinical applications using the finite element method (FEM) simulation of electric fields to the electrical
impedance (EI) measurement on tissues [6]. The type of tissue can be characterized by analyzing the
electrical properties of the biological tissue determined by its morphological structure and physiological
condition, such as water contents, fat, consecutive tissue [7]. According to Vydyanathan et al., it is
possible to detect the needle position from extraneural to intraneural compartments in human peripheral
nerves by measuring a significant difference in EI [8]. Biological tissues structure shows two conducting
sections, the extra- and intercellular area is separated by insulating membranes. Both conductivity and
permittivity differ extensively between different biological tissues, and these factors also vary with
the frequency [9]. A dielectric property is, therefore, associated with biological tissue wherein the
relative permittivity reduces with increasing frequency [10]. Previous studies reported the monopolar,
bipolar, or quadripolar microelectrode integrated needle using impedance measurement for the tissue
characterization [3,11–16]. The microelectrode based impedance measurement showed the possibility
of tissue discrimination with needle guidance [3,13,14]. Park et al. presented the impedimetric sensor
based biopsy needle for the detection and extraction of suspected cancerous tissues [15]. Halonen et al.
introduced the novel Injeq IQ-Biopsy needle for real-time tissue identification and discrimination
by FEM simulation and biopsy experiment with 21 punctures in five tissue types [17]. Cheng et al.
introduced the catheter needle mounted by the electrical impedance sensor to improve the success rate of
intravenous catheter insertion [14]. Therefore, the utilization of the electrical impedance measurement
using the microelectrode integrated needles for diverse clinical applications is increasingly extended.

The monopolar injection needle is preferred rather than other electrode configurations when
aiming for intra-articular injection therapy since the sensing area of the needle tip is where the drug
is administered into the tissue. For the fast detection of the needle position in tissue, in this study, a
discrete Fourier transform (DFT)-based impedance monitoring system was developed and evaluated.
Since the electrical properties (conductivity, dielectric constant) of porcine tissues are similar to those
of human counterparts [18], the pork tissue was used for the impedance measurement using the
monopolar injection needle. While positioning the tip of the monopolar injection needle in the specific
tissue layer with the aid of ultrasonography, the electrical impedance data of the tissue layers were
monitored. The experimental result showed the feasibility of the developed DFT-based impedance
measurement system for real-time monitoring of the tip position of the monopolar injection needle in
the tissues.

2. Methods

2.1. Impedance Measurement System

For the setup of the electrical impedance measurement system, the configurable impedance
network analyzer (ADuCM350, Analog Devices, Norwood, Massachusetts, U.S) was prepared [19].
ADuCM350 mainly consists of a 16 MHz ARM CORTEX M3 processor and analog front end specially
designed for high precision data acquisition with digital to analog converter (DAC) and analog to
digital converter (ADC). A 12-bit DAC converts the digital data into an analog signal, having a
frequency range of 200 Hz to 50 kHz, which is applied to the biological tissue using the monopolar
injection needle (25 gauge, Chalgren Enterprises Inc., U.S) as a working electrode and the Ag/AgCl as
the counter electrode. The needle has the outer diameter of 0.51 mm, inner diameter of 0.260 mm, and
length of 50 mm. The outer wall of the needle electrode was insulted. The response analog signal as
converted to digital data by a 16-bit ADC which has the maximum sampling rate of 150 kS/s. A DFT
core carried 2048 DFT points and presented the complex value of the electrical impedance as real
and imaginary parts. The maximum amplitude of the current injected into the biological tissue was
restricted to 63 µA at 12.73 mV lower than the current value required for the safety of medical electrical
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equipment regulated by the International Electrotechnical Commission (IEC-60601) [20]. The DFT-based
impedance measurement system was controlled through serial communication by a LabVIEW based
graphical user interface (GUI). Although the basic code for the impedance measurement was given
by the manufacturer, the code was modified to measure the impedance spectrum at a logarithmic
frequency sweep and to continuously monitor the impedance data at a frequency and sampling time.
The accuracy of the impedance measurement system was evaluated by measuring the impedance
spectra of the RRC (resistor–resistor–capacitor) circuit model in comparison with the commercialized
product (SP-200, Biologic Science Instruments, France).

2.2. Experiments

As shown in Figure 1, the pork meat was placed in a laboratory tray filled with 700 ml of saline (0.9%
NaCl) solution which has a conductivity similar to the extracellular fluids [21] to prevent the drying of
tissue and to minimize the change of tissue impedance caused by the drying. A monopolar injection
needle (25 gauge, Chalgren Enterprises Inc., U.S) and Ag/AgCl electrodes (2223H, 3M Ltd. U.S) were
prepared for the working and counter electrodes, respectively. We placed the Ag/AgCl counter electrode
onto the skin surface of the pork tissue and manually inserted the tip of the monopolar injection needle
(working electrode) in the specific tissue layer with the aid of ultrasonography. After progressing the
tip of monopolar injection needle in different tissue layers of the pork (dermis, hypodermis, or muscle),
electrical impedance was measured at room temperature (22 ◦C) in the frequency range of 200 Hz
to 50 kHz. The impedance measurements were acquired at three different positions for each tissue
compartment (dermis, hypodermis, and muscle). The impedance data measured with respect to the
tissue layer were analyzed by equivalent circuit modeling to understand the electrical properties of
tissue. An ultrasonic-gel (ECO GEL 99, Seung Won Medical Ltd., Korea) was applied to the skin of the
biological tissue as supplementary material to avert an air space between the ultrasound transducer
and skin for creating a clear image. The continuous impedance at a frequency of 50 kHz was monitored
with a sampling rate of 19 S/s while moving and positioning the monopolar injection needle tip in the
specific tissue type. The recorded data from the tissues, the Student’s t-test were used to determine the
significant difference of the impedance data between different tissue layers of pork.
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needle injection working electrode (7), and Ag/AgCl counter electrode (8), (b) Schematic of the 
electrode configuration of the impedance measurement circuit. 
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tolerance) and C value by the DFT-based impedance measurement system (line) in comparison to the 
commercialized product (SP-200, Biologic Science Instruments, France). The impedance data 

Figure 1. (a) Experimental setup for impedance characterization of pork tissue including ADuCM350
discrete Fourier transform (DFT) based impedance measurement device (1), C program window (2),
LabVIEW GUI (3), ultrasound transducer (4), ultrasound image display (5), pork tissue (6), monopolar
needle injection working electrode (7), and Ag/AgCl counter electrode (8), (b) Schematic of the electrode
configuration of the impedance measurement circuit.

3. Result and Discussion

3.1. Accuracy Test of the Impedance Measurement System

The DFT-based impedance measurement system showed an accuracy for the impedance magnitude
of 1 kΩ to 20 kΩ in the frequency range of 200 Hz to 50 kHz. Figure 2 shows the real and imaginary part
of the impedance spectra of the RRC circuit measured with respect to different R (1% tolerance) and C
value by the DFT-based impedance measurement system (line) in comparison to the commercialized
product (SP-200, Biologic Science Instruments, France). The impedance data measured with the
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DFT-based impedance measurement system showed a good agreement with the commercialized
product, indicating the normal working of the system.
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Figure 2. (a,c,e) Real and (b,d,f) imaginary part of the impedance spectra of the resistor–resistor–
capacitor (RRC) circuit measured with respect to different (a,b) C1, (c,d) R1, or (e,f) R2 by
the DFT-impedance measurement system (ADuCM350) in comparison to the commercialized
product (SP-200).

3.2. Impedance Characterization of Porcine Tissue Using the Needle

The segmental layers of pork tissue used for the experiment, including the dermis, hypodermis,
and muscle is shown in Figure 3. From the ultrasound image of the pork tissue, the structure and
thickness of the tissue layers in the pork meat could be found. With the aid of ultrasonography, the
tip of the monopolar injection needle was successfully inserted and positioned in the specific tissue
layer. The electrical impedance data of the tissue layers were measured while the needle position was
observed in real-time by ultrasonography.
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Figure 3. (a) Pork tissue used for the experiment, (b) ultrasound image of the pork tissue showing the
needle location in muscle layer indicated by the red colored boundary, and (c) the different thickness of
the tissue layers indicated by the red arrows.

Figure 4 shows the real and imaginary part of the measured impedance in the tissue layers of the
porcine, in the frequency range of 200 Hz to 50 kHz. The real part of the impedance in the case of the
dermis layer was higher than that of muscle and hypodermis in the measurement frequency due to
the presence of lipid components with high resistivity in the dermal tissue [22]. Whereas, the muscle
tissue showed higher conductivity compared to other tissue layers [11]. The impedance of the saline
(0.9% NaCl) solution, which has similar conductivity of the synovial fluid [23], was lower than other
tissue layers.
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Figure 4. (a) Real and (b) imaginary part of the impedance spectra measured in the pork tissue layer at
frequencies from 200 Hz to 50 kHz together with the fitted lines using the equivalent circuit model.

The imaginary part of the impedance measured in the tissue type could be discriminated at
frequencies higher than 10 kHz at which the magnitude of the electrode impedance decreased enough
to be ignored. The electrode impedance governed the total impedance magnitude at low frequencies
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because of the capacitive reactance of the electrode interface, which can be described using the constant
phase element (CPE) as follows:

CPEel =
1

T( jω)P
, (1)

where j is the imaginary unit, ω is the angular frequency, T and p are the parameters of the CPE.
At enough high frequencies, the total impedance is contributed to by not only the extra cellular

resistance but also the cell membrane and intracellular resistance [24]. The result of Figure 4b showed
that the reactance magnitude of the muscle was higher than other tissues. The relative permittivity of
the muscle was higher than the hypodermis [25].

The measured impedance spectra of muscle, hypodermis, and dermis were well fitted by the
equivalent circuit model shown in the inset of Figure 4b. The equivalent circuit consists of Rin and Rex

for the intra- and extracellular resistance respectively, Cm for the membrane capacitance, and CPEel for
electrode impedance. From the fitting analysis, the extrapolated values of the circuit parameters for
each tissue type are arranged in Table 1 with χ2 showing the precision of the data fitting.

Table 1. Extrapolated value of the circuit parameters from the fitting analysis against the experimentally
measured impedance spectra shown in Figure 4.

Tissue Type Rex(Ω) Rin(Ω) Cm(F)
CPEel χ2

P T(Ohm−1 sP)

Dermis 7426 ± 223.2 3608.3 ± 766.3 4.81 × 10−10
± 1.1 × 10−10 0.49 ± 0.09 3.02 × 10−06

± 1.3 × 10−06 0.001
Hypodermis 6786.6 ± 706.5 2622.6 ± 155.5 7.25 × 10−10

± 6.69 × 10−11 0.5 ± 0.05 2.86 × 10−06
± 7.61 × 10−07 0.001

Muscle 2437.6 ± 140.4 6750.6 ± 837.5 4.96 × 10−10
± 5.14 × 10−11 0.76 ± 0.011 7.7 × 10−07

± 3.86 × 10−08 0.0003

Each datum point represents the average of the analysis of triplicate values with standard deviation (n = 3).

The measured impedance of tissue using the monopolar needle was characterized by the total
complex impedance characteristics of each tissue layer. When the position of the needle was close
to the neighbored tissue, the impedance of the tissue was more affected by the electrical properties
of the neighbored tissue. However, the impedance characteristics of the different tissue layer could
be significantly separated. The impedance measurement with monopolar injection needle could not
analyze the impedance characteristics of each tissue layer from the total measured impedance data.
Despite the limitation of the monopolar needle that the measured impedance was varied with relative
distance between the two electrodes and the depth of the needle electrode, it was able to distinguish
the impedance of the dermis, hypodermis, or muscle.

3.3. Impedance Monitoring of the Needle Positioning

The extrapolation of tissue parameters from the fitting analysis with measured impedance spectra,
for example, Rex, Rin, and Cm may provide better discrimination for tissue types. This fitting analysis
needs to measure the impedance at least three different frequencies and to implement the algorithm
for extrapolating the circuit parameters. One limitation for this is that the needle should not be moved
until the fitting analysis is completely finished. However, we focused on the real-time monitoring of the
needle positioning, which requires fast signal analysis and processing, and monitored the impedance
at a fixed frequency at a sampling rate of 19 S/s. With this high speed of impedance measurement, the
dynamic needle position in different tissues layer could be detected in real-time.

The target of the intra-articular injection needle is synovial fluid which has a similar conductivity
to the saline (0.9% NaCl) solution [23]. Further, saline is commonly used as a joint irrigation solution.
Therefore, we investigated the impedance value of tissue layers relative to the saline. The impedance
spectra at three different positions in the specific tissue layer were measured and normalized with
respect to the values of the saline (0.9% NaCl) solution in the frequency range of 200 Hz to 50 kHz by
using Equation (2).

Znorm =
Ztissue

ZNaCl
. (2)
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From the normalized data of Figure 5, it is observed that the real parts of the impedance of tissues
were significantly discriminated from each other at the frequencies higher than 10 kHz. Considering
the variation of the real parts of the impedance of the tissue layer decreased with the increase in
frequency, we have selected a frequency of 50 kHz for the real-time monitoring of the needle position
in the tissue.
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saline (0.9% NaCl) solution from the measured spectra at three different positions in each tissue type.

Figure 6a presents the Student’s t-test (one-way ANOVA) to evaluate the difference between the
real part of the impedance value between different tissue types (n = 3) at 50 kHz. The results show that
the type of tissue compartment in the pork meat could be significantly discriminated from each other
(p < 0.001) using the monopolar injection needle and DFT-based impedance measurement system.
The deviation between impedance measurements in each layer of different pork tissues at 50 kHz is
under 3.7%. While in Figure 6b, the monopolar injection needle was progressed into different tissue
layers of the pork, and the real part of impedance at 50 kHz was recorded. When the needle tip was
positioned in the dermis from 0 s to 3.4 s, the measured impedance was higher than other tissue layers
because of the low conductive nature of the dermis tissue and sweat dust, hair follicles in the dermis
tissue [26]. As the needle tip was progressed into the hypodermis and paused for 4.04 s to 19.5 s to
obtain the impedance of the hypodermis. As expected, the real part of the impedance at 50 kHz was
significantly decreased due to the high conductivity of the hypodermis as compared to dermis [26].
Once the needle tip reached the muscle, it was paused for a period of 20.7 s to 36.9 s. The impedance
value decreased again corresponding to the lower resistance of the muscle than other tissues layers [11].
When the needle was withdrawn from the muscle compartment to hypodermal tissue, the needle
was paused for 37.4 s to 52.7 s, where the real part of impedance value was increased due to the high
resistive properties of the hypodermis tissue as compared to muscle. And at last, when the needle was
withdrawn into the dermal tissue, it was again paused for a period of 52.8 s to 70.09 s to measure the
impedance. The tissue impedance was again increased due to the resistive structure of dermis tissue.
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the movement of the monopolar injection needle into different tissue layers.

For future work, the current detection method needs to be improved by providing information
about the lateral and spatial position of the needle tip. For this, the distribution of the electric fields
or sensitivity fields in the complex tissue structure determined by different electrode configuration
is required to be investigated. Several research groups [6,17] reported the finite element simulation
of the electric fields surrounding the needle tip in different tissue models. The electrical impedance
tomography using a multi-electrode array is expected to provide the lateral and spatial information of
the needle [27,28]. Finally, the feasibility of the intra-articular injection therapy based on the impedance
monitoring with the monopolar injection needle and the algorithm to detect the target tissue will be
tested in an animal model and clinical trials.

4. Conclusions

For better intra-articular injection therapy, the electrical impedance measurement based positioning
of the monopolar injection needle tip was suggested, and its feasibility was tested on pork tissue. The
electrical impedance spectra of the tissue layer measured in the frequency range of 200 Hz to 50 kHz were
characterized by using the designed equivalent circuit model. The electrical impedance monitoring
with the monopolar injection needle showed significant discrimination of the tissue type among
dermis, hypodermis, and muscle (p-value < 0.0001). Based on the result, the DFT-based impedance
measurement system with monopolar injection needle is expected to be used as complementary to
the image guidance for the accurate positioning of the tip in the target tissue and for the efficient
intra-articular injection therapy.
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