
applied  
sciences

Review

Advances in Computational Fluid Mechanics in
Cellular Flow Manipulation: A Review

Masoud Arabghahestani 1,* , Sadegh Poozesh 2 and Nelson K. Akafuah 1

1 Institute of Research for Technology Development (IR4TD), University of Kentucky, Lexington, KY 40506,
USA; nelson.akafuah@uky.edu

2 Mechanical Engineering Department, Tuskegee University, Tuskegee, AL 36088, USA;
spoozesh@tuskegee.edu

* Correspondence: Masoud.arabghahestani@uky.edu; Tel.: +1-(859)-898-7700

Received: 28 August 2019; Accepted: 25 September 2019; Published: 27 September 2019
����������
�������

Abstract: Recently, remarkable developments have taken place, leading to significant improvements
in microfluidic methods to capture subtle biological effects down to single cells. As microfluidic
devices are getting sophisticated, design optimization through experimentations is becoming more
challenging. As a result, numerical simulations have contributed to this trend by offering a better
understanding of cellular microenvironments hydrodynamics and optimizing the functionality of the
current/emerging designs. The need for new marketable designs with advantageous hydrodynamics
invokes easier access to efficient as well as time-conservative numerical simulations to provide
screening over cellular microenvironments, and to emulate physiological conditions with high
accuracy. Therefore, an excerpt overview on how each numerical methodology and associated
handling software works, and how they differ in handling underlying hydrodynamic of lab-on-chip
microfluidic is crucial. These numerical means rely on molecular and continuum levels of numerical
simulations. The current review aims to serve as a guideline for researchers in this area by presenting
a comprehensive characterization of various relevant simulation techniques.

Keywords: computational fluid mechanics; microfluidic devices; cellular flow; numerical simulations;
molecular and continuum levels

1. Introduction

1.1. Microfluidic Systems for Cellular Flow Manipulation

Most of the in vivo and in vitro studies have been carried out at a bulk-level. Although these
techniques bring invaluable critical insights into various fields, including biology and medicine,
they usually lack single-cell resolution features to recognize cell heterogeneities associated with
diseases. For studying rare cell events and the intermediate extracellular signaling, through which cells
communicate, analysis tools with the micro-level resolution are of significant importance. Microfluidics
chips offer new approaches for cell assays and have also been used for studying of cell biology by
providing platforms for manipulating, separating, sorting, filtering, trapping, and detecting tiny
biological particles based on cellular heterogeneity. They can simulate small-scale fluid flow and
chemical gradients and offer full manual control over the particles to study the desired details, e.g.,
for food market, clinical, pharmaceutical, and other applications [1–7]. Precise manipulations such
as focusing, separation, and fractionation of cells is a vital capability of microfluidics which can be
achieved by engineering hydrodynamics forces based on unique physical attributes of cells such as
size [8,9], density [9,10], deformability [11–13], and morphology [14] using variety of methods such as
crossflow filtration [15], electrode arrays [16], optical force switching [17] and other methods, some of

Appl. Sci. 2019, 9, 4041; doi:10.3390/app9194041 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-7349-2331
https://orcid.org/0000-0003-1069-7350
http://www.mdpi.com/2076-3417/9/19/4041?type=check_update&version=1
http://dx.doi.org/10.3390/app9194041
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 4041 2 of 24

which can be found in detail in the review presented in [18]. In this spirit, hydrodynamic phenomena,
which carry microenvironmental physical impacts on cells, are critical in almost all physiological
functions and bodily systems. Generally, microfluidic devices can sort/isolate or partition cells by
active approaches with external forces from acoustics [19,20], magnetics [21,22], and electrokinetics [23],
as examples, as well as by passive approaches such as cellular immobilization [24], deterministic
lateral displacement [25], and hydrodynamic filtration [26]. These devices have also been extensively
used and proposed to study mechanical shear stress, and cell deformability and the recent advances
of these applications can be found in [27–30]. This is extremely helpful since deformability of RBCs
(red blood cells) can represent a potential sign of several sicknesses [28]. Moreover, microfluidic
devices have been proposed to study the possible effects of microbubbles in microvessels [28] to
represent the effects of these bubbles, which can form in the blood vessels occasionally and cause
possible pathological events, such as preventing the food to reach to the cells in specific regions. Also,
targeted drug delivery via nanomaterials, such as carbon nanotubes, was introduced recently and
significantly increased the efficacy of the drugs [31–34]. As evaluation of these particles are highly
dependent on their microenvironments, finding the optimum design point is facing some difficulties [35]
and microfluidic systems can offer exceptional abilities to screen the nanoparticles to resolve these
difficulties [1]. Zhu et al. [36] presented an in-dept review of nanoparticle delivery steps in cellular
flows and summarized several microfluidic models specialized in nanoparticle evaluations related to
such investigations. Particle sorting mechanisms are required to direct the drugs to the targeted cells,
and numerical methods have proved themselves to be efficient in conducting such simulations [37,38].
Microfluidic devices, generally, implement any one of the two different approaches; active approaches
and passive approaches. In the latter, as opposed to former which relies on fluorescent labels or beads,
a variety of techniques based on inherent differences in cellular morphology among cell groups (e.g.,
size, shape, compressibility, and density) are employed to sort cells. In active manipulation approaches,
based on specified field, the cell array is immersed in a space wherein energy distribution results in
controlled forces that move cells along desired paths. On the other hand, in passive techniques, the
two predominant opposite forces, known as wall lift force, which tends to repel cells from wall, and
shear gradient lift force, which is due to the curvature of the fluid parcel velocities and tends to repel
cells from center, determine cell equilibrium positions in the cross section of microchannel [39]. A
summary of forces exerted on cells/particles is shown in Figure 1 for passive separation technique. It is
noteworthy to mention that complex hybrid approaches have recently found their ways to microfluidic
devices, and have been advantageous in certain studies [40]. Note that there is another force, Saffman
force, which is channel center/wall-directed lift force experienced by particles lagging/leading the fluid
and it is not shown in the figure to avoid confusions.
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Qualitatively, in most of the literature, that relied on passive techniques, and in a fair amount
of the literature, focused on active approaches, the numerical simulation had been used to refine the
understanding of physical phenomena, or/and optimize micro-channel geometrical aspects [41–49].
It is noteworthy that herein, we focus mostly on separating and trapping techniques on mammalian
cells that are passive and suspended inflow. Hydrodynamics of swimming microorganisms such as
bacteria, or adherent cell are not within this review’s scope.

1.2. Modeling of Cell Separation/Partitioning

While utilizing simplified analytical analysis (such as Stokes flow) and trial and error-driven
experimental approaches are prone to many unresolved issues, numerical simulation techniques
are becoming a routine interrogation tool to avoid such problems. More importantly, numerical
analyses are vital to unravel underlying physics, to test different hydrodynamic effects, and to optimize
process conditions and proposed designs, which can be very expensive and require a long series of
experiments or almost impossible experimentally with equipment at hand regardless of the scale
of the experiments [50–53]. These approaches characterize microfluidic cell separation devices at
two-particle and continuum levels. Formerly, numerical simulations were carried out to identify
particle-level interactions using statistical mechanics over individual particle mechanics force field.
In the latter, continuum-level simulations based on conservation laws are used to address microfluid
system attributes. One can refer to lattice Boltzmann methods (LBM) as the main molecular level
numerical simulation, and computational fluid dynamics (CFD) based on Navier-Stokes (NS) equations
as the prominent continuum level simulation techniques utilized for cell separation applications
(Figure 2). In the following, fundamentals of these two numerical methods are briefly reviewed to
convey the essential knowledge needed for the remainder of the work.
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1.2.1. Lattice Boltzmann Method

When LBM first appeared on the front page of Washington Post on November 19, 1985, a dramatic
enthusiasm was brought into computational methods, which was diminished later by revealed
limitations, mostly because of convergence issues and computational expenses at the time, but these
issues have been alleviated over the period since then. This CFD method is based on the kinetic theory,
which correlates macroscopic properties of a medium to basic mechanical laws governing the behavior
of its constituents as hard-sphere particles with elastic collision. State of each molecule is described by
two variables, position(x(x,y,z)) and velocity (v(vx, vy,vz)) in space. Since it is challenging, if possible,
to go after each molecule, instead, a velocity distribution function, f(x,v,t), which is the velocity number
density of molecules at position x and speed v at a time t is defined; and then is used to obtain
macroscopic flow properties such as pressure, temperature, density, etc. Then Boltzmann equation,
which expresses a balance between particle/molecule transport (streaming) and collision must be
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analytically/numerically solved to find the mentioned velocity distribution function. This equation (in
the absence of external forces) can be written as:

(D f /Dt)transport = (D f /Dt)collision →
∂ f (x, v, t)
∂t

+ v.∇ f (x, v, t) = C(x, v, t) (1)

where x, v, and t represent position, velocity of the particles, and the associated time during the
simulation. In this equation, C models the pairwise collision among particles. There exist, several
models, to describe the function C: BGK, the classic and reliable method to solve problems with
low Reynolds number (Re) (for more technical details, refer to [55]). MRT, enhances stability by
presenting relaxing parameters to ensure stability [56]. A regularized model, renders better accuracy
and stability compared to BGK by eliminating higher-order, non-hydrodynamic terms from the particle
populations [57]; and Entropic model in which relaxation time is tailored locally to avoid an entropy
decrease during the collision and ensuring unconditional numerical stability [58]. Another essential
key input is the lattice types on which these models are operated. Several different lattices, both
cubic and triangular, and with or without rest particles in the discrete distribution function exist.
A typical way of clustering the various methods by lattice is the DnQm scheme. Here “Dn” stands for
“n dimensions,” while “Qm” stands for “m speeds.” For example, D3Q15 is a 3-dimensional lattice
Boltzmann model on a cubic grid, with rest particles present. Each node has a crystal shape and can
deliver particles to 15 nodes: each of the 6 neighboring nodes that share a surface, the 8 neighboring
nodes sharing a corner, and itself.

It has been shown that the solution of the Boltzmann equation can represent the NS equations at low
Mach number. Having this function, one can configure the 3D flow field of the system. Among many
advantages, one can mention clear physical pictures with the detailed resolution, easy implementation
of intricated boundary conditions with simple mechanical rules such as bounce-back and reflection
and dynamic interfaces, and fully parallel algorithms for implementing high-performance computing.
Nevertheless, as a natural-born dynamic scheme, the LBM is not a method of choice for steady-state
analysis; and also is not well-versed for body-fitted coordinates and adaptive time-stepping [59]. As of
now, there are several open-source software such as J-lattice-Boltzmann, SunlightLB, OpenLB, LIMBES,
LBSim, LB2D, LB3D, Palabos, LBM-C, Taxila LBM, and Sailfish; and commercial ones like PowerFLow,
XFlow, FlowKit, LBHydra and utraFluid taking advantage of this method. A schematic and step by
step comparison between LBM and conventional CFD algorithms can be seen in Figure 3 below for a
better understanding of the procedure in each numerical method.



Appl. Sci. 2019, 9, 4041 5 of 24

Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 23 

where x, v, and t represent position, velocity of the particles, and the associated time during the 
simulation. In this equation, C models the pairwise collision among particles. There exist, several 
models, to describe the function C: BGK, the classic and reliable method to solve problems with low 
Reynolds number (Re) (for more technical details, refer to [55]). MRT, enhances stability by 
presenting relaxing parameters to ensure stability [56]. A regularized model, renders better accuracy 
and stability compared to BGK by eliminating higher-order, non-hydrodynamic terms from the 
particle populations [57]; and Entropic model in which relaxation time is tailored locally to avoid an 
entropy decrease during the collision and ensuring unconditional numerical stability [58]. Another 
essential key input is the lattice types on which these models are operated. Several different lattices, 
both cubic and triangular, and with or without rest particles in the discrete distribution function exist. 
A typical way of clustering the various methods by lattice is the DnQm scheme. Here "Dn" stands for 
"n dimensions," while "Qm" stands for "m speeds." For example, D3Q15 is a 3-dimensional lattice 
Boltzmann model on a cubic grid, with rest particles present. Each node has a crystal shape and can 
deliver particles to 15 nodes: each of the 6 neighboring nodes that share a surface, the 8 neighboring 
nodes sharing a corner, and itself. 

It has been shown that the solution of the Boltzmann equation can represent the NS equations 
at low Mach number. Having this function, one can configure the 3D flow field of the system. Among 
many advantages, one can mention clear physical pictures with the detailed resolution, easy 
implementation of intricated boundary conditions with simple mechanical rules such as bounce-back 
and reflection and dynamic interfaces, and fully parallel algorithms for implementing high-
performance computing. Nevertheless, as a natural-born dynamic scheme, the LBM is not a method 
of choice for steady-state analysis; and also is not well-versed for body-fitted coordinates and 
adaptive time-stepping [59]. As of now, there are several open-source software such as J-lattice-
Boltzmann, SunlightLB, OpenLB, LIMBES, LBSim, LB2D, LB3D, Palabos, LBM-C, Taxila LBM, and 
Sailfish; and commercial ones like PowerFLow, XFlow, FlowKit, LBHydra and utraFluid taking 
advantage of this method. A schematic and step by step comparison between LBM and conventional 
CFD algorithms can be seen in Figure 3 below for a better understanding of the procedure in each 
numerical method.  

 

Figure 3. Conventional computational fluid dynamics (CFD) methods versus lattice Boltzmann 
methods (LBM) algorithms. 

Figure 3. Conventional computational fluid dynamics (CFD) methods versus lattice Boltzmann
methods (LBM) algorithms.

This method has been massively used in simulations of RBCs to study cell mechanical deformation
behaviors under certain circumstances and/or suspension of these particles in various channel shapes
representing the blood vessels to help the sorting application of microfluidic devices. A few examples
of how LBM method performed in the real applications are presented in the following. Deformability
of RBCs has been studied using LBM in simple channel conditions [60,61] and/or under more complex
environments [62,63]. A few examples of results obtained from simulations using LBM method to
simulate phenomena related to RBCs are presented in Figure 4. For a good review of such simulations
in the past and more examples, one can refer to [64], where the researchers have presented results
obtained from LBM simulations of RBCs-related phenomena.
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1.2.2. Conventional CFD Methods

These methods are based on continuum assumption and include discretizing conservation
equations coupled with boundary conditions. Widely accepted conventional CFD techniques include
finite difference, finite volume, and finite element methods (FEM). There are other, yet infrequent
methods, such as boundary element, spectral element, and other in-house developed software tools.
There are two reviews covering these tools in the context of microfluid devices in general and,
capturing rare cell systems. Erickson [69] provided an overview of traditional and emerging CFD
techniques for integrated microfluidic devices covering thermal and chemical microscale flow and
species transport simulation and cellular/particulate transport. On the other hand, the recent work of
Jarvas and Guttman [70] centers on overviewing these tools on cell sorting and rare cell capturing,
such as circulating tumor cells. Herein, a brief introduction of some of the main traditional CFD
tools is given. These techniques can be clustered by the particular meshing approach to discretize
the governing equations such as finite difference, finite volume, FEM. In finite difference method,
the governed partial differential equations are approximated with Taylor series based on the values of
neighboring nodes. This, then, renders a system of algebraic equations to be solved using a variety
of well-developed explicit and implicit solvers. This method has the advantage of generally being
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the easiest to implement, though, it is practically limited to well-structured grids and thus, only
advantageous in simple geometries (e.g., capillaries or channel cross-sections) (refer to Taflove and
Hagness [71] for more detail). Writing codes mostly use this method in generic programming software
such as C, C++ FORTRAN, etc.

In finite volume method, partial differential equations describing conservation laws are integrated
and evaluated at the surfaces and finally discretized for very small, but finite-sized elements constituting
the whole body. Unlike finite difference method, this method does not demand a structured grid and is
thus, suitable for more complex and commonly encountered geometries (e.g., looping channels used in
on-chip capillary electrophoresis). Since the conservation equations are to be applied on each irregular
volume, the definition of derivatives and following Taylor series expansion to represent such is very
challenging. It has been shown that this method is best suited for problems where the viscous terms
are absent as opposed to the low Reynolds number flows encountered in microfluidics, in which these
terms are dominant [71]. This method is incorporated in many commercialized software packages.
For more detail on fundamentals, refer to [72].

In FEM, like finite volume method, the whole body is subsidized to smaller, simpler parts that are
called finite elements. The simple equations that model these finite elements are then systematically
recombined to form a more extensive system of equations that models the entire elements. Unlike the
finite volume method, at this point, whereby the PDEs are to be discretized, in FEM variational methods
from the calculus of variations are used to approximate a solution by minimizing an associated error
function. FEM shares many of the same advantages of the finite volume method, most importantly,
the ability to manage arbitrary grids and complex geometries.

From the microfluidicist’s outlook, although it is mathematically expensive and laborious, in terms
of implementing complex boundary conditions, with gradient-based boundary conditions that are
commonly encountered in applied electrical fields, transport systems with surface phase reactions and
thermal analysis involving convective heat transfer, this method is much easier to work with compared
to the aforementioned ones [73]. Isoperimetric quadratic elements can also be employed to precisely
conform to curved fluid–fluid interfaces such as those encountered in capillary flows [69]. Among
others, the main disadvantage of FEM is the mathematical difficulties associated with handling highly
irregularly shaped elements (e.g., large aspect ratios or highly skewed) or large ranges in element
size within a single mesh. In lab-on-a-chip devices, the relevant length scales can range over seven
orders of magnitude, from the double-layer thickness (nm) to channel length (cm) and thus, it is often
difficult to avoid using such elements while maintaining a computationally tractable problem. Despite
these challenges, dramatic developments in computational capabilities during recent years make this
method pivotal for several well-known commercial software packages such as NASTRAN, ANSYS,
ABAQUS, COMSOL, and FIDAP.

A few examples of how these methods performed in the real applications are presented in the
following. CFD methods have mostly been applied to investigate the phenomena related to human
arteries, such as blockage because of atherosclerosis, the application and performance of ventricular
assist devices (VADs) and etc. Song et al. [74] implemented CFX to study the performance of a CF4
type VAD pump and effects of the pump on the flow path. Chesnutt et al. [75] used the discrete
element method to study transport, activation, and adhesion of RBCs through thrombus formation
around endothelium. Jung and Hassanein [76] used a three-phase CFD method to investigate RBCs
reflections in disturbed flow regions of human arteries. Another interesting study was conducted
by [77], where the authors studied the dynamics of RBCs in capillaries of finger nail-fold for various
cases. A more recent study was done by [78], where the researchers used the CFD discrete element
method (CFD-DEM) to conceptually design a microfluidic device capable of magnetic sorting of
malaria-infected red blood cells. A few examples of results obtained from simulations using CFD
methods in similar applications are presented in Figure 5. More details about applications of these
methods can be found in [69,79–81].
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inactivated platelets (black and blue respectively) [75]. (b) Streamlines and velocity field of RBCs in the
capillary [82]. (c) Velocity vector field during systole and diastole phases [83].

1.3. Scope of This Work

This review reports the use of computational fluid modeling techniques to develop and optimize
new passive and active microfluid systems for analysis and control of cellular transport phenomena.
Capabilities of these numerical methodologies along with their merits and cons will be extensively
detailed so that multidisciplinary readers would be able to decide which method meets their
requirements. Nevertheless, this article is written assuming readers have at least a rudimentary
understanding of numerical simulation procedure. As the range of physical phenomena covered
in this article is so extensive and the number of different techniques used to model each situation
varies so greatly, a comprehensive review of the governing equations is beyond the scope of this
article. Here, the focus is on the applications, the specific numerical tools, and the approaches used
to model the relevant physics. Readers will be referred to relevant literature covering specifics and
fundamental concepts.

2. Outlook

Lack of standard guideline for using CFD tools, either commercial or generic, was found in the
literature, which initiated the present work. As microfluidic systems continue to mature and are applied
to increasingly complex applications, we will continue to see their use in cancer and malaria studies and
other diseases in general. Microfluidics is well suited to cell isolation, cell culture, three-dimensional
culture, cell/tissue perturbation, and analysis. Integration of these functions and increasing use of
co-culture methods will undoubtedly play a significant role in cancer analysis in the coming years.
From biochemical to mechanical assays, microfluidic chips are uniquely poised to make high impact
discoveries, fueled less by innovations in device design and more by innovations in the questions asked
with those devices. As mentioned before, an inexpensive way of assuring the applications of these
devices is implementing the numerical methods developed for such purposes. In the following, a brief
summarization of these various methods is provided and categorized based on their characteristics.
A brief illustration of these methods, based on the appropriate problem dimensions that they can be
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used for, is presented in Figure 6 below. This graph provides a simple benchmark for choosing the
appropriate numerical model according to the problem-specific characteristics and dimensions.
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3. LBM

As mentioned earlier, LBM is considered an efficient solver for the NS equations for microfluidic
systems because of its particulate-based nature and parallel computing advantages. LBM is typically
viewed as a second-order accurate numerical method in space and time. Since this method emerged
quite recently, the use of it for cellular fractionation purposes is relatively limited. In simulating
blood cells or deformable particles immersed in a fluid, though, a higher number of articles have been
published. Because of similarity, the configuration of these problems and the numerical setup can be
used for investigating microfluidic systems. The lattice Boltzmann method has been massively used to
study the cellular flow and related topics in the recent literature and found extremely useful to deal
with difficulties of such problems.

LBM has several advantages over other conventional CFD or particle-based methods and has
attracted a lot of interests in computational physics. Because of its particle-based nature, it is also easy
and flexible to model complex structure fluids, like DPD and SPH. As a mesoscopic method, it is more
straightforward to incorporate microscopic interactions, like DPD. Besides, the primary advantage
may be that it can be easily implemented in a massive parallel computing environment because of its
local dynamics. Finally, it deals with the fluid-RBC interaction by coupling to the immersed boundary
method, instead of modeling the RBC membrane as physically connected particles, which is entirely
different. Comparing with the conventional methods for multiphase flows, the LBM does not track
interfaces, while sharp interfaces can be maintained automatically.

For instance, it is easy to incorporate mesoscale physics, such as interfacial breakup or coalescence.
Moreover, the computational cost for simulating realistic fluid flows is reasonable compared with
particle-based methods (e.g., molecular dynamics). Also, the physics associated with molecular-level
interactions can be incorporated more quickly, since the Boltzmann equation is kinetic-based. Hence,
the lattice Boltzmann model might be fruitfully applied to micro-scale fluid flow problems to some
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extents. Using Lagrange multiplier as a coupling term for fluid–solid interactions in LBM corresponds
to calculating the displacements of the solid particles implicitly, which is proven to be more precise
and accurate compared to immersed boundary method, which makes it a favorable method in the
modeling of RBC deformation modeling. Moreover, this method offers other advantages over other
conventional CFD methods for simulation of particle suspension such as the possibility of deriving
different simplified local particle–fluid interaction rules because of its direct connection to molecular
mechanics [84].

The first complication, and often most important numerically, is the range of relevant length
scales, which can vary as much as seven orders of magnitude (for instance, from the double layer
thickness, nm, to channel lengths and substrate dimensions, cm). For the second limiting factor,
one needs to modify the normal lattice Boltzmann method to account for the particles existing in
the fluid and their interaction as boundary conditions in the method. Researchers have modified
the LBM method and implemented in studying different phenomena related to cellular and blood
flow study to overcome some of these limitations. [85] implemented a red blood cell model (RBC)
in an LBM solver to investigate and model red blood cells and fluid motion. For this purpose, they
employed an LBM solver to an immersed boundary scheme to study the fluid motion. In the frame
of this modified method, otherwise called IB-LBM, Lagrangian force, F(s,t), acting on the fluid by
each finite segment of the domain boundary is calculated based on the boundary configuration near
that and then is distributed to the ambient fluid in the vicinity of the boundary. Thus, treating it
as a body force (refer to [86] for more detail) and then the fluid motion can be solved using the
lattice Boltzmann equation and position(x(x,y,z)) and velocity (v(vx, vy,vz)) in space can be updated.
Iterating over the time and updating position and velocity functions after each iteration, the simulation
continues until the convergence conditions are met. When the particles’ density distributions are
found, the macroscale quantities can be calculated using different averaging methods. [87] coupled
lattice Boltzmann method with the RBC model and modeled the fluid domain with a simple external
force. In this method, the RBC network is used to model the red blood cells deformation and lattice
Boltzmann method is employed to track the particles and compute the averaged quantities over time.
This method is used to solve a domain including fluid and solid subdomains having the Lagrange
multiplier served as the external force representing a coupling term for solid and fluid subdomains.
Another interesting modification of this method was conducted by [88], where the authors coupled
LBM and FEM methods using immersed boundary method to investigate the behavior of RBCs in
rectangular channels under different conditions to represent the cells’ behavior in microfluidic devices.
In this study, they studied RBCs membrane mechanics by using FEM using Cauchy stress tensor and
defining virtual displacement and stress tensor, while solving for fluid mechanics using LBM.

4. DPD

Dissipative particle dynamics method (also called DPD) is a Lagrangian, and coarse-grained
mesoscale particle-based hydrodynamic method, in which the domain is represented by a distribution
of discrete particles with separated physical properties and each particle consists of a collection of
atoms and molecules, that was initially introduced to deal with complex Newtonian fluids and soft
matters and is ideal for cell biophysics problems, such as blood flow behavior and blood flow particle
interactions [89–92]. Having a particle-based nature along with being able to reach higher time
scales than methods such as MD, make it a relatively valuable and computationally efficient method
for microfluidics in terms of accuracy in capturing the details and capability to reach higher time
scales [90]. As discussed before, continuum methods have been proved to be applicable for many of
the small-scale simulations, however, for some complex problems, there is a need for more microscopic
details out of their grasps. There are many cases, where given a large number of particles such as
proteins and cells in the computational domain, high computer resources are demanding. In this
situation, applications of continuum-based models, where subtle microscopic delicacies and their
interactions with the mainstream are ignored, might pose further precision issues. Mesoscale methods
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can, thus, be useful for such problems. DPD is clustered under these methods and has proved itself an
appropriate method for a variety of problems with significant hydrodynamics details and/or thermal
fluctuations. DPM can be easily implemented to the code by just changing the equation used to model
the conservative forces among the particles [90]. This method, as discussed, is capable of reaching
higher time scales than some other particle-based method such as MD. However, the accuracy of the
method depends highly on the time step chosen for simulation, and thus, this can be a tricky part
specific to the problem in hand [90].

Original DPD method was, however, too simplistic, for instance in modeling the friction forces,
and thus, not appropriate to capture the real physics in detail in many complex problems consisting of
different types of particles. To maintain the accuracy of DPD method, one needs to input real values for
some physical parameters, such as viscosity, which is case dependent, i.e., one would need to extract
real data from experiments conducted on a comparable problem with the same details before using
the method to numerically investigate the same problem [90,91]. Lack of freedom of using different
equations of states during the simulation makes the DPD method susceptible to having unrealistic
thermodynamic behavior for complex systems, including complex simulations of blood flow and
sustaining temperature gradients. In particular, for higher gradients in temperatures, because of lack
of energy conservation in the method, unreliable results might be anticipated [90]. Furthermore, this
method has yet deficiencies to face to model unbounded particle interactions [90].

There have been many improvements proposed in the literature since the arrival of the original
method to make it capable of dealing with more complex fluids and systems and adopting with
newly developed models to capture more accurate details in fluid flow simulations. The most
important modified versions of this method are many-body DPD (MDPD), energy-conserving DPD
(EDPD), fluid particle method (FPM) and finally, smoothed dissipative particle dynamics method
(SDPD) and each tackled some of DPD drawbacks. For instance, MDPD introduced an independent
equation for temperature distribution and a more general equation of state to ensure having more
realistic temperature distribution, EDPD added an extra internal energy value for every particle for
non-isothermal cases, and FPM tackled the problem of having too simplistic friction forces in the
original method. Finally, SDPD, which is derived from SPH and is similar to MD in terms of moving
particles interactions simulation, introduced Lagrangian discretization of NS equations and an exact
discretized fluctuation theorem and adopted a thermostat similar to the one in DPD, improving
most of the original method’s drawbacks [90]. This method has all the advantages of the other three
methods and none of their disadvantages, which made it the most common DPD method. SDPD
has several advantages over the conventional DPD method, such as allowing direct input of fluid
transport coefficients and selecting desired arbitrary equation of state; resulting in full control over
fluid compressibility [91]. This method, however, has all the drawbacks of the SPH method because
of the closely related particle-based nature of it compared to SPH [90]. Thus, one would still need to
input high accuracy real physical values, such as viscosity, to the method to reduce the inaccuracies.
Moreover, the pressure field of the problem needs to be calculated separately by using the equation of
state via solving the Poisson equation of pressure, given its inherent continuum-originated build-in
models [93]. Another drawback relates to the lack of a direct relationship or link between the viscosity
of the fluid and the velocity profile, which was alleviated in SDPD [94].

These methods have been extensively used for simulation of particle sorting systems, for instance,
in deterministic lateral displacement devices, modeling blood flow problems including RBCs related
simulations, blood-related diseases, and disorders, particles like plasma and proteins, bacteriology and
parasitology over the recent years [89,91–94]. SDPD method has proven to be especially suitable for
simulation of blood flow and by being coupled with the immersed boundary method. The fluid-RBCs
interactions, which are an essential area of focus in cell sorting and cell separation problems, can also
be accurately modeled instead of being modeled as physically connected particles, which makes it an
accurate and computationally efficient method for blood flow problems [93]. This method can also be
applied to understand the behavior of healthy and unhealthy RBCs in real physics as well.
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For years, lacking appropriate boundary conditions and high-performance computing hindered
implementing particle-based methods in simulation of blood flow in microvascular networks and
similar complex problems. Likewise, the SDPD method suffered the same hindrances and could not
be used for many of the investigations, despite all other improvements since the time the original
DPD method was introduced [95]. Some issues to be tackled in terms of the computational speed
of this method are; for instance, irregular patterns of computation resulting in hindering its parallel
computing capability and the maximum speed limit and having an order of magnitude higher
interaction instructions than in MD for each time step. Building a neighborhood list in each time
step for each of the particles and finally, implementation of an extra thermostat for some of the
forces and interactions [95]. New computers and algorithms for higher performance computing were
presented recently and are shown to solve these two problems in the future. Recent advances in
numerical computing capabilities and new parallel algorithms for these particle-based methods made
the implementation of numerical simulations easier and capable of reaching higher time scales, which
is a crucial factor for simulation to replace the expensive experimental tests on devices.

Aside from advances in computational technologies, efforts have been devoted to increasing
the method’s efficiency and speed and thus, reaching higher computation times and computational
domains with a higher number of entities. For instance, one can mention the development of new open
flow boundary conditions, which are clustered in the periodic boundary condition category. These
boundary conditions still have some drawbacks for cases with so many inlets and outlets and also with
time-dependent non-period flows, such as the system of the arterial network in human cardiovascular
systems [95]. A few examples of results obtained from related simulations using DPD-originated
methods are presented in Figure 7.
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Figure 7. A few examples of past DPD-originated simulations of RBCs. (a) A schematic network model
for a single RBC for DPD simulation of RBCs deformation [96]. (b) DPD simulation of deformation of a
single healthy RBC over going through a tube flow [94]. (c) Deformation of a single RBC going through
a micro channel [96].
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As this method has been improved over recent years, some commercial software packages have
been developed using mainly FORTRAN and C++ to simplify the process and to create a benchmark
for future improvements. Table 1 summarizes some of the most common commercial tools developed
based on these models [97]. Note that some of these tools are capable of using different or multiple
mesoscale algorithms to model a system of particles.

Table 1. Some software packages developed based on the original DPD or the associated improved
versions [97].

Tools Multiple Algorithms

Mesocite Yes
OCTA Yes

ESPResSO No
Fluidix No

DL-MESO Yes
LAMMPS Yes

These software tools are mainly developed using C++ and FORTRAN languages and have easy
interfaces to be used by a typical user. However, one would need basic knowledge of the algorithm
they are created based upon as well as a basic understanding of available libraries in Windows and
Linux operating systems depending on the case under investigation. In the following, Figure 8
illustrates a schematic of the DPD algorithm, which imparts a better understanding of necessary steps
for developing codes using this method.
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5. Other Particle-Based Methods

There are other particle methods to consider to investigate such problems numerically. Two of
the most common ones are direct simulation Monte Carlo and molecular dynamics methods. These
two methods are particle-dynamics based methods and are highly accurate, although they are very
computationally expensive and are particularly applicable for problems with very small dimensions.
These methods can, nevertheless, be implemented for all problems in this area. They both are governed
by the Boltzmann equation provided below:(

∂
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(2)

The original MD method was introduced in the 1950s based on some scattered physical theories [98]
and has been modified multiple times ever since. Many of the researchers implemented this method
to study the possibility of different nanomaterials to be used in cancer treatment [32,99–101]. In this
method, a number of particles are randomly distributed in the computational domain and a velocity
distribution formula is used to assign each of them with a specific velocity, which depends on the
problem being investigated. Many different velocity distribution functions have been introduced, such
as Maxwell distribution function [102], with specific characteristics and are available in the literature.
From this point, the particles are assumed to be moving with their velocity at the beginning of each
time step being affected and being subject to boundary conditions and the interaction laws among
them. These interactions are modeled by pre-defined potential functions derived from the second
law of Newton and form the pressure field and thus, the force field, which can be monitored in detail
throughout the simulation [103]. Many different possible functions have been introduced according to
the needs for the case being investigated and from them, one can mention Lennard-Jones (LJ) potential
function, which is the most common function and mathematically simple to implement. Efforts have
been devoted to improve the inherent characteristics of this method and make it more computationally
efficient to implement this method to bigger length-scale problems as well. For such developments, one
can mention the improvements and novel methods in computing the force and pressure fields, which
will be addressed in the following. [104] introduced a new force field for CHARMM36m with improved
accuracy in generating polypeptide backbone ensembles for complex and disordered proteins. A new
indirect method to calculate the forces in MD methods was introduced by [105], which is similar to the
method used in macro-scale simulation for calculating the average force exerted by the flow on any
external bodies.

This method has offered several advantages over other conventional CFD or particle-based
methods. This method is grid-free, meaning that to model a problem, equations need only to be
satisfied with respect to the geometry of the domain control volume, which makes it easier to implement
compared to CFD methods. This method, however needs a new grid geometry, called bins, to account
for cut-off radius and to average the quantities in the domain to calculate the macroscopic values
for each quantity. This advantage, its inherent high accuracy with implementing periodic boundary
conditions allow simulation of flow in complex geometries, regardless of the number of particles.
Moreover, equations for this method are independent of the number of particles. Thus, one can assume
smaller control volumes in a big domain to speed up the process and simplify the mathematical
procedure. A simplified schematic of the algorithm for the MD method is presented in Figure 9 below.
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DSMC is another particle method to be used to investigate cellular flow problems. This method
was introduced by [106] and is similar to MD in tracking particle properties and averaging their
quantities to compute the macroscopic properties. Since the algorithm is a lot similar to that of MD,
it is not schematized separately in this work. For a more detailed summary of the recent improvement,
one can refer to [107]. The most important advantage of this method over MD is higher efficiency in
terms of computational requirements, which makes it the preferred method in many cases because
of computational tools limitation. The difference between this method and MD is in the procedure
treating the interaction between the particle throughout the computational domain and this, in turn,
impacts the necessary time step to ensure that the physics can be captured accurately. In MD, this
time step is determined by comparing the particles’ trajectories, while in DSMC, a simplified statistical
equation is used to compute this time based on some assumptions. This statistical equation makes
the mathematical formulation of this method simpler to understand and implement in numerical
codes, since determining the time step is independent of the geometry. However, these simplifications
sometimes lead to less accuracy or not trustable results in more sensitive cases, especially in cases with
larger dimensions. A practical comparison of these two methods is presented in [108]. Researchers
have modified this method over time to improve its accuracy over time and presented modified
versions of this method to be implemented for cellular flow problems [109].

Smoothed particle hydrodynamics (SPH) is another method that has been used to investigate
immersed particles in fluids over the years. This method is considered macroscopic, but particle-based
and was proposed by [110]. The original method was too simplistic, but, has been improved over time
and found its way for simulations of higher scale problems [111,112]. This method is one of the oldest
mesh-free methods and can model complex problems or geometries, which is one of the advantages of
this method over CFD methods. The nature of this method is similar to that of DPD, in terms of the
mathematical formulation and can also be compared to MD, where it is derived from second law of
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Newton. However, this method differs from DPD or SDPD methods since it starts with NS equations
and discretizes the computational domain into finite points that are treated as groups of particles using
Lagrangian discretization. A good review of SPH method is presented in [113]. In addition to being a
mesh-free method, unlike other particle-based methods, this method works directly with macroscopic
quantities because of NS equation being the basis for the computational steps in SPH. SPH, however,
is not capable of addressing the mesoscopic problems (as opposed to SDPD), where there are large
thermal fluctuations introduced because of the lack of a fluctuation-dissipation equation/function.
Given the premise of this method for Newtonian fluids, it is facing some issues when dealing with
non-Newtonian flows. Because of its inherent drawbacks regarding mesoscale problems and mesoscale
nature of RBC related problems, the application of this method has been very limited in simulation of
RBCs problems. One may refer to the study conducted in [112], where the researchers studied the
deformability of Malaria-infected RBCs using in house 3D code developed based on SPH method.
A review comparing the applications of this method with those of MD is presented in [114].

There are other mesh-free methods available, which can especially be used for studying
deformability and mechanical properties of RBCs undergoing effects of various microfluidic devices or
some diseases, such as discrete particle (DP), element-free Galerkin method (EFG), moving particle
semi-implicit method (MPS), moving particle finite element method (MPFEM), immersed particle
method (IPM), boundary element method (BEM), and multi-particle collision dynamics method
(MPCD). However, these methods have not attracted enough attention in this field, and not many
studies using them can be found. Most of these methods are mesh-free, which makes them merely
implementable for complex fluid-structure problems as mentioned before, and are similar, in nature,
to one of the particle-based techniques discussed previously.

BEM is another mesh-free method, in which computational discretized points are only defined
on the physical and inlet-/outlet boundaries of the problem, and the analytical solutions for velocity
fields in the problem results from integration formulations on the boundary and the quantities inside
the boundaries can be calculated using somewhat complex integration formulations [115] depending
on the geometry and condition of problem being investigated. An advantage of this method is that
it can be easily used for problems with complex geometries since there is only a computational grid
required for the boundaries. By using advanced integration formula, it is proven to be the most useful
and accurate for infinite length problems compared to other similar methods. However, this method is
determined to be the most reliable for stokes flow regimes, and it is not applicable for some cellular
flow problems with a length-scale exceeding 100 micrometers and other methods are needed to be
chosen instead [116]. MPS is very similar to SPH method in its nature, where the governing equations
are derived from NS equations and the physical properties are calculated using a similar function
as the kernel function in SPH method [117] and using weighted averaging functions based on the
distance between two particles. The mathematical implementation of MPS is somewhat difficult if
trying to reach a higher accuracy, which can be considered a drawback by some researchers, while
the accuracy is not noticeably different. DP is another type of these methods, which is a Meso-scale
method similar to original DPD or SDPD, where different forces of different nature are defined and act
separately on the particles, i.e., conservative, dissipative and random forces. The difference between
this method and SDPD, however, is the existence of new function to control and take into account the
rotation of each particle throughout the simulation.

Some of these methods have had minimal applications in the literature, and thus, an in-detail
explanation of them is out of the scope of this work. A short review on some of these methods, however,
can be found in [64,114,118]. A few examples of the results obtained from related simulations using
these particle methods are presented in Figure 10. Note that, the application of simulations conducted
based on the original forms of these methods is not common in RBC-related investigation, however,
the hybrid versions of these methods with DPD or LBM methods can be seen in the literature as it was
mentioned earlier in this work.
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As this method improved over recent years, some commercial software packages have been
developed based on these methods to simplify the process and increase the efficiency of using these
methods in investigating desired particle flow related problems. Table 2 summarizes some of the most
common tools developed based on these models.

Table 2. Software packages developed based on MD or DSMC and associated methods.

Tools Multiple Algorithms Tools Multiple Algorithms

Abalone Yes COSMOS Yes
ACEMD Yes CP2K Yes

ADF Yes Culgi Yes
Ascalaph Designer Yes Desmond Yes

CHARMM Yes Discovery Studio Yes
ChemDoodle 3D No GROMACS Yes

GROMOS Yes HyperChem Yes
LAMMPS Yes MAPS Yes
SAMSON No Scigress No

MDynaMix No Q No

These software tools are mainly developed using C++ and FORTRAN languages and have easy
interfaces to be used by a typical user. However, one would need basic knowledge of the algorithm
they are created based upon as well as a basic understanding of available libraries in Windows and
Linux operating systems.

6. Summary and Conclusions

The technologies employed in microfluidic devices have become much more sophisticated and
complex over the past decade because of the significant developments of these devices in understanding
the phenomena in human body cells. The pace of these improvements in microfluidic devices has
accelerated over the past few years. Experimental methods to optimize these devices and understand
related phenomena have lost their popularity because of the high costs associated with them and
challenges on the way and numerical simulation methods have become the subject of interest to
understand cellular-related phenomena better to help to optimize these devices. These methods,
however, suffer from high computational costs. Thus, researchers have devoted their efforts to improve
these methods, and new modifications have been introduced to help alleviate this problem and make
them more applicable to study real-world problems.

The current paper gave a comprehensive and up-to-date review of various numerical methods
available to study the cellular flow problems, with the primary focus on three highly used methods
in body cells simulation: CFD, LBM, and DPD, but other particle-based methods and summarized
and compared with these three methods as well. Also, schematics of algorithms were presented to
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be a guideline and starting point of understanding the procedure of implementing each technique
for researchers. Also, this review discusses the practice areas for each method to be used depending
on the characteristics of the problem being investigated and strengths of each method. The methods
discussed in this work are summarized in Table 3 along with a short description of their applications
and their associated dimensional nature. To emphasize the importance of each method for applicable
problems, a summary comparison is provided in the following to conclude the benefits and drawbacks
of each technique presented in this work.

Table 3. Summary of main numerical methods presented in this work and applicability of them in
similar simulations.

Microscopic Methods

Method Applications in the Literature

CFD Mostly used for simulations of human arteries and to study
VAD applications

SPH Not frequently used for cellular flow simulations, but some
RBC related simulation can be found recently

Mesoscopic Methods

Method Applications in the Literature

LBM Frequently used for simulations of RBCs and related
fluid-solid interactions as combined with IBM

DPD Frequently used to study RBCs characteristics, blood flows,
and behaviors of infected RBCs

Macroscopic Methods

Method Applications in the Literature

Monte Carlo Has been used for simulation of blood vessels, blood flow, and
related problems, but lost its popularity over recent years

MD
Has been used for simulation of flow with complex structures,

such as blood flow dynamics, but its application is limited
because of high computational load

• CFD methods have proven to be applicable to investigate the phenomena related to human
arteries. However, to their more significant scale nature, they cannot be implemented to study
smaller-scale problems related to body cells.

• Many commercial software packages are available to study problems with high accuracy.
• LBM is of highly parallel nature and can easily be implemented in massively parallel computing

systems because of its local dynamics. LBM also offers excellent capabilities to be combined with
other methods such as IBM to model RBC-flow interactions and deformation of RBCs. This is
entirely different from modeling of the RBC membrane in physically connected particles like in
SPH and DPD methods.

• LBM and DPD, offer capabilities to model thermal fluctuation in the simulations, which is necessary
to study phenomena such as RBCs aggregation.

• LBM and DPD, as mesoscopic methods, can be used to study cellular flow problems with
reasonable computational costs compared to microscale models.

• SPH, unlike LBM and DPD, does not take into account the thermal fluctuations because of the
lack of a fluctuation-dissipation function in its nature. However, this method originates from NS
equation, and hence, one can obtain the physical properties of the flow directly using this method
unlike the microscopic techniques such as MD, in which one needs to average the microscopic
properties to get the physical macroscopic quantities.

• Mesh-free methods such as SPH and other particle-based methods offer this capability to quickly
model complex geometries without requiring complex computational grids as in CFD methods.
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Finally, commercial packages available using the techniques discussed in this review were listed
to cover the valuable and already available tools to researchers. The current review aims to serve
as a guideline for scientists and researchers by gathering and summarizing techniques and their
characteristics in one place. All in all, considering the advances in computational tools are becoming
available for researchers in this field, particle-based methods and especially those of mesoscale nature
are attracting more attention, and they need to be studied extensively and improved to be viable tools
in the future to study large-scale cellular flow problems.
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