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Abstract: Optimal gait design is important for micro-organisms and micro-robots that propel
themselves in a fluid environment in the absence of external force or torque. The simplest models
of shape changes are those that comprise a series of linked-spheres that can change their separation
and/or their sizes. We examine the dynamics of three existing linked-sphere types of modeling
swimmers in low Reynolds number Newtonian fluids using asymptotic analysis, and obtain their
optimal swimming strokes by solving the Euler–Lagrange equation using the shooting method.
The numerical results reveal that (1) with the minimal 2 degrees of freedom in shape deformations,
the model swimmer adopting the mixed shape deformation modes strategy is more efficient than
those with a single-mode of shape deformation modes, and (2) the swimming efficiency mostly
decreases as the number of spheres increases, indicating that more degrees of freedom in shape
deformations might not be a good strategy in optimal gait design in low Reynolds number locomotion.

Keywords: low reynolds number swimming; self-propulsion; robotic swimmers; optimal strokes;
asymptotic analysis; shooting method

1. Introduction

Swimming by shape changes at low Reynolds number (LRN) is widely used in biology and
micro-robotic design. In this flow regime, inertial effects are negligible, and the micro-organisms or
micro-robots propel themselves by exploiting the viscous resistance of the fluid. For example, while a
scallop that can only open or close its shell can swim in the ocean by accelerating the surrounding
water, such a swimming strategy does not work at LRN, which is generalized by the principle:
any time-reversible swimming stroke leads to no net translation at LRN Newtonian fluid, known as
the scallop theorem [1].

It is important to understand how the performance of swimming depends on the geometric
patterns of shape deformations for micro-swimmers. In microbiology, to fight the viscous resistance,
different microorganisms adopt various propulsion mechanisms and directed locomotion strategies
for searching for food and running from predators. For example, individual cells such as bacteria find
food by a combination of taxis and kinesis using a flagellated or ciliated mode of swimming [2–5].
Recently, it was discovered that Dd cells can occasionally detach from the substrate and stay completely
free in suspension for a few minutes before they slowly sink; during the free suspension stage,
cells continue to form pseudopods that convert to rear-ward moving bumps, thereby propelling
the cell through the surrounding fluid in a totally adhesion- free fashion [6]. Human neutrophils
can swim to a chemoattractant fMLP (formyl-methionylleucyl-phenylalanine) source at a speed
similar to that of cells migrating on a glass coverslip under similar conditions [7]. Most recently
and equally striking, Drosophila fat body cells can actively swim to wounds in an adhesion-
independent motility mode associated with actomyosin-driven, peristaltic cell shape deformations [8].
In micro bio-engineering, medical microrobots revolutionize many aspects of medicine in recent years,
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which make existing therapeutic and diagnostic procedures less invasive [9]. Different LRN swimming
models and micro-robots have been designed since Purcell’s two-hinge model was advanced [1].
In particular, various linked-sphere types of models have appeared, since their simple geometry
permits both analytical and computational results [10–17]. These analytical and numerical results
have greatly inspired the designs of micro robotic devices, for example, swimmers with 2 and 3
rotatory cylinders have been built to study the hydrodynamic interaction between a wall and an active
swimmer [18,19]. Other micro-robots inspired by analytical/numerical works include the Quadroar
swimmer, which consists of rotating disks and a linear actuator [20], as well as the Purcell’s two-hinge
model [21].

An important problem in LRN swimming is to find the optimized swimming stroke of the
micro-swimmer, either (1) with respect to time, i.e., the stroke in one swimming cycle that moves the
cell farthest, or (2) with respect to energy, i.e., among all strokes with designated starting and end
points, find the one that consumes the least energy. These are usually called the time optimal control
and the energy optimal control problems, respectively. Both optimal problems have attracted substantial
interest in optimization as well as geometry [22–33]. Moreover, recently techniques from machine
learning have been applied to linked-sphere types of model gait design, which allows incorporating
environmental influences on the micro-swimmer’s swimming behavior, including noise and a frictional
medium [34].

Here by investigating the optimal strokes of a group of linked-sphere types of LRN modeling
swimmers, we study the efficiencies of propelling mechanisms at LRN of different types of shape
deformations. We start from three linked-sphere swimmers–Najafi-Golestanian (NG) 3-sphere
accordion model (Figure 1a) [10–12], pushmepullyou (PMPY) 2-sphere model (Figure 1b) [15], and the
volume-exchange (VE) 3-sphere model (Figure 1c) [17]. All three models have only 2 degrees of
freedom in their shape deformations, which is a minimal requirement that enables the swimmer to
propel itself at LRN, according to the scallop theorem [1]. In particular, the shape deformations in the
three models can be generalized as body elongation and/or mass transportation, and we investigate
the efficiencies of these two shape deformation modes on the swimming performances. Then we
generalize our results into a linear chain of spheres. The results are presented as follows: in Section 2
we present a brief introduction of the LRN swimming problem; in Section 3 we review the three
existing linked-sphere types of swimmers: NG 3-sphere, PMPY 2-sphere and VE 3-sphere models
and discuss their optimization problems in Section 4; finally in Section 5 we discuss the optimization
problem of models consisting of a chain of spheres.

Figure 1. Linked-sphere LRN swimmers. (a) a NG 3-sphere model [10–12]. (b) a PMPY 2-sphere
model [15]. (c) a VE 3-sphere model [17]. Figures show example strokes of each swimmer. Only shape
deformations are presented, net translation of the swimmer is not shown.
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2. Swimming at LRN by Shape Changes-the Exterior Problem

The Navier-Stokes equations for an incompressible fluid of density ρ, viscosity µ, and velocity
u are

ρ
∂u
∂t

+ ρ
(
u · ∇

)
u = −∇p + µ∆u + fext

∇ · u = 0

where fext is the external force field. Herein we assume that the swimmer is self-propelled and does
not rely on any exterior force, and therefore we require that fext = 0. The Reynolds number based on a
characteristic length scale L and speed scale U is Re = ρLU/µ, and when converted to dimensionless
form and the symbols re-defined, the equations read

Re
[
Sl

∂u
∂t

+
(
u · ∇

)
u
]

= −∇p + ∆u (1)

∇ · u = 0

Here Sl = ωL/U is the Strouhal number and ω is a characteristic frequency of the shape changes.
When Re� 1 the convective momentum term in Equation (1) can be neglected, but the time variation
requires that ReSl = ωL2/ν � 1. When both terms are neglected, which we assume throughout,
the flow is governed by the Stokes equations:

µ∆u−∇p = 0, ∇ · u = 0 (2)

We also consider the propulsion problem in an infinite domain and impose the condition
u|x→∞ = 0 on the velocity field.

In the LRN regime time does not appear explicitly, momentum is assumed to equilibrate
instantaneously, and bodies move by exploiting the viscous resistance of the fluid. As a result,
time-reversible deformations produce no motion, which is the content of the scallop theorem [1]. For a
self-propelled swimmer, there is no net force or torque, and therefore movement is a purely geometric
process: the net displacement of a swimmer during a stroke is independent of the rate at which the
stroke is executed, as long as the Reynolds and Strouhal numbers remain small enough.

Suppose that a swimmer occupies the closed compact domain Ω(t) ⊂ R3, at time t, and let ∂Ω(t)
denote its prescribed time-dependent boundary. A swimming stroke γ is specified by a time-dependent
sequence of the boundary ∂Ω(t), and it is cyclic if the initial and final shapes are identical, i.e.,
∂Ω(0) = ∂Ω(T) where T is the period [35]. The swimmer’s boundary velocity V relative to fixed
coordinates can be written as a part v that defines the intrinsic shape deformations, and a rigid motion
U. If u denotes the velocity field in the fluid exterior to Ω, then a standard LRN self-propulsion
problem is:

Given a cyclic shape deformation γ(t) that is specified by v, solve the Stokes equations
subject to:

Boundary condition: u
∣∣
∂Ω(t) = V = v + U, u|x→∞ = 0

Force-free condition:
∫

∂Ω(t)
f = 0

Torque-free condition:
∫

∂Ω(t)
r ∧ f = 0
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In order to treat general shape changes of a swimmer defined by Ω(t) ⊂ R3 with boundary ∂Ω(t),
one must solve the exterior Stokes Equations (2) for u, with a prescribed velocity v(t) on ∂Ω(t) and
subject to the decay conditions u ∼ 1/r and p ∼ 1/r2 as r → ∞. The solution has the representation:

u(x) = − 1
8πµ

∫
∂Ω(t)

G(x, y) · f(y)dS(y) +
1

8π

∫
∂Ω(t)

v(y) · T(y, x) · ndS(y)

where G is the free-space Green’s function, T is the associated third-rank stress tensor, n is the exterior
normal and f is the force on the boundary [36]. The constraints that the total force and the total torque
vanish determine the center-of-mass translational and angular velocities. When x ∈ ∂Ω(t), this is
an integral equation for the force distribution on the boundary, the solution of which determines the
forces needed to produce the prescribed shape changes.

3. Linked-Sphere LRN Swimmers

To date, various simple linked-sphere models for which both analytical and computational results
can be obtained have appeared. In particular, there are three linked-sphere models that are designed
to investigate the effects of changing body length vs. mass transportation on LRN swimming behavior.
The three models are: the NG 3-sphere accordion model (Figure 1a) [10–12], the PMPY 2-sphere model
(Figure 1b) [15], and the VE 3-sphere model (Figure 1c) [17].

3.1. Fundamental Solutions for Translating and Radially Deforming Spheres

In either of the three models, shape deformations either come from linking-arm length change
(the NG and the PMPY models) or radial deformations of the spheres (the PMPY and the VE models).
When a sphere of radius a(t) is pulled through a quiescent fluid with a steady force f under no-slip
conditions at the surfaces, the resulting flow field is given by [37]:

u(r) = f ·
(

1 +
a2

6
∇2
)G(x, x0)

8πµ
=

f
8πµr

·
[
I +

rr
r2 +

a2

3r2

(
I− 3

rr
r2

)]
(3)

where x0 is the position of the center of the sphere and r = x− x0, and the resulting velocity of the
sphere is given by Stokes’ law

f = 6πµaU (4)

A second fundamental solution is the velocity field u produced by a radially-expanding sphere,
which can be generated by a point source at the center x0 of the sphere. The corresponding velocity
is [36]:

u = ȧ
( a

r
)2 r

r
=

v̇
4πr2 r̂ (5)

where v = 4πa3/3 is the volume of the sphere and r̂ = r/r.
By combining the two fundamental solutions (3) and (5), we obtain the solution of the flow

velocity generated by a sphere of radius a, centered at x0, subject to a pulling/pushing force f, and
radially deforming at the rate ȧ:

u(r; a, f, ȧ) =
1

24πµr

[(
3 +

a2

r2

)
f + 3

(
1− a2

r2

)(
f · r̂
)
r̂
]
+ ȧ
( a

r
)2 r̂

Next, the fundamental solution involves the interaction between two spheres. Suppose that
at time t the ith (i = 1, 2) sphere has radius ai(t), centered at xi(t), subjected to force fi(t) and
with radially deforming rate ȧi(t). In the scenario that the two spheres are far apart, i.e., ai/l � 1,
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where l = |x1 − x2|, the translational velocity of the ith sphere can be obtained by the Reflection
Method [37–42]:

Ui ∼
fi

6πµai
+ δUt

i{j}+ δUe
i {j}+ O

( 1
l4

)
(6)

where δUt
i is due to the translation of the other sphere, which arises from the flow given by Equation (3)

and is

δUt
i{j} =

(
1 +

a2
i

6
∇2
)

u(r)
∣∣
r=xi−xj

=
1

8πµl

[(
1 +

a2
i + a2

j

3l2

)
I +

(
1−

a2
i + a2

j

l2

)
l̂l̂
]
fj (7)

where l = xi − xj. The velocity δUe
i is resulted from a flow generated by the radial deformation of the

other sphere, defined by Equation (5):

δUe
i {j} =

(
1 +

a2
i

6
∇2
)

u(r)
∣∣
r=xi−xj

= ȧj

( aj

l

)2
l̂ (8)

Finally, the power consumption P of a sphere with radius a, dragged by a force f, translating at
velocity U and radially expanding/contacting at a rate of ȧ comprises two parts: Pt = f ·U that results
from the drag force on the sphere, and Pe = 16πµaȧ2 that results from the radial deforming [15,40].
Therefore the total power expended is:

P = Pt + Pe = f ·U + 16πµaȧ2 (9)

3.2. Non-Dimensionalization of the System

Let A, L be the characteristic sphere radius and link-arm length. The reflection method holds
in the regime ε := A/L� 1. Shape deformations of the linked-sphere models (see Sections 3.3–3.5)
come from the expanding/contracting of the link-arms (l̇), or the radial expanding/contracting of the
spheres (ȧ). For the shape deformation scales, we require that ȧ/l̇ ∼ O(1), and |δa|, |δl| � A, where δa
and δl denote the shape deformations in a and l, respectively.

We non-dimensionalize the radii and rod lengths by A and L:

a∗(t) =
a(t)
A

, l∗(t) =
l(t)
L

We non-dimensionalize other length scales by A as well, and time by T-the swimming stroke
period, thus we obtain:

x∗ =
x
A

, ∇∗ = A∇, t∗ =
t
T

, u∗ =
T
A

u, U∗ =
T
A

U

ȧ∗ =
da∗

dt∗
=

T
A

ȧ, l̇∗ =
dl∗

dt∗
=

T
A

l̇

We assume that the deformations δa, δl in a and l are of the same order, both of which are scaled
by A, thus

ȧ∗ = lim
δt→0

δa
δt

= lim
δt→0

T
A

δa∗

δt∗
=

T
A

ȧ, l̇∗ = lim
δt→0

δl
δt

= lim
δt→0

T
A

δl∗

δt∗
=

T
A

l̇

and we have the approximation:

l∗(t∗ + δt∗) =
l(t + δt)

L
∼ l(t) + l̇(t)δt

L
= l∗(t∗) + εl̇∗(t∗)δt∗
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The drag force f exerted on a sphere of radius a in a quiescent fluid is related to the sphere velocity
U via Equation (4), which leads to the following scaling for forces:

f∗ =
T

6πµA2 f = a∗U∗

Therefore Equations (6)–(8) become:

U∗i ∼
f∗i
a∗i

+ δUt∗
i {j}+ δUe∗

i {j}+ O(ε4)

δUt∗
i {j} =

3ε

4l∗
[(

1 + ε2
a∗2i + a∗2j

3l∗2
)

I +
(

1− ε2
a∗2i + a∗2j

l∗2
)

l̂∗ l̂∗
]
f∗j

δUe∗
i {j} = ε2 ȧ∗j

( a∗j
l∗
)2

l̂∗

Finally, we non-dimensionalize the power P as

P∗ =
1

6πµ

T2

A3 P

so that while Power = Force ·Velocity in dimensional form, after non-dimensionalization we still have
P∗ = f∗ ·U∗. Thus the non-dimensional version of Equation (9) is:

P∗ = f∗ ·U∗ + 8
3

a∗ ȧ∗2

3.3. NG 3-Sphere Swimmer

The NG swimmer (Figure 1a) consists of three spheres with fixed radii ai (i = 1, 2, 3) and two
linking-arms with adjustable length li(t) (i = 1, 2) [10–12]. While the spheres are rigid, the linking-arms
can stretch or contract. The geometry of the model is shown in Figure 1a, where the three spheres align
along the x-axis, numbered from sphere 1 to 3 from left to right. Let e be the unit vector pointing in the
positive x direction, and we have e = (xi − xj)/‖xi − xj‖ for any pair of i, j with i > j. Thus we have
fi = fie and Ui = Uie for i = 1, 2, 3. For simplicity, we consider the simple geometry a1 = a2 = a3 = A.
Assume initial shape l1(0) = l2(0) = L.

The (non-dimensional) velocity of each sphere is given by:

U∗i = f ∗i + ∑
j 6=i

δUt∗
i {j} = f ∗i + ∑

j 6=i

3ε

2l∗(i, j)

(
1− 2

3
ε2 1

l∗2(i, j)

)
f j

where l∗(i, j) is the scaled distance between spheres i and j. The velocities are related via the
following relations:

U∗2 −U∗1 = l̇∗1 , U∗3 −U∗2 = l̇∗2

The system is force-free,

3

∑
i=1

f ∗i = 0

ad the velocity and power of the swimmer are:

U∗ =
1
3

3

∑
i=1

U∗i , P∗ =
3

∑
i=1

f ∗i U∗i
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3.4. PMPY 2-Sphere Swimmer

The PMPY swimmer (Figure 1b) consists of two spheres with radii ai(t) (i = 1, 2) and one
linking-arm with length l(t) [15]. The spheres can expand or contract in the radial direction, and the
linking-arm can stretch or contract.

The (non-dimensional) velocity of each sphere is given by:

U∗i =
f ∗i
a∗i

+
[
δUt∗

i {j}+ δUe∗
i {j}

]
j 6=i

=
f ∗i
a∗i

+
[ 3ε

2l∗
(

1− 1
3

ε2
a∗2i + a∗2j

l∗2
)

f j + (−1)sign(i−j)ε2 ȧ∗j
( a∗j

l∗
)2]

j 6=i

The velocities are related by:

U∗2 −U∗1 = l̇∗

and the force-free condition is:

2

∑
i=1

f ∗i = 0

Assume initial conditions a1(0) = a2(0) = A and l(0) = L. There is no mass exchange between
the swimmer and surrounding fluid, thus the total volume of the two spheres is conserved:

a∗31 + a∗32 = 2,
2

∑
i=1

a∗2i ȧ∗i = 0

The velocity and power of the whole swimmer are:

U∗ =
1
2

2

∑
i=1

U∗i , P∗ =
2

∑
i=1

(
f ∗i U∗i +

8
3

a∗i ȧ∗2i
)

3.5. VE 3-Sphere Swimmer

The VE swimmer (Figure 1c) consists of three spheres with radii ai(t) (i = 1, 2, 3) and two rigid
linking-arms with fixed length li (i = 1, 2) [17]. The spheres can only expand or contract in the radial
direction, and each can only exchange mass with its neighboring sphere(s), that is, between sphere 1
and 2, or between sphere 2 and 3, but not between sphere 1 and 3.

The (non-dimensional) velocity of each sphere is given by:

U∗i =
f ∗i
a∗i

+ ∑
j 6=i

[
δUt∗

i {j}+ δUe∗
i {j}

]
=

f ∗i
a∗i

+ ∑
j 6=i

[ 3ε

2l∗(i, j)

(
1− 1

3
ε2

a∗2i + a∗2j

l∗2(i, j)

)
f j + (−1)sign(i−j)ε2 ȧ∗j

( a∗j
l∗(i, j)

)2]
Assume initial conditions a1(0) = a2(0) = a3(0) = A and l1 = l2 = L. The system is force-free

and total volume is conserved:

3

∑
i=1

f ∗i = 0,
3

∑
i=1

a∗3i = 3,
3

∑
i=1

a∗2i ȧ∗i = 0
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The velocity and power of the whole swimmer are:

U∗ = U∗1 = U∗2 = U∗3 , P∗ =
3

∑
i=1

(
f ∗i U∗i +

8
3

a∗i ȧ∗2i
)

Notice that the linking-arms are rigid.

4. Optimal Strokes of NG, PMPY and VE Swimmers

4.1. Euler–Lagrange Equation for Optimal Strokes of LRN Swimmers

(Hereafter we will continue our discussion using the non-dimensional quantities but omitting
the ∗ notation for simplicity). As is introduced in Section 2, a swimming stroke γ(t) is a t-series of
swimmer shapes. In the case when the swimmer has only finitely many degrees of freedom in their
shape deformations, γ can be considered as a function from [0, T] to Rm, where m is the number
of degrees of freedom of the swimmer, and each component in γ(t) defines one degree of freedom.
For example, all three linked-sphere swimmers in Sections 3.3–3.5 have only 2 degrees of freedom,
thus we have γNG(t) = (l1(t), l2(t))T for a NG swimmer, γPMPY(t) = (l(t), a1(t))T for a PMPY
swimmer, and γVE(t) = (a1(t), a3(t))T for a VE swimmer.

The linear and driftless properties of Stokes flows make the LRN swimming problem a classic
driftless controllable system [25,28,31,32,35,43,44]. Consider a cyclic stroke γ(t) of a LRN swimmer,
where t ∈ [0, 1], γ(0) = γ(1). The net translation X(γ) and energy dissipation E(γ) within a stroke
can be represented as:

X(γ) =
∫ 1

0
U(γ)dt =

∫ 1

0
F (γ) · γ̇dt (10)

E(γ) =
∫ 1

0
P(γ)dt =

∫ 1

0

(
G(γ)γ̇, γ̇

)
dt (11)

where for NG, PMPY and VE equations, the operators F and G can be calculated from the equations
from Sections 3.3–3.5, respectively. For a given initial shape which we denote by γ0 and a given net
translation X0, let Γ{γ0, X0} be the set of all cyclic strokes that starts and ends with shape γ0 and
results in a net translation of X0 in a cycle:

Γ{γ0, X0} = {γ
∣∣γ(0) = γ(1) = γ0, X(γ) = X0}

The optimal stroke problem can be formulated as follows:

Given an initial shape γ0 and a net translation X0, find the stroke γ in Γ{γ0, X0} that
minimizes the energy dissipation E :

E(γ) = min
γ∈Γ{γ0,X0}

E(γ) (12)

The Euler–Lagrange equation for this optimization problem is [22,23]:

− d
dt
(
Gγ̇
)
+

1
2


(∂γ1Gγ̇, γ̇)

(∂γ2Gγ̇, γ̇)
...

(∂γmGγ̇, γ̇)

+ λ
[
(∇F )T −∇F

]
· γ̇ = 0 (13)

where m is the number of degrees of freedom in the swimmer’s shape deformation, and γ =

(γ1, γ2, · · · , γm)T ∈ Rm. Solutions of Equation (13) give the geodesics connecting (γ0, 0) and (γ0, X0),



Appl. Sci. 2019, 9, 4023 9 of 22

which we refer to as the geodesic strokes. The optimal stroke is the geodesic stroke that consumes the
least energy [22,23].

We use the Shooting Method (SM) to numerically solve the governing Equation (13) for the optimal
stroke problem. The numerical methods are developed in [22,23] and have been applied for NG
with equal sizes and PMPY swimmers; recent research works also report the efficiency of NG
swimmers with unequal sized sphere [45]. In the following we use SM for all three (NG, PMPY and
VE) linking-arm swimmers and compare their swimming performances. In Appendix A we present an
outline of SM for the convenience of the readers of this paper.

4.2. Numerical Results

The numerical results of optimal strokes of a NG 3-sphere, PMPY 2-sphere and VE 3-sphere
swimmers are given in Table 1 and Figure 2, where we take ε = A/L = 0.2 in all simulations.
For different values of the net translation X, the optimal strokes γ of the three swimmers are computed
by the SM method described in Section 4.1 and Appendix A, the energy dissipation of the optimal
strokes E(γ) is recorded in Table 1, and the γ-paths (solid lines) and the X(γ(t)), t ∈ [0, 1] trajectories
(dashed lines) are given in Figure 2. The simulation results show that PMPY is the most efficient
swimmer among the three, next is NG, the last is VE:

EffPMPY > EffNG ∼ EffVE

where we define the efficiency of an LRN swimmer as the net translation to energy dissipation ratio of
the optimal stroke of the swimmer:

Eff =
X(γ)

E(γ) , where γ is the optimal stroke. (14)

The dimensional form of Eff has the unit of force−1. In addition, from Table 1 we find that for
single loop optimal strokes, the efficiency for each swimmer is about the same for different values of
X(γ), with a slight increase in the efficiency for NG and PMPY swimmers as X(γ) increases:

EffPMPY ∼ 29.5− 33.0× 10−3, EffNG ∼ 2.6− 3.1× 10−3, EffVE ∼ 1× 10−3

As X increases, geodesic strokes of multiple loops show up for NG and PMPY swimmers.
However, we do not catch multi-loop solutions in our numerical simulations for VE swimmers, as large
shape deformations of VE models easily lead to negative volume of the spheres. Comparing to single
loop geodesic strokes, multi-loop geodesic strokes are less efficient (see Appendix B).

We summarize our main conclusions from the above numerical results as follows:

1. A PMPY model that adopts a mixed-mode of shape deformations is the most efficient among the
three; next is NG and the last is VE, both of which adopt a single-mode of shape deformations
(see Remark below).

2. Single-loop geodesic strokes are more efficient than multi-loop geodesic strokes.
3. The efficiency of a given LRN swimmer is almost the same for different X, as long as the optimal

stroke is single-looped.

Finally, we numerically compare the optimal strokes of the three model swimmers to stepwise
square strokes. The results are presented in Appendix C, which clearly shows the improvement of
swimming efficiency in the optimal strokes comparing to the stepwise square strokes.
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Table 1. Energy dissipation E(γ) and efficiency Eff.

X(γ) NG 3-Sphere PMPY 2-Sphere VE 3-Sphere

E(γ) Eff E(γ) Eff E(γ) Eff

0.001 37.61× 10−2 2.66× 10−3 3.37× 10−2 29.67× 10−3 95.87 1.04× 10−3

(Figure 2a,b)

0.005 182.96× 10−2 2.73× 10−3 16.82× 10−2 29.73× 10−3 539.33× 10−2 0.93× 10−3

0.01 358.28× 10−2 2.79× 10−3 33.55× 10−2 29.81× 10−3 - -
(Figure 2c,d)

0.02 695.46× 10−2 2.88× 10−3 66.77× 10−2 29.95× 10−3 - -

0.05 1636.25× 10−2 3.06× 10−3 164.91× 10−2 30.33× 10−3 - -

0.1 - - 320.94× 10−2 31.16× 10−3 - -

0.2 - - 606.30× 10−2 32.99× 10−3 - -

Figure 2. Optimal strokes of NG 3-sphere, PMPY 2-sphere and VE 3-sphere swimmers. (a,c) give the
γ-paths of the optimal strokes of the NG (blue), PMPY (red) and VE (green) swimmers, when X(γ) =

0.001, 0.01, respectively. (b,d) give the optimal stroke trajectories X(γ(t)), t ∈ [0, 1] (dashed lines)
corresponding to the γ-paths (solid lines). (γ1, γ2) = (l1, l2) for NG swimmer; (γ1, γ2) = (l, a1) for
PMPY; (γ1, γ2) = (a1, a3) for VE. All strokes start from (γ1(0), γ2(0)) = (1, 1).
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Remark 1. At LRN, different microorganisms adopt various propulsion mechanisms and directed locomotion
strategies for searching for food and running from predators. While many microorganisms including bacteria
use a flagellated or ciliated mode of swimming [2–5,46–53], some cells use an amoeboid swimming strategy,
which relies on the generation, protrusion and even travel of pseudopodia or blebs [6,7,54]. Such shape
deformations propagating over the whole cell body can usually be generalized as a combination of two modes:
stretching of the cell body, and mass transportation along the cell body. Comparing with the linked-sphere types
of models, cell body stretching can be considered as mode l̇ while mass transportation as mode ȧ. According to
the scallop theorem [1], a minimal LRN swimmer has at least two degrees of freedom in its shape deformations,
therefor we have three possible combinations: two single-mode of shape changes: both in body stretching (both
are l̇-type of shape deformations), both in mass transportation (both are ȧ-type of shape deformations), and a
mixed-modes of shape change: body stretching combined with mass transportation (l̇, ȧ). It is clearly seen that
the three combinations correspond to the three linked-sphere swimmers (NG, VE and PMPY) we discussed here,
and our numerical results indicate that:

Comparing to single-mode shape deformations, mixed-modes of shape deformations, i.e., body
stretching combined with mass transportation is more efficient when swimming at LRN.

An asymptotic analysis study on the three swimmers that derives the same conclusion can be found in [55],
which illustrates that a PMPY swimmer has a net translation X(γ) ∼ O(1), comparing to X(γ) ∼ O(ε2) for
a NG or a VE swimmer. Therefore the mixed control strategy as is adopted by a PMPY swimmer is superior to
uni-mode of control strategies as are adopted by a NG or a VE swimmer.

Remark 2. A more popular definition of efficiency of NG swimmer in its dimensional form is given by [30]:

Eff−1 =
1
T
∫ T

0 P(γ)dt
6πµAX2

which measures the ratio of the average energy dissipation in the stroke γ to that applied to a rigid sphere of
radius A traveling the same distance X. However, this definition does not apply well to our discussion in that (1)
we are considering non-rigid spheres where the spheres are allowed to deform radially, and (2) we are comparing
swimmers of different numbers of spheres. Therefore we adopt the definition given by Equation (14) instead.

5. Optimal Strokes of (m + 1)-Linked-Sphere LRN Swimmers

In this section we will discuss (m+ 1)-linked-sphere LRN swimmers, starting from the NG-type of
swimmers (Section 5.1), where rigid spheres are considered and shape deformations are only allowed
to be in linking-arms length changes. Next we consider the PMPY-type of swimmers (Section 5.2),
where both spheres and linking-arms are allowed to deform. Finally we discuss the effect of sphere
separation distance on the swimmer’s swimming efficiency (Section 5.3).

5.1. (m + 1)-Linked-Sphere NG Swimmers

An (m + 1)-linked-sphere NG swimmer consists of m + 1 spheres with fixed radii ai (i =

0, 1, 2, · · · , m) and m linking-arms with adjustable length li(t) (i = 1, 2, · · · , m). The geometry of
the model is shown in Figure 3a, where the swimmer lies along the x-axis, and the spheres and
linking-arms are numbered from left to right. We assume equal-sized spheres a0 = a1 = · · · = am = A
and initial shape l1(0) = l2(0) = · · · = lm(0) = L. The equation system describing the mechanics of
the model follows that in Section 3.3. We follow the same numerical scheme to solve the optimization
problem Equation (12) for different numbers of linking-arms m. In our simulations, we test for
m ∈ [2, 20] and with small net translation X = 5× 10−4 and ε = A/L = 0.2 in all simulations.

The energy dissipation of the optimal stroke reaches a minimum minm E(γ) = 17.28× 10−2 at
m = 3, i.e., a 4-sphere NG swimmer; after that, E(γ) increases as m increases (Figure 3b, blue dots).
Correspondingly, the most efficient swimmer is the 4-sphere NG swimmer with Eff = 2.89× 10−3,
and the efficiency decreases as m increases (Figure 3c, blue dots).
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According to the scallop theorem [1], a minimal LRN swimmer should have at least 2 degrees
of freedom. When it comes to LRN swimmers with more than 2 degrees of freedom, the question
is: is it better to use all degrees of freedom or to take a subset of them so to reach more efficient
swimming strategy? In our simulations, we find that the optimal strokes for different numbers of
linking-arms have all made use of all degrees of freedom, for example, Figure 3d,e show the γ-paths of
the optimal strokes for 5 and 10 arms, respectively, which show that all linking-arms performed length
deformations in the optimal stroke, none is disabled.

Figure 3. (m + 1)-linked-sphere NG-type or PMPY-type of swimmers. (a) Cartoon illustration of the
swimmer, which consists of m+ 1 spheres and m linking-arms. (b) Energy dissipation of optimal strokes
E(γ) and (c) efficiency Eff of NG (blue dots) and PMPY (red dots) swimmers with m linking-arms.
(d,e) The γ-path of the optimal stroke γ of a NG swimmer with 5 and 10 linked arms, respectively,
where γ = (l1, l2, · · · , lm)T . (f,g) The γ-path of the optimal stroke γ of a PMPY swimmer with 5 and
10 linked arms, respectively, where γ = (l1, l2, · · · , lm, a1, a2, · · · , am)T , where the solid lines give the
li-trajectories and dashed lines the ai-trajectories. ε = 0.2 and X = 5× 10−4 in all simulations.

5.2. (m + 1)-Linked-Sphere PMPY Swimmers

Next we consider (m + 1)-linked-sphere PMPY swimmers, which consist of m + 1 spheres with
adjustable radius ai(t) (i = 0, 1, 2, · · · , m) and m linking-arms with adjustable length li(t) (i =



Appl. Sci. 2019, 9, 4023 13 of 22

1, 2, · · · , m) (Figure 3a). We assume initial shape a0(0) = a1(0) = · · · = am(0) = A and l1(0) = l2(0) =
· · · = lm(0) = L. Under the volume conservation constraint of all spheres, we take a1, a2, · · · , am to be
controls while a0(t) can be obtained from the volume conservation constraint. The equation system of
the model follows that in Section 3.4. In our simulations, we test for m ∈ [1, 20] and with small net
translation X = 5× 10−4 and ε = A/L = 0.2 in all simulations.

The energy dissipation of the optimal stroke reaches a minimum minm E(γ) = 1.70× 10−2 at
m = 1, i.e., a 2-sphere PMPY swimmer, which is the one we discussed in Section 3.4. E(γ) increases as
m increases (Figure 3b, red dots). Correspondingly, the most efficient swimmer is the 2-sphere NG
swimmer with Eff = 29.5× 10−3, and the efficiency decreases as m increases (Figure 3c, red dots).
Comparing to NG type of swimmers with the same structure (i.e., same numbers of spheres and
linking-arms), PMPY swimmers consumes less energy and is thus more efficient (Figure 3b,c).

Similar to NG swimmers, for PMPY swimmers, the optimal strokes for different numbers of
linking-arms have also made use of all degrees of freedom. Figure 3f,g show the γ-paths of the
optimal strokes for 5 and 10 arms, respectively, which show that all linking-arms performed length
deformations and all spheres performed radial deformations in the optimal stroke. In addition,
we find that for large m, the amplitude of sphere radial deformations ai(t) are smaller than that of the
linking-arms length changes li(t) (Figure 3f,g); on the other hand, in the most efficient PMPY type
of swimmers, i.e., the 2-sphere PMPY swimmer, the amplitude of sphere radial deformation a1(t) is
larger than that of the linking-arm length change l(t) (Figure 2a,c).

5.3. (m + 1)-Linked-Sphere NG and PMPY Swimmers with Widely Separated Spheres

In this part we consider swimmers with widely separated spheres, where ε = A/L = 0.01,
comparing to ε = 0.2 in Sections 5.1 and 5.2. The simulation results are given in Figure 4 for NG and
PMPY types of swimmers with different numbers of linking-arms m, where X = 5× 10−4 as before.

Figure 4. (m + 1)-linked-sphere NG-type or PMPY-type of swimmers with widely separated
spheres. (a) Energy dissipation of optimal strokes E(γ) and (b) efficiency Eff of NG (blue dots)
and PMPY (red dots) swimmers with m linking-arms and m + 1 spheres. ε = 0.01 and X = 5× 10−4 in
all simulations.

First, the most efficient NG type of swimmer is again the 4-sphere NG swimmer, with a minimum
energy dissipation minm E(γ) = 5745.09 × 10−2; the most efficient PMPY type of swimmer is
again the 2-sphere PMPY swimmer, with a minimum energy dissipation minm E(γ) = 2.03× 10−2.
Comparing to ε = 0.2 swimmers, we find that the optimized energy dissipation of NG swimmer with
widely separated sphere increases greatly while that of PMPY swimmer is almost the same (Table 2).
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Table 2. Energy dissipation E(γ) of the most efficient NG and PMPY types of swimmers.

NG PMPY

4-Sphere (m = 3) 2-Sphere (m = 1)

ε = 0.2 17.28× 10−2 1.70× 10−2

ε = 0.01 5745.09× 10−2 2.03× 10−2

Next, similar to ε = 0.2 swimmers, when m increases, the energy dissipation E(γ) increases for
both NG and PMPY types of swimmers (Figure 4a), resulting in fast decreasing efficiency (Figure 4b).
However, we should point out that while for a 2-sphere PMPY swimmer, E(γ) is almost the same
despite the separation distance of the spheres (Table 2), for large m, the energy dissipation of PMPY
type of swimmers increases much faster with widely separated spheres (ε = 0.01) comparing to those
with closer spheres (ε = 0.2) (Figures 3b and 4a, Table 3).

Table 3. Energy dissipation E(γ) of 20-arms NG and PMPY types of swimmers.

NG 21-Spheres PMPY 21-Spheres

ε = 0.2 62.93× 10−2 50.29× 10−2

ε = 0.01 21975.1× 10−2 2954.27× 10−2

Remark 3. In [55], using asymptotic analysis, it is shown that for NG 3-sphere and VE 3-sphere swimmers,
the net translation X(γ) ∼ O(ε2); while for PMPY 2-sphere swimmers, X(γ) ∼ O(1). Therefore as the
separation distance L increases, the efficiency of NG and VE 3-sphere swimmers quickly decreases, while that
of PMPY 2-sphere does not change much, which makes PMPY swimmers superior to NG and VE swimmers
from an efficiency point of view, considering that all have a minimal 2-degree of freedom in shape deformations.
The asymptotic analysis results supports our numerical results for optimal strokes (Table 2). However, when there
are more degrees of freedom in a swimmer’s shape deformations, the efficiency behavior of PMPY types of
swimmers clearly depends on the separation distance L (Table 3). Further asymptotic analysis in this direction
might be worthwhile.

6. Discussion

A successful and efficient locomotory gait design is important for micro-organisms and
micro-robot who live or present in a viscous fluid environment. While bacteria often adopt a flagellated
or ciliated mode of swimming strategy, amoeboid cells deform their cell bodies to propel themselves,
resisting the viscous resistance from surrounding fluid. Such shape deformations can be generalized
into two modes: stretch or elongation of a part of or the whole cell body, and mass transportation
along the the cell body which does not greatly change the cell length. Interestingly, in bio-engineering,
there are three linked-sphere LRN swimming models (NG 3-sphere, PMPY 2-sphere and VE 3-sphere
models) that adopt a uni- or mixed modes of the aforementioned two shape deformation changes.
By analyzing the optimal strokes of the three swimmers, we show that PMPY which adopts the mixed
control is the most efficient among the three. We also consider models consisting a chain of spheres,
and again we find that the PMPY-type of swimmers that use mixed controls are more efficient than
NG-type of swimmers which use uni-controls of length change. We also find that generally speaking,
the swimming efficiency decreases as the number of spheres increases, implying that more degrees
of freedom in shape deformations is not a good strategy in optimal gait design. When the sphere
separation distance increases, the efficiencies of NG type of swimmers greatly decrease, while the
efficiencies of PMPY type of swimmers decrease in swimmers with many spheres, but are not affected
much for swimmers with less spheres.

The findings in our paper can be potentially applied in the design of micro-robots with more
complex structures. In addition, the numerical scheme presented here can be applied to more advanced
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LRN swimming systems. For example, it can be applied for general 2D and 3D swimmers, when the
swimmer shapes can be represented by conformal mappings or spherical harmonics [35,56–58].

Moreover, for micro-organisms, their swimming behaviors are also significantly affected by
environmental factors in biological media, therefore complex rheology of the surrounding fluid should
be considered. A starting point might be bringing the linked-sphere swimmers into viscoelastic
medium. We would like to point out that asymptotic analysis results for NG 3-sphere swimmer in
linearized viscoelastic fluid have been obtained [13].
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Abbreviations

The following abbreviations are used in this manuscript:

LRN Low Reynolds Number
NG Najafi-Golestanian 3-sphere model
PMPY Pushmepullyou 2-sphere model
VE Volume-exchange 3-sphere model
SM Shooting method

Appendix A. Shooting Method

We use the SM to solve the optimal stroke problem Equation (12), where the Euler–Lagrange
Equation (13) is solved using the 2nd order Runge–Kutta method [22,23].

For a LRN swimmer with finitely many degrees of freedom in its shape deformations, given an
initial shape γ0 and an initial shape deformation denoted by v0, there exists a unique solution
γ(t) (t ∈ [0, 1]) to the Euler–Larange Equation (13) and satisfies the initial condition: γ(0) = γ0,
γ̇(0) = v0. For the given initial shape γ0, define a function Φγ0 as:

Φγ0(v0, λ) =
(
γ(1), X(γ)

)
(A1)

where λ is the Lagrange multiplier in Equation (13), γ is the solution to the Euler–Larange Equation (13),
and X(γ) is the net translation resulted from the stroke γ (see Equation (10)). Then the optimal stroke
problem Equation (12) becomes:

Given initial shape γ0 and a net translation X0, find (v0, λ), s.t. Φγ0(v0, λ) = (γ0, X0).

The corresponding stroke is the optimal stroke γ.

Remark A1. From the geometric point of view, let Q be the set of all possible configurations of the LRN
swimmer. If the swimmer has only finitely many degrees of freedom in this shape deformations, then Q is a finite
dimensional smooth manifold and has the geometric structure Q = S× G, where S is the set of all unlocated
shapes of the swimmer and G is the group of rigid motions. All the linked-sphere swimmers we considered are
rotation-free and can only perform translation along one direction, therefore G ∼= R. A swimming stroke γ(t) is
a path in S, and γ̇(t) ∈ Tγ(t)S, that is, a shape deformation γ̇(t) is a tangent vector in the tangent space Tγ(t)S
on the shape γ(t). Therefore Equation (A1) defines a function Φγ0 :

Φγ0 : Tγ0 S×R→ Q

and

v0 ∈ Tγ0 S, λ ∈ R, γ(1) ∈ S, X(γ) ∈ G ∼= R
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The geometric structure Q = S× G makes Q the trivial principal fiber bundle over S. For more discussions
regarding the geometric properties of a LRN swimming system, please refer to [25,28,31,32,35,43,44].

Algorithm 1: (Shooting Method)

Let Z = (γ0, X0) ∈ Rm+1, choose a parameter N. Make an initial guess θ0 = (v0, λ).

1. Loop for n = 0, 1, · · · , N − 1.

• Compute Zn = Φγ0(θn) by solving Equation (13) using the 2nd order Runge–Kutta method.
• Compute

θn+1 = θn + DΦγ0(θn)
−1
(Z− Zn

Z− n

)
where the matrix DΦγ0(θ) can be approximated by the following finite difference scheme:

DΦγ0(θ)
(
δei
)
∼ Φγ0(θ + δei)−Φγ0(θ)

where 0 < δ� 1 and ei ∈ Rm+1 is the ith unit vector.

2. (Newton’s method) Loop for n ≥ N until θn converges to θ.

• Compute Zn = Φγ0(θn) by solving Equation (13) using the 2nd order Runge–Kutta method.
• Compute

θn+1 = θn + DΦγ0(θn)
−1(Z− Zn

)
3. Compute the optimal stroke γ from θ.

Appendix B. Geodesic Strokes

In [22], Alouges et al identified three types of geodesic strokes by their shapes, referred to as
“drop, bean and pretzel”. While “drops” and “beans” are single loop strokes, pretzel can be considered
as the general 2-loop strokes.

In our simulations of NG 3-sphere and PMPY 2-sphere models, we also capture the three types of
geodesic strokes (Figure A1, Tables A1 and A2), where X = 0.045, ε = 0.2 for the NG swimmer and
X = 0.1, ε = 0.2 for the PMPY swimmer. In the NG swimmer, the “drop" stroke gives the optimal
stroke among the three (Figure A1a,b, Tables A1), and we note that in [22] it is also reported that the
“drop” stroke is the most efficient one. On the other hand, in the PMPY swimmer, the “drop” and “bean”
strokes consume similar energy (Figure A1c,d, Tables A2). In either NG or PMPY model, single loop
geodesic strokes are clearly more efficient then the 2-loop geodesic strokes, or say, the “pretzel” strokes
(Tables A1 and A2). Next, with large X, we catch multi loop geodesic strokes with more than 2 loops
in the PMPY swimmer (Figure A2, Table A3). Finally, We do not catch multi-loop geodesic strokes for
VE swimmers, possibly because that large shape deformations of VE models easily lead to negative
volume of the spheres.
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Figure A1. Geodesic strokes of NG 3-sphere and PMPY 2-sphere swimmers. (a) The γ-paths of the
geodesic strokes of the NG 3-sphere swimmer, with X(γ) = 0.045 and ε = 0.2. (b) The geodesic
stroke trajectories from (a). (c) The γ-paths of the geodesic strokes of the PMPY 2-sphere swimmer,
with X(γ) = 0.1 and ε = 0.2. (d) The geodesic stroke trajectories from (c).

Table A1. Energy dissipation E(γ) and efficiency Eff of geodesic strokes of the NG-3sphere swimmer,
with X(γ) = 0.045, ε = 0.2.

NG 3-Sphere E(γ) Eff

Bean 1972.61× 10−2 2.28× 10−3

Drop 1485.09× 10−2 3.03× 10−3

2-loop (pretzel) 3799.59× 10−2 1.18× 10−3

Table A2. Energy dissipation E(γ) and efficiency Eff of geodesic strokes of the PMPY 2-sphere swimmer,
with X(γ) = 0.1, ε = 0.2.

PMPY 2-Sphere E(γ) Eff

Bean 321.44× 10−2 31.12× 10−3

Drop 320.94× 10−2 31.16× 10−3

2-loop (pretzel) 658.66× 10−2 15.19× 10−3



Appl. Sci. 2019, 9, 4023 18 of 22

Figure A2. Geodesic strokes of PMPY 2-sphere swimmers showing multi loops. (a) The γ-paths of
the geodesic strokes of the PMPY 2-sphere swimmer, with X(γ) = 0.2 and ε = 0.2. (b) The geodesic
stroke trajectories from (a).

Table A3. Energy dissipation E(γ) and efficiency Eff of geodesic strokes of the PMPY 2-sphere swimmer,
with X(γ) = 0.2, ε = 0.2.

PMPY 2-Sphere E(γ) Eff

1-loop 606.46× 10−2 32.99× 10−3

3-loop 1917.31× 10−2 10.43× 10−3

5-loop 3197.44× 10−2 6.26× 10−3

Appendix C. Comparison between Optimal and Square Strokes

Here we numerically compare the optimal stokes γ for NG 3-sphere, PMPY 2-sphere and VE
3-sphere models as obtained in Section 4.2 with stepwise square strokes γsq. The energy dissipation
and efficiency are shown in Table A4, the γ-paths and the X(γ(t)), t ∈ [0, 1] trajectories are given in
Figure A3. To make a fair comparison, we take ε = 0.2 and X(γ) = 0.001 in all simulations. Data in
Table A4 shows the improvement of swimming efficiency in the optimal strokes in all three model
swimmers comparing to the stepwise square strokes.

Table A4. Energy dissipation E(γ) and efficiency Eff of the optimal strokes γ and square strokes γsq.
All simulations are taken with X = 0.001 and ε = 0.2.

NG 3-Sphere PMPY 2-Sphere VE 3-Sphere

E Eff E Eff E Eff

Optimal strokes 37.61× 10−2 2.66× 10−3 3.37× 10−2 29.71× 10−3 95.87× 10−2 1.04× 10−3

(γ)
Square strokes 51.59× 10−2 1.94× 10−3 5.04× 10−2 19.83× 10−3 181.93× 10−2 0.55× 10−3

(γsq)
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Figure A3. Comparison between optimal and square strokes of NG 3-sphere, PMPY 2-sphere and
VE 3-sphere swimmers. (a,c,e) give the γ-paths of the optimal strokes (γ) and the square strokes
(γsq) of the NG, PMPY and VE swimmers, all with X(γ) = 0.001 and ε = 0.2. (b,d,f) give the stroke
trajectories X(γ(t)), t ∈ [0, 1] (dashed lines) corresponding to the γ-paths (solid lines).
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