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Featured Application: This work provides an effective analysis tool for OCT-based brain imaging
and provides an approach to improve the quantitative accuracy of chromophores in tissue for the
experimental study of brain functional sensing. What is more, these methods are also suitable
for other complex 3D bio-tissues.

Abstract: Optical coherence tomography (OCT) can obtain high-resolution three-dimensional (3D)
structural images of biological tissues, and spectroscopic OCT, which is one of the functional
extensions of OCT, can also quantify chromophores of tissues. Due to its unique features, OCT has
been increasingly used for brain imaging. To support the development of the simulation and
analysis tools on which OCT-based brain imaging depends, a model of mesh-based Monte Carlo
for OCT (MMC-OCT) is presented in this work to study OCT signals reflecting the structural and
functional activities of brain tissue. In addition, an approach to improve the quantitative accuracy
of chromophores in tissue is proposed and validated by MMC-OCT simulations. Specifically, the
OCT-based brain structural imaging was first simulated to illustrate and validate the MMC-OCT
strategy. We then focused on the influences of different wavelengths on the measurement of
hemoglobin concentration C, oxygen saturation Y, and scattering coefficient S in brain tissue.
Finally, it is proposed and verified here that the measurement accuracy of C, Y, and S can be improved
by selecting appropriate wavelengths for calculation, which contributes to the experimental study of
brain functional sensing.

Keywords: optical coherence tomography; Monte Carlo simulation; structural imaging; functional sensing

1. Introduction

Applications of optical coherence tomography (OCT) in brain tissue include structural imaging
and functional sensing. Structural imaging includes macroscopic imaging [1,2] and angiography of the
brain tissue [3]. Common detectable brain functional activities are shown in Figure 1 [4,5], and the
associated optical processes are also indicated. Among them, scattering and absorption can be obtained
by spectroscopic OCT [6,7], and Doppler shift can be measured by Doppler OCT [8]. This paper focuses
on the applications of OCT in brain structural imaging as well as in the measurement of absorption
and scattering coefficients of brain tissue.

Both numerical and in vivo testbeds are useful for brain tissue imaging. In vivo testbeds provide
the ultimate confirmation of performance, while numerical testbeds allow a more controlled evaluation
of imaging modalities and optimization of their parameters. Monte Carlo (MC) simulation is the golden
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means to simulate the interaction between light and tissue [9,10]. Many efficient MC models have
been developed to study OCT signals of different tissues [11–14] or polarization-sensitive OCT [11,15].
However, there are few literatures to analyze OCT signals in brain tissue using MC technology.
Therefore, as a slight supplement to this field, we detail how to use MC simulation to analyze the
applications of OCT in brain tissue structural imaging and functional sensing. A model of mesh-based
Monte Carlo [14,16,17] for OCT (MMC-OCT) is used in this paper, which is useful for any complex
three-dimensional (3D) bio-tissues. This work provides an analysis method and related data for brain
simulation as well as help for experimental study.
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Figure 1. Relationship among common brain functional activities, physiological parameters, and 
optical processes. The total hemoglobin concentration C is equal to the sum of the oxyhemoglobin 
concentration and deoxyhemoglobin concentration. Oxygen saturation Y is the ratio of the 
oxyhemoglobin concentration to the total hemoglobin concentration. 

Quantitative accuracy is undoubtedly an important indicator in the measurement of scattering 
and absorption of brain tissue. In the spectroscopic OCT, extinction coefficients of different 
wavelengths are obtained by using the short-time Fourier transform (STFT) and exponential fitting 
[7], and the extinction coefficient is the sum of the absorption coefficient and scattering coefficient S. 
It is a common choice to use a visible light waveband for detection of scattering and absorption [6,18], 
and the main absorption in this range comes from hemoglobin for brain tissue [19,20]. Thus, the total 
hemoglobin concentration C and oxygen saturation Y of the brain tissue can be calculated by solving 
linear equations using absorption coefficients of several different wavelengths [4], where C and Y are 
defined in Figure 1. The extinction coefficients of multiple wavelengths can be obtained in 
spectroscopic OCT, so the results obtained by fitting the oversampled data will undoubtedly be more 
accurate considering the noise and experimental errors in the actual applications. However, the 
spectral resolution and spatial resolution are contradictory [21], and the more positions the window 
function traverses, the longer the calculation time. In addition, the narrower the width of the window 
function in the spectral domain, the worse the signal-to-noise ratio (SNR). For measurements of blood 
vessels with high hemoglobin concentrations (~2 mmol) [22], two or three wavelengths can be used 
to resolve the correct functional parameters [23,24] while achieving high spatial resolution. In the 
process of solving C, Y, and S from the fitted extinction coefficients of three wavelengths, we found 
that the error of the extinction coefficient has a great influence on the calculated results, and the values 
of C, Y, and S calculated using different wavelengths are distinct for the certain error. Therefore, the 
selection of wavelengths that are used to calculate scattering and absorption is explored in this paper. 
It is proposed and validated here that the measurement accuracy of C, Y, and S can be improved by 
selecting the appropriate wavelengths for calculation. 

The remainder of this paper is organized as follows. We present the basic principles of structural 
imaging and functional sensing of OCT as well as MMC-OCT models in Section 2. In Section 3, we 
first detail how to use MMC-OCT simulation to study structural imaging of tissue, and then the 

Figure 1. Relationship among common brain functional activities, physiological parameters, and optical
processes. The total hemoglobin concentration C is equal to the sum of the oxyhemoglobin concentration
and deoxyhemoglobin concentration. Oxygen saturation Y is the ratio of the oxyhemoglobin
concentration to the total hemoglobin concentration.

Quantitative accuracy is undoubtedly an important indicator in the measurement of scattering and
absorption of brain tissue. In the spectroscopic OCT, extinction coefficients of different wavelengths are
obtained by using the short-time Fourier transform (STFT) and exponential fitting [7], and the extinction
coefficient is the sum of the absorption coefficient and scattering coefficient S. It is a common choice to
use a visible light waveband for detection of scattering and absorption [6,18], and the main absorption
in this range comes from hemoglobin for brain tissue [19,20]. Thus, the total hemoglobin concentration
C and oxygen saturation Y of the brain tissue can be calculated by solving linear equations using
absorption coefficients of several different wavelengths [4], where C and Y are defined in Figure 1.
The extinction coefficients of multiple wavelengths can be obtained in spectroscopic OCT, so the
results obtained by fitting the oversampled data will undoubtedly be more accurate considering the
noise and experimental errors in the actual applications. However, the spectral resolution and spatial
resolution are contradictory [21], and the more positions the window function traverses, the longer the
calculation time. In addition, the narrower the width of the window function in the spectral domain,
the worse the signal-to-noise ratio (SNR). For measurements of blood vessels with high hemoglobin
concentrations (~2 mmol) [22], two or three wavelengths can be used to resolve the correct functional
parameters [23,24] while achieving high spatial resolution. In the process of solving C, Y, and S from the
fitted extinction coefficients of three wavelengths, we found that the error of the extinction coefficient
has a great influence on the calculated results, and the values of C, Y, and S calculated using different
wavelengths are distinct for the certain error. Therefore, the selection of wavelengths that are used to
calculate scattering and absorption is explored in this paper. It is proposed and validated here that
the measurement accuracy of C, Y, and S can be improved by selecting the appropriate wavelengths
for calculation.
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The remainder of this paper is organized as follows. We present the basic principles of structural
imaging and functional sensing of OCT as well as MMC-OCT models in Section 2. In Section 3,
we first detail how to use MMC-OCT simulation to study structural imaging of tissue, and then the
influences of different wavelengths on quantitative accuracy of scattering and absorption coefficients
are discussed. Finally, in Section 4 we provide a brief summary and conclusion.

2. Methods

2.1. Structural and Functional Imaging Based on OCT

The spectroscopic OCT includes the spectroscopic time domain OCT (TD-OCT) and spectroscopic
Fourier domain OCT (FD-OCT), both of which are implemented by windowed Fourier transform [21,25].
Here we mainly introduce the principle of structural imaging and functional sensing based on FD-OCT.
In FD-OCT, it is only necessary to perform a Fourier transform on the interference signal collected by
the spectrometer or detectors to obtain the structural image, i.e.,

I(k) = S(k)
∣∣∣∣∣aR +

∫
∞

0
a(z) exp

{
i2kn(k)z

}
dz

∣∣∣∣∣2 (1)

and
H(z) = F

{
I(k)

}
= F

{
S(k)

}
⊗

{
a2

Rδ(z) + aR[a(z) + a∗(−z)] + AC(Iau(k)
}
, (2)

where S(k) is the power spectrum of the light source; aR is the amplitude of the reflected reference light;
k is the wavenumber; n(k) is the refractive index of the sample at k; and a(z) is the amplitude of the
backscattered light at the z position of the sample. AC represents the self-coherent signal of the sample,
which can usually be ignored because it is small.

During the calculation above, n(k) is treated as a real number. However, it is in fact a complex
valued function n(k) = n(k) + iκ(k), defining both the group delay (n(k)) and absorption (κ(k)) within
a medium [26]. Therefore, ignoring the conjugate and direct-current terms, Equation (2) should be
expressed as

H(z) = F
{
I(k)

}
= F

{
S(k)

}
⊗

{
aRa(z) exp(−2nzµt(z))

}
(3)

in which µt is the extinction coefficient of tissue; and n is the average refractive index of tissue.
When a STFT or wavelet transform is applied to Equation (1), we can obtain the depth-resolved
spectrum H (z, kn), shown as

H(z, kn) = F
{
I(k)g(kn; ∆k)

}
= A

{
µb(z, kn) exp(−2nzµt(z, kn)

}
(4)

where A represents the system parameter and µb is the backscattered coefficient [7] and g(kn; ∆k) is a
window function having a width ∆k centered at a mean scattering wave number kn. Thus, the spectra
of backscattering coefficient µb and extinction coefficient µt as a function of z and kn are obtained.

From Equation (4) we can see that there is an inherent trade-off between spectral resolution and
spatial resolution. For Gaussian windows, the resolution in z-space and k-space is related by Equation
∆k∆z = 1/4π, i.e., ∆z = λ2/(2∆λ) [21].

For brain tissue, the main absorption comes from water and hemoglobin. For simplicity,
chromophores other than hemoglobin such as fat, melanin, and lipids are neglected [19].
Consequently, the extinction coefficient of the sample can be defined as

µt(z,λ) = C(z) · ln(10) · [Y · εO(z,λ) + (1−Y) · εD(z,λ)] + µs(z,λ). (5)

εO and εD are the molar extinction coefficients—the extinction coefficient divided by ln(10) per unit
molar concentration—of oxyhemoglobin and deoxyhemoglobin, respectively [27]. µs is the scattering
coefficient. The unit of C is mmol, the unit of εO and εD is mmol−1 mm−1, and the unit of µs and
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µt is mm−1. Functional sensing involves the measurement of C, Y, and µs based on the absorption
and scattering spectra (Figure 2). Figure 2 shows the curves of µa and µs as a function of wavelength,
where µa = C ln(10)εo and C = 2 mmol [22].
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Figure 2. Wavelength dependence of oxyhemoglobin and deoxyhemoglobin absorption (blue and
green, respectively) [22], whole blood scattering (red) [22], and water absorption (black) [20].

For the visible-light waveband (500–600 nm), the magnitude of the absorption and scattering
coefficients are of the same order, and it can be approximately considered that the scattering coefficient
is not affected by the wavelength when using the method introduced in [6]. Therefore, the extinction
coefficient can be expressed as

µt(z,λ) = C(z) · ln(10) · [Y · εO(z,λ) + (1−Y) · εD(z,λ)] + µs(z). (6)

Consequently, it is only necessary to obtain the extinction coefficients of three different wavelengths
at a certain depth z, and then, C, Y, and µs can be calculated by solving the ternary equation.

In the near-infrared light waveband (600–1100 nm), the scattering coefficient is affected more by
the wavelength than in the visible range, and the scattering coefficient is approximately linear with
the wavelength or satisfies a specific functional relationship a × λb [28,29], where both a and b are
constants. Therefore, the extinction coefficient can be expressed as

µt(z,λ) = C(z) · ln(10) · [Y · εO(z,λ) + (1−Y) · εD(z,λ)]+(a + bλ) (7)

when the linear relationship is considered. Accordingly, C, Y, and µs can be calculated by solving the
quaternary equation.

In the range of >1200 nm, the absorption coefficients of oxyhemoglobin and deoxyhemoglobin
are almost indistinguishable as shown by the purple dashed box in Figure 2, so the functional sensing
is difficult to achieve.

This article focuses on functional sensing in the visible-light waveband. Within this range, the
parameter C, Y, and S can be obtained by solving a ternary linear equation, expressed as Equation (6),
or can be obtained by the fitting strategy using oversampled data. The latter has a higher probability
of getting the correct parameters. However, if functional parameters with acceptable errors can be
obtained using data at three wavelengths, it is advantageous where high spatial resolution is required,
such as imaging small-sized microvessels in brain tissue.

2.2. Mesh-Based Monte Carlo for Optical Coherence Tomography (MMC-OCT)

Throughout the simulation of this paper, a fast mesh-based Monte Carlo (MMC) photon migration
algorithm for imaging in 3D complex tissue was used [16,17], and a schematic that clearly illustrates
the simulation process is shown in Figure 3. Before proceeding with the steps described in Figure 3,
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the “MMCLAB” package needs to be downloaded [30], which contains all the MATLAB m-files
mentioned in Figure 3.
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Figure 3. Flow chart describing the simulation process of mesh-based Monte Carlo optical coherence
tomography (MMC-OCT). µa and g are the absorption coefficient and anisotropy factor, respectively;
θi is the angle between the emission direction of the detected photon and z axis; θmax is the collecting
angle; lc is axial resolution (i.e., the coherence length); z is the probing depth; sum (nscat) and sum
(ppath) represent the sum of scattering events and the sum of path lengths in all media, respectively.
NI (z) and NII (z) are the numbers of class I photon and class II photon that are reflected/backscattered
at the z-depth, respectively.

In simulations, the light source was a pencil beam, and a circular detector with a radius of
10 µm was placed at the same position as the emission position of the photon packet. The initial
set number of photons and θmax were 5 × 1013 and 3◦, respectively. After running Monte Carlo
MATLAB program “mmclab”, the parameters nscat, ppath, v, and zmax of each detected photon are
obtained. It should be noted that the mesh of the tissue is subdivided in the depth direction in order to
obtain the depth coordinates at which the scattering event occurs. Then, according to the condition∣∣∣sum(ppath) − 2z

∣∣∣< lc/2 , the photons within the collecting angle θmax are divided into different depths
z having a thickness of lc. To classify the photon further, on satisfaction of

∣∣∣sum(ppath) − 2zmax
∣∣∣< lc/2,

the photon is recorded as a class I photon, otherwise it is recorded as a class II photon [10,13].
We directly obtained the backscattered field of the tissue detected by the OCT system represented

as Equation (3) through the above steps, without simulating the complete imaging process of the OCT.
The resolution of z-space is equal to lc, which is determined by the spectral bandwidth of the light
source, and µt is the average extinction coefficients of the tissue within the spectral bandwidth.

Similarly, for the analysis of functional imaging of FD-OCT, the depth-resolved spectrum H (z, kn)
represented by Equation (4) was directly obtained. From Equation (4), we found that the effect
of window function g in the STFT is equivalent to that of a light source with a narrower spectral
width. Therefore, we controlled the z-space resolution by setting lc, and the expression of lc is
∆z = λ2/(2∆λ) [21]. µt is the extinction coefficient of the tissue over the spectral bandwidth of the
window function.
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All simulations were run using a desktop computer with an Intel Core 3-GHz 64-bit processor
(Intel Corporation, Santa Clara, CA, USA) and 16 GB of RAM running the Windows operating system.
It, however, has to be pointed out that the simulation time of MMC-OCT is long. Simulation of
a 300 × 300 × 500 µm gray matter (discretized using a mesh of 15,720 nodes and 87,996 elements)
for 5 × 1011 photons took approximately 2.5 h per A-scan. However, the simulation time can be
greatly reduced by improving the program. It has been proven that tetrahedral mesh-based MC and
importance sampling can significantly reduce computation time, which can obtain more accurate
OCT signals using fewer photons [31]. In addition, because of the inherently parallel nature of MC
simulation, we can reduce simulation time by implementing the MMC-OCT program on a graphics
processor unit (GPU).

3. Results and Discussions

We first generated a segmented human brain atlas as shown in Figure 4 [32], from which we know
that the brain tissue has a hierarchical structure and some cylindrical structures (vessels) embedded
in it.
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Figure 4. Three-dimensional (3D) brain atlas (181 × 217 × 181 mm): (a) 3D model of brain; (b) 3D
model of blood vessels segmented from brain model shown in (a); and (c) 2D section of brain extracted
at plane x = 90 mm. CSF represents the cerebrospinal fluid.

3.1. Simulation Results of Brain Structural Imaging

In this section, the structural imaging of hierarchies and vascular structures present in the brain
tissue was simulated. The parameters of the hierarchical structure [16,33] and vessel structure [22] in
the simulation are listed in Table 1. The n and g of tissue were 1.37 and 0.9, respectively. The simulated
hierarchy structure consisted of the skull, cerebrospinal fluid (CSF), gray matter and white matter,
and its 3D volumetric finite-element (FE) mesh is shown in Figure 5a. Figure 5b shows the 3D
volumetric mesh of gray matter with a blood vessel embedded in it, and the position of the blood
vessel is indicated on the figure. The numbers in Figure 5a,b represent the number of grids, and the
grid resolution was 10 µm. In the simulation, the center wavelength was 630 nm and lc was 10 µm,
which is equivalent to using a light source having a spectral bandwidth of 13 nm.

First, in order to verify the correctness and effectiveness of the MMC-OCT model in OCT-based
structural imaging, all parts of the hierarchy structure were compressed, and compressed sizes are
shown inside parentheses in the “Thickness” column of Table 1. The backscattered signal of the
compressed hierarchical structure (Figure 5c,d) shows the simulation result of the vessel structure
obtained with actual tissue parameters. It is clearly seen that the backscattered signals reflect the
structural distribution of the two tissues, and the dimensions of each part are identical to the preset
structural dimensions. Moreover, the results show that the larger the scattering coefficient, the larger
the amplitude of the backscattered signal and the faster the signal attenuates, which is completely
consistent with the actual situation [7] and proves the validity of the MMC-OCT used in this paper.
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Table 1. Geometric parameters and optical parameters of simulated tissues at 630 nm wavelength.

Tissue Type Thickness (mm) µa (mm−1) µs (mm−1)

Hierarchical Structure

Skull 7 (0.15) 0.019 7.8
CSF 2 (0.05) 0.004 0.009

Gray matter 4 (0.1) 0.02 9
White matter 34 (0.2) 0.08 40.9

Vessel Structure

Medium (Gray matter) 0.5 0.02 9
Vessel 0.1 (Diameter) 0.28 88.55
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Figure 5. (a,b) 3D volumetric finite-element (FE) mesh of simulated tissue, in which R and O are the
radius and center of the blood vessel, respectively. (d) Backscattered signal of the vessel tissue. (c,e) show
the backscattered signal of the compressed and uncompressed hierarchical structures, respectively.

Figure 5e shows the simulation result of the brain hierarchy structure obtained using actual tissue
parameters shown outside parentheses in the “Thickness” column of Table 1. It can be found that the
backscattered signal attenuates rapidly with an increase in depth and the light cannot penetrate the
skull, which is consistent with reality [4]. The imaging depth of SD-OCT is generally 1–2 mm, owing to
the large attenuation coefficient of tissue, which is not enough for human brain tissue [4]. But for some
in vitro studies, we may only focus on a part of the brain, such as the cerebral cortex or the vascular
network. In addition, brain imaging of small animals also provides significant reference value for
human brain research. In the aforementioned applications, the MMC-OCT can be used to simulate
their imaging process, thus providing important theoretical support for brain imaging.

3.2. Simulation Results of Brain Functional Sensing

As we mentioned in the introduction, the application of spectroscopic OCT in brain functional
sensing is usually to quantify three parameters: total hemoglobin concentration C, blood oxygen
saturation Y, and scattering coefficient S. After obtaining the OCT signals of different wavelengths
using MMC-OCT, C, Y, and S can be calculated using the quantitative method introduced in Section 2.1.
In this section, we studied brain functional sensing through theoretical analysis and MMC-OCT
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simulation. Specifically, we explored factors that affect the quantitative accuracy of C, Y, and S using
three wavelengths.

In the visible light waveband (500–600 nm), the absorption coefficient of hemoglobin is much
larger than that in the near-infrared waveband, as shown in Figure 2, so functional sensing is very
advantageous. Therefore, we chose a visible waveband to simulate functional sensing of the brain
tissue. To obtain parameters C, Y, and S, we usually need to solve the following three-variable
linear equations:

C[ε1D + Y(ε1O − ε1D)] + S = µt1
C[ε2D + Y(ε2O − ε2D)] + S = µt2,
C[ε3D + Y(ε3O − ε3D)] + S = µt3

(8)

in which subscripts 1, 2, and 3 represent three different wavelengths. ln(10) is multiplied to εO and εD.
The extinction coefficients µt1, µt2, and µt3 that are obtained by exponential fitting of the backscattered
signals include the experimental error and data fitting error. The solutions to Equation (8) are

C =
(∆εo

′
− ∆εD

′)∆µt − (∆εo − ∆εD)∆µt
′

∆εD∆εo′ − ∆εD′∆εo
(9)

Y =
∆εD∆µt

′
− ∆εD

′∆µt

(∆εo′ − ∆εD′)∆µt − (∆εo − ∆εD)∆µt′
(10)

and

S =
(ε1oε2D − ε2oε1D)µt3 + (ε3oε1D − ε1oε3D)µt2 + (ε2oε3D − ε3oε2D)µt1

∆εo∆εD′ − ∆εD∆εo′
, (11)

where ∆εD = ε2D − ε1D, ∆εo = ε2o − ε1o, ∆µt = µt2 − µt1, and the parameters with (′) as a superscript
are the results of subtracting the corresponding parameters of the second wavelength from the
parameters of the third wavelength. The variation of the three parameters C, Y, and S caused by the
errors of µti (i = 1, 2, and 3) can be expressed as

|dC| = |
(∆εo

′
− ∆εD

′)d∆µt − (∆εo − ∆εD)d∆µt
′

∆εD∆εo′ − ∆εD′∆εo
|, (12)

|dY| = |
∆εD∆εo

′
− ∆εD

′∆εo

[(∆εo′ − ∆εD′)
∆µt
∆µt′
− (∆εo − ∆εD)]

2 d(
∆µt

∆µt′
)|, (13)

and

|dS| = |
(ε1oε2D − ε2oε1D)dµt3 + (ε3oε1D − ε1oε3D)dµt2 + (ε2oε3D − ε3oε2D)dµt1

∆εo∆εD′ − ∆εD∆εo′
|, (14)

in which d∆µt, d(∆µt/∆µt
′), and dµt all represent errors of µti, and their signs and magnitudes are

uncertain in practice.
It can be seen from Equations (12)–(14) that the calculation errors of C and S have nothing to

do with Y and are only related to the errors of µti and the absorption parameters of the selected
wavelengths. However, the calculation error of Y varies with µti, that is, it is related to C, Y, and S.
In addition, we find that the change trends of |dC| and |dS| are the same, while that of |dY| is opposite to
the other two. In other words, we have no way to choose the optimal three wavelengths to minimize
the errors of the C, Y, and S simultaneously, but can only make compromises according to the actual
situation. For example, if the requirement for the accuracy of C is higher in practical application,
the denominator of |dC| can be larger and the numerator smaller by choosing appropriate wavelengths,
while if the requirement for the accuracy of Y is higher, the opposite choice can be made.

Figure 6 shows the errors of C, Y and, S under two different wavelength choices, and the
corresponding absorption parameters are shown in the pictures. It should be noted that these
parameters are not actual values shown in Figure 2, but are obvious cases set to explain the above
rules. In the simulation, C was 100 µm, Y was 70%, and S was 7 mm−1. The C of the brain tissue is
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approximately 100 µm [19]. Here, for convenience, we assumed that µt1 had error dµt1, and µt2 and µt3

had no errors. In Figure 6a, when dµt1 is 0.1 mm−1, dC/C = 0 and dS/S = 0.028, while dY/Y is up to 0.9.
In Figure 6b, when dµt1 is 0.1 mm−1, dC/C = 3.3 and dS/S = 1.16, while dY/Y is only 0.2. Therefore, we
can choose the appropriate wavelengths to solve the scattering and absorption parameters according
to the actual needs.
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Next, functional sensing of brain tissue was simulated using MMC-OCT. The most popular
components of brain tissue for researchers are often the cerebral cortex (i.e., gray matter) and blood
vessels, so we obtained backscattered signals at different wavelengths of vascular tissue. The blood
vessel had a diameter of 50 µm and was embedded in the gray matter tissue with a depth of 150 µm.
Firstly, the appropriate wavelengths were selected based on the spectral data shown in Figure 2.
We set a light source with a center wavelength of 570 nm and a spectral width of 50 nm. The window
function of the STFT has a width in the spectral domain of 15 nm, and there is no overlap between the
window functions at the two adjacent wavelengths. Between 540 nm and 600 nm, we used Equations
(12)–(14) to calculate the theoretical error of the three parameters obtained using different wavelength
combinations, and each combination consists of three wavelengths with an interval of 15 nm. The error
for each µt is a random number within 0–0.1 mm−1; Y = 0.7, C = 2 mmol, and S = 70 mm−1. The curve
in Figure 7a shows the sum of the errors of the three parameters calculated using different wavelength
combinations, and the abscissa is the minimum of the three wavelengths. The number of calculations
is 200.

Within the spectral bandwidth of the source, the optimal and worst combinations are 560 nm,
575 nm, 590 nm and 553 nm, 568 nm, 583 nm, respectively. Figure 7a–c shows the calculation errors
of C, Y, and S, respectively. Since the error of the extinction coefficient is random, we compare the
maximum of the 200 calculation errors of the two combinations. The maximum values of the dC/C, dY/Y,
and dS/S of the optimal combination are reduced by 17.6, 5.8, and 14.5 times, respectively, compared to
those of the worst combination. The optical parameters of the two combinations are shown in Table 2,
and Figure 8 shows the simulation results using MMC-OCT. When using the method described in [6],
it can be approximated that the scattering coefficient is not affected by the wavelength, so we set the
scattering coefficient for each wavelength to 70 mm−1.

The simulation results for the 560 nm wavelength are summarized in Figure 8. Figure 8a shows
the continuous wave (CW) fluence extracted at plane y = 0 µm, and the black dotted box in the
figure indicates the position of the blood vessel. The blue curve in Figure 8b is the backscattered
signal, and the signal in the depth range of 70 µm–100 µm is selected to calculate the extinction
coefficient by exponential fitting, the results of which are shown in Figure 8c. The fitting coefficients
and goodness are shown in the picture, and the R2 value of the fitting results is 0.9969. The fitting
results of two combinations and C, Y, and S calculated from the fitting results are listed in Table 3.
The parameters marked “The” in Table 3 are the theoretical calculation values, and those labeled “Rea”
are the simulation values. It can be seen that the two are basically the same, and the maximum error
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is 0.06 mm−1. Of course, this does not mean that the error in the actual experiment is also at this
level, but rather illustrates the feasibility of the MMC-OCT in simulating the process of obtaining the
extinction coefficient.
Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 16 

 

(a) (b)

(c) (d) dS/S
dS/S

dY/Y

dY/Y

dC/C
dC/C

dC + dY + dS

 

Figure 7. (a) The sum of the errors of the three parameters calculated using different wavelength 

combinations; calculation errors of C (b), Y (c), and S (d) calculated using the optimal wavelength 

combination and the worst wavelength combination. 

Table 2. Optical parameters of optimal and worst wavelength combinations for functional sensing. 

λ (nm) εO (mmol−1·mm−1) εD (mmol−1·mm−1) S (mm−1) 

Optimal Combination 

560 4.1519 5.7674 70 

575 5.8742 4.5500 70 

590 2.1107 3.0857 70 

Worst Combination 

553 4.7611 5.7666 70 

568 4.8988 5.2246 70 

583 4.7178 3.8402 70 

 

Figure 8. Simulation results for 560 nm wavelength: (a) continuous wave (CW) fluence extracted at 

plane y = 0 μm; (b) backscattered signals; and (c) fitting results when class II photons are removed. 

Figure 7. (a) The sum of the errors of the three parameters calculated using different wavelength
combinations; calculation errors of C (b), Y (c), and S (d) calculated using the optimal wavelength
combination and the worst wavelength combination.

Table 2. Optical parameters of optimal and worst wavelength combinations for functional sensing.

λ (nm) εO (mmol−1·mm−1) εD (mmol−1·mm−1) S (mm−1)

Optimal Combination

560 4.1519 5.7674 70
575 5.8742 4.5500 70
590 2.1107 3.0857 70

Worst Combination

553 4.7611 5.7666 70
568 4.8988 5.2246 70
583 4.7178 3.8402 70

Table 3. Fitting results and calculated C, Y, and S for two combinations.

Combinations The µt1 The µt2 The µt3 Rea µt1 Rea µt2 Rea µt3 C Y S1

560, 575, 590 91.352 95.222 81.067 91.338 95.268 81.047 2.003 0.704 69.978
553, 568, 583 93.315 93.01 90.514 93.291 93.171 90.531 2.482 0.767 64.746

The errors of C, Y, and S obtained by the optimized combination of wavelengths are much smaller
than those obtained by the worst combination, and the calculation errors of C, Y, and S are reduced by
160, 16.75, and 238.8 times, respectively.
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The results in Table 3 show that we can obtain very accurate optical parameters of blood vessels by
reasonably selecting three wavelengths. However, the error between the theorical extinction coefficient
and the simulation result is very small, not exceeding 0.06 mm−1, so the result is ideal. In actual
experiments, when the method described in [34] is used, the accuracy of the exponentially fitted
extinction coefficient can reach 0.8%, which is about 0.72 mm−1 for blood. Therefore, we set the
maximum error of extinction coefficient to 1 mm−1. At Y = 70%, dC/C, dY/Y, and dS/S calculated by
the optimized combination are 0.0859, 0.0829, and 0.0296, respectively. Accordingly, we can conclude
that when imaging vascular structure, the optimization scheme shown in Figure 7 can be used to
reasonably select three wavelengths to calculate the optical parameters of the tissue while ensuring
high spatial resolution.
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plane y = 0 µm; (b) backscattered signals; and (c) fitting results when class II photons are removed.

It should be noted that the above optimization process was performed under the condition that Y
= 0.7. The hemoglobin concentration of the blood vessel is high, and the absorption coefficient in the
visible-light waveband is large, so the optimization results for different Y are approximately the same.

Next, the functional sensing of the cerebral cortex was discussed, where the spatial resolution
requirements are reduced compared to imaging small-sized blood vessels. In the simulation,
wavelengths of 540 nm, 546 nm, and 576 nm were selected, and the window function of the STFT has a
width of 6 nm in the spectral domain. Optical parameters of gray matter at these wavelengths are
listed in Table 4. There were two reasons for this choice. First, the scattering coefficients of these three
wavelengths were approximately the same, as shown in Figure 2; second, we made a compromise by
considering the calculation errors of C and Y. It should be noted that this selection of wavelengths was
obtained under the condition that Y = 70% using the optimization method described in Figure 7. The n
and g of tissue were 1.37 and 0.9, respectively. The scattering coefficients S in the Table 4 were obtained
by dividing the scattering coefficients in Figure 2 by 10 so that they were approximately the same as
the scattering coefficients in gray matter [35].

Table 4. Optical parameters of gray matter at selected wavelengths for functional sensing.

λ (nm) εO (mmol−1·mm−1) εD (mmol−1·mm−1) S (mm−1)

540 5.89 4.81 7.014
546 5.66 5.38 7.016
576 5.91 4.45 7.010

The simulated gray matter was a 300 × 300 × 500 (µm) cube, and simulation results are shown
in Figure 9. Figure 9a shows the CW fluence extracted at plane y = 0 µm. The black data points in
Figure 9b represent backscattered signals, and the interval of z is 25 µm. The green curve in Figure 9b
is the fitting result, and the fitting coefficients and goodness are shown in the picture. The R2 value
of the fitting results is 0.9908. The fitting result in Figure 9b was obtained after removing the class II
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photons. If class II photons are not removed, the fitting µt is small, as shown in Figure 9c because the
optical path of the class II photon is larger. For comparison, the data in Figure 9c were normalized.
The theoretical calculation values and simulation values of the three parameters are shown in Figure 9d.
The points marked “The” in the legend are the theoretical calculation values, and the points labeled
“Rea” are the simulation values.
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Figure 9. Simulation results in visible waveband: (a) CW fluence extracted at plane y = 0 µm;
(b) backscattered signals and fitting results; (c) fitting results when class II photons are removed and
when class II photons are not removed; (d) theoretical calculation values and simulation values of C, Y,
and S; and (e) differences between theoretical calculation values and simulation values.

It can be seen from Figure 9d that the simulation values are basically in accordance with the
theoretical calculation values except that the deviation of Y at Y = 10% is a little large, which is
because the calculation error of Y varies with the value of µt, as described in Equation (13). The results
of Figure 9e are the differences between the theoretical calculation values and simulation values.
The pre-estimated calculation errors in the case that Y = 10% and Y = 70% are shown in Figure 9e,
which can be seen to be consistent with the results of the actual simulation. If we predict that the Y of
tissues is relatively high, then the choice of wavelengths is reasonable now. On the contrary, the current
wavelengths selection is unreasonable if we predict that the Y of tissues is relatively low, and other
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wavelengths should be selected to make the errors of C, Y, and S smaller. When optimized for the
case that Y = 10%, the wavelengths of 546 nm, 552 nm, and 570 nm were selected. When the error of
the extinction coefficient is the same, dC/C, dY/Y, and dS/S were 0.235, 0.036, and 0.082, respectively,
which were reduced by 1.25, 14.7 and 1.28 times, respectively, compared with the results of Figure 9e.

Therefore, in practical application, if we have a prior rough estimate of Y and C of the brain tissue
to be measured, we can then reasonably choose the wavelengths to improve the measurement accuracy.

The simulation results show that the correct optical parameters of tissues with low concentrations
of hemoglobin can be obtained by rational selection of three wavelengths. However, the error of the
extinction coefficient obtained by the simulation is very small, and the maximum value does not exceed
0.05 mm−1. The error of C reaches about 30% when the error of µt is 0.1 mm−1. Therefore, when the
sample has a low hemoglobin concentration and does not require high spatial resolution, there is no
doubt that more accurate results can be obtained by fitting the data of multiple wavelengths.

In summary, we briefly describe the optimization strategy for functional sensing of brain tissue as
follows: When imaging small-sized blood vessels, the optimization scheme shown in Figure 7 can be
used to reasonably select three wavelengths to resolve C, Y, and S. When imaging the cerebral cortex
and the spatial resolution requirement is not high, the method of fitting multi-wavelength data should
be used; when the spatial resolution requirement is high, it is necessary to roughly estimate the range
of Y and C in advance, and reasonably select three wavelengths to resolve C, Y, and S.

At the end of this section, as a little supplement to this work, functional sensing in a near-infrared
waveband was simulated. The simulated tissue was gray matter with 100-µm depth in which a blood
vessel with a 100-µm diameter is embedded. Similarly, considering the errors of C and Y simultaneously,
we chose three wavelengths at 750 nm, 800 nm, and 900 nm for calculation. The window function
of the STFT has a width of 50 nm in the spectral domain. Their optical parameters are shown in
Table 5. The parameters of blood were the same as those in Figure 2, and the S values of gray matter in
Table 5 were still obtained by dividing the scattering coefficients in Figure 2 by 10. In the near-infrared
waveband, the scattering coefficient is approximately linear with the wavelength, as described in
Equation (7). The C values of gray matter and vessel were 200 µm and 4 mM, respectively, and the Y
values were both 70%.

Table 5. Optical parameters of gray matter and blood vessel at selected wavelengths.

λ (nm) εO (mmol−1·mm−1) εD (mmol−1
·mm−1) S-Gray (mm−1) S-Vessel (mm−1)

750 0.052 0.176 7.625 76.25
800 0.083 0.102 7.3 73
900 0.122 0.1 6.65 66.5

The simulation results are shown in Figure 10. Figure 10a shows the CW fluence extracted at
plane y = 0 µm. The structure parameters of the simulated tissue are also indicated. The blue curve in
Figure 10b is the backscattered signal, and the fitting results of the gray matter and vessel are shown
in the picture. The final fitting results and calculated C, Y, and S from the fitting results are listed in
Table 6. We can see that the calculated C and Y are incorrect because the absorption of gray matter
is too small in the near-infrared waveband. By contrast, the calculation results for blood vessels are
much more accurate.

In the simulations of this paper, we did not simulate the OCT signals of all wavelengths within
the spectral bandwidth of the light source but thought that the extinction coefficient is homogeneous
within a certain spectral width, which undoubtedly leads to certain errors. In the visible-light
waveband, the maximum wavelength bandwidth set in this work was 15 nm, which has proven
to be reasonable [36]. In addition, the impacts of the STFT process on functional sensing were not
studied. We will optimize the MMC-OCT program to simulate the complete imaging process of the
spectroscopic OCT in future researches.
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Table 6. Fitting results and calculated C, Y, and S in near-infrared waveband.

Tissue The µt1 The µt2 The µt3 Rea µt1 Rea µt2 Rea µt3 C Y S1

Vessel 77.072 73.814 67.56 77.084 73.785 67.524 4.14 0.65 76.18
Gray matter 7.6661 7.3407 6.703 7.712 7.385 6.725 −0.21 0.55 7.75

4. Conclusions

In this study, we analyzed the application of OCT to the fields of brain tissue structural and
functional imaging using a model of mesh-based Monte Carlo for OCT (MMC-OCT). We first verified
that the MMC-OCT model used in this paper is an effective analytical tool for brain researches through
simulations of structural imaging. Then, through theoretical analysis and simulation of functional
sensing, we found that the measurement accuracy of hemoglobin concentration C, oxygen saturation
Y, and scattering coefficient S can be optimized by reasonable selection of wavelengths. Finally, we
proposed the following optimization schemes for imaging vascular structure and cerebral cortex in
brain tissue: When imaging small-sized blood vessels, we can reasonably select three wavelengths
to resolve C, Y, and S. When imaging the cerebral cortex and the spatial resolution requirement
is not high, the method of fitting with multi-wavelength data should be used; when the spatial
resolution requirement is high, the measurement accuracy of C, Y, and S can be improved by roughly
predicting their ranges in advance to select the appropriate wavelengths for calculation. What is
more, these methods are also suitable for other complex 3D bio-tissues. In particular, the method
of wavelength selection is also applicable to other optical imaging modalities such as photoacoustic
imaging [37], near infrared multispectral imaging [19], etc. In the future, we will provide the whole set
of codes and a small guidance for reproducing the results of simulations presented in this manuscript,
which provides an analytical method for studying the brain tissue and other complex 3D bio-tissues.
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