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Abstract: Orientational dependence of the IR absorbing amide bands of silk is demonstrated from two
orthogonal longitudinal and transverse microtome slices with a thickness of only ∼100 nm. Scanning
near-field optical microscopy (SNOM) which preferentially probes orientation perpendicular to the
sample’s surface was used. Spatial resolution of the silk–epoxy boundary was ∼100 nm resolution,
while the spectra were collected by a ∼10 nm tip. Ratio of the absorbance of the amide-II C-N at
1512 cm−1 and amide-I C=O β-sheets at 1628 cm−1 showed sensitivity of SNOM to the molecular
orientation. SNOM characterisation is complimentary to the far-field absorbance which is sensitive
to the in-plane polarisation. Volumes with cross sections smaller than 100 nm can be characterised
for molecular orientation. A method of absorbance measurements at four angles of the slice cut
orientation, which is equivalent to the four polarisation angles absorbance measurement, is proposed.
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1. Introduction

Nanofabrication with a resolution of few nanometers has now become common using electron
emission [1] and thermal probes [2,3]. Structuring of materials with nanoscale precision requires
equally matching or better characterisation capabilities. Structural anisotropy of materials underpin
their optical, thermal and mechanical properties, and have to be determined at the highest transverse
and longitudinal resolutions [4,5]. For example, a fibril of silk tens-of-nanometers in diameter defines
its thermal properties [6]. Comparable IR absorbance spectra of silk were obtained using three different
methods [7]: (i) a table-top Fourier transform infrared (FTIR) in transmission, (ii) a synchrotron-based
attenuated total reflection (ATR) FTIR, and (iii) an atomic force microscopy (AFM) with a tip that
responds to the IR absorbed light, also known as nano-IR [8]. The AFM-based nano-IR technique
acquires structural information at the nanoscale, the area under the AFM tip forms a volume with
a lateral cross-section of ∼20 nm. Different sensitivity of reflectance R and absorbance A to the real
and imaginary parts of refractive index ñ = n + iκ becomes important. The far-field absorbance
is defined by κ, while the near-field ATR-FTIR mode is affected by n due to the Snell’s law [9,10].
Another tip-based near-field optical charactrisation technique, scanning near-field optical microscopy
(SNOM), is a popular method to map surface topography and refractive index ñ decoupled from the
scattered light. Typically, a p-polarised light with E-field aligned with the tip and perpendicular to
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the probed surface defines the strongest coupling and field enhancement. It is noteworthy, that the
E-field component is absent in the paraxial geometry used for transmission measurements but present
only under the most tight optical focusing conditions. SNOM allows probing of a material with E-field
normal to the surface and was used in this study to test orientational sensitivity of this method to the
alignment of amide bands in silk sliced along and across the fiber, the longitudinal and transverse cuts
at 90◦ and 0◦ orientation angles, correspondingly.

Here, we used scattering SNOM to probe n, κ and to determine spectral differences due to
orientation in the absorbance at the amide bands of silk fibers. Cross-sections of silk fibers at 0◦ and
90◦ cut-orientations were prepared using ultramicrotome. Silk was chosen due to its well known
spectral properties and uniaxial symmetry which can be examined from longitudinal and transverse
microtome slices [6]. Sub-wavelength resolutions in hyperspectral IR mapping of absorbance and
orientational properties of the absorption bands were measured from 100-nm-thick slices of silk.

2. Methods and Samples

2.1. Silk Slices

Preparation of white silk Bombyx mori fibers was the same as described previously [11]. In short,
the cocoons were boiled three times in an aqueous 0.5% (w/v) Na2CO3 solution to remove the sericin.
The degummed silk fibers were rinsed with warm ultra pure water at 60 ◦C thoroughly to remove the
residual sercin and dried at room temperature.

Silk fibers were embedded in epoxy resin (Oken Ltd., Tokyo, Japan) and thin-sectioned
by ultramicrotomy to achieve a sample thickness of ∼100 nm. Slices at 0◦ (transverse) and 90◦

(longitudinal) cut-orientations were then immobilised on a gold mirror for measurements (Figure 1).
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Figure 1. Optical image of longitudinal micro-tome slices of Bombyx mori fibers. Left inset shows
schematically the principle of spectrally broadband excitation and detection of scattered light
implemented in neaspec tool for detection of nanoscale absorbance and scattering. The excitation light
field is p-polarised, Ep.

2.2. IR Spectral Measurements

The sub-diffraction scattering (s-)SNOM (neaspec GmbH) uses a metalised AFM tip which
simultaneously maps the surface relief (topography) by its basic AFM operation and under external
IR illumination (broadband laser working by difference-frequency generation, Toptica), acts as a
light-concentrating antenna such that the sample is probed with a nanofocused light field. The AFM
tapping mode operation (ca. 60 nm amplitude) modulates the near-field interaction between the
tip and sample [12]. The measured nano-IR absorbance is proportional to the imaginary part of
the scattering coefficient σn(ω) = s(ω)eiφ(ω), which relates the light scattered field Es(ω), and the
incident field Ei(ω) through the equation Es = σnEi, where s(ω) and φ(ω) are the amplitude and
phase of the back-scattered spectra [10]. Using the asymmetric Michelson interferometer, the full
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complex function of the scattered optical signal can be recorded, therefore enabling the simultaneous
measurement of both nano-IR absorbance and reflectivity spectra [10]. The Michelson interferometer
and a lock-in detection of the signal at higher harmonic of the tapping frequency ∼250 kHz provides
background-free nano-IR spectra and images with maximum resolution imposed by the AFM tip size
independent of the laser wavelength [10].

The nano-FTIR spectra were recorded in ∼100 s/spectrum with a spectral resolution of 10 cm−1.
Removal of the instrumental response function from the nano-FTIR spectra was done by normalization
of the measured spectra to a reference Si signal. Resulting nano-FTIR absorbance and reflectivity
spectra are directly correlated with the standard far-field IR spectra [13,14].

3. Results and Discussion

Dimensions of crystalline β-sheet fibrils in silk fibers is '10 nm [15]. SNOM measurements are
well suited to measure n and κ from areas of comparable dimensions [11]. Whether it was possible to
determine optical anisotropy due to molecular orientation using a point-like excitation source was
the motivation of this study. If the anisotropy of absorbance (dichroism ∆α ∝ ∆κ) and refractive index
(birefringence ∆n) could be measured with a point-like source using s-SNOM, this would open the
possibility of determining anisotropy and molecular orientation with sub-wavelength resolution at
nanoscale.

The birefringence originates from the alignment of molecular bonds or secondary ordering and
can be detected at different spectral ranges [16]. Molecular alignment of the amide-II at 1512 cm−1

(C-N) and amide-I β-sheets at 1628 cm−1 (C=O) was measured from micron-thick longitudinal silk
slices [17]. In-plane perpendicular orientation between C=O and C-N bonds was revealed [17] using
a longitudinal slice of silk fiber, which facilitated fidelity of measurements due to uniformity of
thickness [18].

In this study s-SNOM data was collected in the IR spectral range together with topography map
(Figure 2). The mechanical amplitude and phase are related to the stability of the feedback loop and
were used as a qualitative error signal, i.e., unexpected changes in the mechanical amplitude correlated
with errors in the near-field amplitude. The optical amplitude map is also shown (Figure 2) and is
dominated by the reflectivity ∝ n of the surface, which is usually very low for the polymers (emissivity
∝ κ is high at the absorption bands). Both, mechanical and optical mapping revealed a clear boundary
between the longitudinal (90◦-cut) silk fiber slice and surrounding epoxy (Figure 2). Recently, it was
demonstrated that mechanical viscoelastic parameters: the Young’s modulus, viscosity coefficient,
and retardation time can be determined using the amplitude modulated–frequency modulated
(AM-FM) mode of cantilever response [19] and are linked to the topography of the sample via the
offset of the tapping mode signal.

The amide I and II bands [11] were well recognisable in the nano-FTIR absorbance spectra
collected from different single measurements points (Figure 2). Measurements were made along 3 µm
linear scan with a separation of 200 nm between the measurement sites. Clear transition from the silk
to epoxy was observed and a half-step can be defined as the upper bound of the resolution (Figure 3).

The transverse silk slice (0◦-cut) showed similar topography and mechanical (amplitude and
phase) mapping with a slightly larger reflectivity (Figure 4). The same scan along the line showed
a distinct transition from silk to epoxy. The dark regions along the boundary were observed with
spectral features mixed between silk and epoxy (Figure 4). Since the 100 nm thickness of the slice was
only approximately twice larger than the diameter of the fiber, mechanical cracks were expected under
sheer forces applied during slicing.

Comparison of spectra measured from transverse (0◦) and longitudinal (90◦) slices is shown in
Figure 5. Different the amide-II and I bands ratios are directly related to the orientation as we showed
by the far-field absorbance [17]. For the longitudinal slice, C=O (amide-I) is radially distributed
and most strongly coupled to the Ep of the SNOM needle, while C-N (amide-II) is perpendicular
to the SNOM tip, hence, uncoupled to the absorbing dipole. The inset in the reflectivity spectum
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(Figure 5) shows mutually perpendicular in-plane orientations of the C=O and C-N amide bands on
the longitudinal slice; note, the C=O is radially distributed if observed out-of-plane. This illustration
also clarifies that for the transverse slice Ep ‖(C-N) and perpendicular Ep ⊥ (C=O). The two transverse
and longitudinal slices represents two cases when Ep is most strongly coupled to one or the other
amide bands. The different ratio of the heights of the two amide absorbance peaks (Figure 5) is directly
related to the different orientation as we observed in the far-field measurements [17]. Also, observation
of a side-lobe peak at 1698 cm−1 is related to the β-sheet amide [17] and was only observed in the
transverse slice (Figure 4).

This first qualitative result shows that it is possible to detect orientational differences in molecular
alignment from single point measurements using tip source of excitation. Further efforts should be
concentrated to develop near-field four-polarisation analogy of orientation mapping (Figure 6) which
for absorbance has been developed for the far field [20]. As demonstrated recently, the orientational
dependence of transmittance/absorbance can be used to separate contributions due to the real and
imaginary parts of refractive index [21]. Birefringence and dichroism, both being orientation dependent
can be separated by the four-angle absorbance method [21]. Here we show a concept analogous to this
four-angle method whereby the orientation of the absorbers in the sample, for an E-field perpendicular
to the sample’s surface (SNOM geometry), is determined using microtome cuts of different orientations
and is illustrated in Figure 6c. Structural knowledge of molecular alignment is usually obtained by
X-ray diffraction (XRD), but can now be obtained by direct near-field measurements with spatial
resolution down to tens-of-nm (Figure 6b).

m
in

m
a

x

topography mechanical amplitude

mechanical phaseoptical amplitude

Figure 2. Raw SNOM (neaspec) data from a longitudinal slice of Bombyx mori silk: topography (height:
0–92 nm), mechanical amplitude and phase, and optical amplitude (proportional to the reflectivity
integrated over 1300–2020 cm−1) IR spectral range.
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Figure 3. Scattering SNOM mapping and point spectra at 15 locations separated on a line by 200 nm
(color marked) measured on the longitudinal slice. The amplitude and phase of the measured spectra.
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Figure 4. Transverse slice of silk. SNOM map and the amplitude and phase of scattered field at
15 equidistant points across the silk–epoxy boundary.
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Figure 5. SNOM maps of the transverse and longitudinal silk slices together with averaged nano-FTIR
absorbance and reflectance spectra. Inset in reflectivity panel shows the molecular orientation of
the amide-I,II bands in β-sheet crystalline regions for the longitudinal slice (adopted form ref. [17]).
Note, chemical bonding in the β-sheets plane only is shown; the C=O bonds have a radial distribution
along the fiber direction and their second order momentum distribution was determined in the
Supplementary of ref. [17].
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Figure 6. (a) Concept of four-angle absorbance measurements where instead of polarisation,
four different orientation micro-tome slices are prepared. In this study we carried out measurements
on two 90◦ and 0◦ longitudinal and transverse slices, respectively. (b) Visualisation of the a silk fiber
with its internal β-sheet structure. (c) Orientation determination of C=O β-sheet absorbers at 1628 cm−1

using different orientation slices (data markets for the transverse θ = 0◦ and longitudinal θ = 90◦

data) microtome slices; θo is the initial orientation. Note, for quantitative determination of orientation,
four orientation slices are required.

4. Conclusions and Outlook

In summary, spectral characterisation, lateral mapping of nano-IR absorbance and reflectance with
deep sub-wavelength resolution in the IR molecular finger printing window was demonstrated using
thin (100 nm) transverse and longitudinal slices of silk. Hyper-spectral mapping across the silk fiber
slice was obtained with high accuracy and reproducibility. The possibility of orientation measurements
using a SNOM tip is proposed and demonstrated at two angles (two slices of silk fiber) using the amide
bands and previously measured far-field IR spectra. Since preparation of thin microtome slices of soft
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bio-materials does not alter their structure [11], this opens the possibility of measuring optical properties
from nano-volumes prepared by careful alignment of microtome cuts. One can envisage that using
slices of silk fiber at different angles 0◦ (transverse), ±45◦, and 90◦ (longitudinal), the four-orientation
mapping equivalent to the four-polarisation method [20] can be developed and will be focus of a future
study. Measurement of orientation changes in the regions of laser-induced material modification by
re-melting [22], phase change and ablation [23] will benefit from the introduced method. Recently,
orientation and ordering of phospholipids was demonstrated [24].
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