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Abstract: Complete characteristic curves of a pump turbine are fundamental for improving the
modeling accuracy of the pump turbine in a pump turbine governing system. In view of the difficulty
in modeling the “S” characteristic region of the complete characteristic curves in the pump turbine,
a novel Autoencoder and partial least squares regression based extreme learning machine model
(AE-PLS-ELM) was proposed to describe the pump turbine characteristics. First, a mathematical
model was formulated to describe the flow and moment characteristic curves. The improved Suter
transformation was employed to transfer the original curves into WH and WM curves. Second,
the ELM-Autoencoder technique and the partial least squares regression (PLSR) method were
introduced to the architecture of the original ELM network. The ELM-Autoencoder technique was
employed to obtain the initial weights of the Autoencoder based extreme learning machine (AE-ELM)
model. The PLS method was exploited to avoid the multicollinearity problem of the Moore-Penrose
generalized inverse. Lastly, the effectiveness of the proposed AE-PLS-ELM model has been verified
using real data from a pumped storage unit in China. The results demonstrated that the AE-PLS-ELM
model can obtain better modeling accuracy and generalization performance than the traditional
models and, thus, can be exploited as an effective and sufficient approach for the modeling of pump
turbine characteristics.

Keywords: pump turbine; complete characteristic curves; Autoencoder; partial least squares egression;
extreme learning machine

1. Introduction

As the demand for electricity and the requirements for developing a low-carbon economy
continues, the driving force for energy development will gradually shift to renewable and clean energy
such as photovoltaic power and wind power [1–3]. Due to its fast start-stop speed and flexible working
conditions, the pumped storage units (PSUs) can quickly respond to the requirements of the power
system for frequency and phase modulation, peak load shifting, rotation, and accident reserve, which
can enhance the grid’s ability to absorb wind power and photoelectricity [4,5]. The pump turbine
governing system (PTGS) is a complex hydraulic-mechanical-electrical-magnetic coupling system,
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which is time-varying, stochastic, and nonlinear [6,7]. The precise modeling of the PTGS is of great
significance in analyzing the dynamic response of PSUs under complex operational conditions [8,9].

As a crucial part of PSU, an accurate pump turbine model is the key to the accurate modeling
and simulation of PTGS [10]. In the current research work, the modeling of a pump turbine is mainly
based on complete characteristic curves where different operational conditions of this model can be
described [11–13]. The complete curves of pump turbine include the flow characteristic curve and
the moment characteristic curve. These curves contain the inherent nonlinear characteristics of the
pump turbine under various normal operational conditions or transient working conditions [14,15].
However, due to the existence of the “S” characteristic and hump area, the estimation of complete
characteristic curves is highly complex [16,17]. It is easy for the complete characteristic curves to
gather, cross, and twist in the pumps and anti-pump regions, which cause a huge interpolation error
and non-convergence problem to the model when calculating the transient parameters of the runner
boundary of the pump turbine. An in-depth and extensive research study has been conducted to extend
the complete characteristic curves in recent years. The common methods to estimate the complete
curves of pumped turbine mainly include the assistant mesh processing [18], the Suter transformation,
its improved versions [19,20], and the 3D surface fitting [14].

The assistant mesh processing method divides the flow characteristic curve or moment
characteristic curve into multiple sections by introducing the idea of piecewise linearization, and
then the original curve is approximated using small line segments. An assistant mesh line, which is
approximately orthogonal to the opening line, is drawn to facilitate calculation. The characteristic
curves of the pump turbine have been obtained and the modeling accuracy has been improved through
the assistant mesh processing technique [8]. However, the above method requires prior artificial
meshing of which the workload is heavy and the piecewise approximation also causes errors in the
orthogonal curvilinear grid.

The Suter transformation proposed by Suter [19] transformed the original complete characteristic
curves into WH(x, y) and WM(x, y) curves using dimensionless parameters. The abscissa of the curves
is determined according to the relative flow and the relative speed. Because the Suter transformation
stretches the flow and moment characteristic curves to both sides of the coordinate axis, the difficulties
of the interpolation calculation caused by curve bending, torsion, anti-S, and multi-value characteristics
can be alleviated effectively. However, scholars have found that the complete curves using Suter
transformation or improved Suter transformation still have the following drawbacks: the length of the
opening lines is different, some opening lines have singularities and are not conductive, and the density
of data points on the opening lines is different. These non-uniform curves will affect the interpolation
accuracy and computational efficiency of the model. Therefore, it is necessary to establish neural
network models for curve extension, bad point correction, and encryption processing of opening lines
for the complete characteristic curves.

According to whether the flow and moment characteristic curves are pre-transformed, the 3D
surface fitting technique can be mainly divided into two categories: the first category is based on
the original complete curves of the pump turbine. The original complete curves are fitted using the
least squares or neural network models directly. The second category is based on the pre-processed
curves using Suter transformation. The pre-processed curves are then fitted using the least squares or
neural network models. Li et al. [14] applied a backpropagation (BP) neural network to process the
synthetic characteristic curve for the Francis turbine. Actual engineering applications validate that
the proposed method can provide not only higher precision data for the transition process but also
better investigation on the real hydraulic unit. Zhang et al. [21] applied a radial basis function (RBF) to
process the synthetic characteristic curve of the Kaplan turbine. The results have demonstrated that
the nonlinear model based on RBF networks can reflect the nonlinear operating characteristics of the
Kaplan turbine with higher accuracy. Liu et al. [20] first employed a modified Suter transformation
to pre-process the complete characteristic curve and then proposed an Adaboost-BP neural network
ensemble model optimized by particle swarm optimization to describe the WH and WM characteristics
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of the pump turbine. The results show that the proposed model can obtain higher fitting accuracy and
better generalization performance than a single BP neural network model.

Although the neural network model can fit and extend the complete characteristic curves
and facilitate the calculation of the flow and moment characteristic curves for the pump turbine,
the convergence speed of the traditional neural network model is slow and it is easy to fall into
local minimum. As a novel single hidden layer feedforward neural network, the extreme learning
machine (ELM) obtained the input weights and hidden layer biases through random initialization [22].
The output weights are directly obtained by calculating the generalized inverse matrix of the hidden
layer output matrix [23,24]. The convergence rate is far faster than the traditional BP neural network.
The ELM has been widely used in pattern recognition, statistical prediction, and classification and
regression [25]. However, because of the random initialization strategy of input weights, the common
ELM model fails to make full use of the inherent characteristics of the training data. In addition,
the Moore-Penrose generalized inverse used in the ELM model may produce pathological solutions.
Therefore, there exists multicollinearity in the output matrix, which affects the fitting and generalization
performance of the model [26]. Therefore, there still exists much room to improve in describing pump
turbine characteristics using ELM.

To improve the modeling accuracy of the pump turbine in the simulation of PTGS, an Autoencoder
and partial least squares regression based extreme learning machine model (AE-PLS-ELM) is proposed
to model the pumped turbine of a PSU. With the strong fitting ability of the AE-PLS-ELM model,
the non-linear mapping relationship of the full characteristic curves of pump turbines is represented.
The flow and moment characteristic curves of pump turbines are transformed into neural network
models, which can be used for a real-time simulation. On the basis of curve pretreatment with
improved Suter transformation, two AE-PLS-ELM models are used to model the characteristic curves.
The automatic encoder technique (AE) and partial least squares regression algorithm (PLSR) are
introduced to improve the performance of the ELM model. The rest of this paper is arranged as
follows. Section 2 describes the model of pump turbine based on characteristic curves, Section 3
proposes an AE-PLS-ELM model, Section 4 provides the specific modeling process of the pump turbine
characteristics based on the proposed AE-PLS-ELM model, Section 5 employs a numerical example to
verify the performance of AE-PLS-ELM, Section 6 provided an additional test problem, and Section 7
gives the conclusions.

2. Nonlinear Modeling of the Pump Turbine

The most common method for the pump turbine nonlinear modeling is through the complete
characteristic curves [14]. The main idea of the nonlinear modeling based on complete curves is to
first extract certain discrete data points from the practical curves, and then the extracted data points
are fitted or extended to obtain the modeling curves [14]. The mathematical model of the flow and
moment characteristics to express the pump turbine characteristics is as follows [2].{

M11 = fM(a, N11)

Q11 = fQ(a, N11)
(1)

where M11 represents the unit moment, Q11 denotes the unit flow, N11 is the unit speed, and a denotes
the guide vane opening. In this study, the pump turbine complete characteristic curves of a hydropower
station in China are employed as a case study. The practical complete characteristic curves are shown
in Figure 1 as follows [2].

As can be seen in Figure 1, the original completed curves still have a significant twist curl when
the unit speed is bigger than 80, which causes the multi-value phenomenon in the “S” characteristic
area. For example, three flow (Figure 1a) and moment (Figure 1b) data points appear when the value
of unit speed is 90 r/min and the value of the guide vane opening is 10. The interpolation error is large
and the derivative is discontinuous when multiple values exist, which may cause an iteration error to
occur in the PTGS. To avoid the multi-value phenomenon of the original curves, this study introduces
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the improved Suter transformation [20] to pre-process the original complete curves. The original
flow and moment characteristic curves are changed to WH and WM curves, respectively, through the
improved Suter transformation. The converting equations of the improved Suter transformation are
expressed as follows. 

WH(x, y) = h
a2+q2+Ch·h

(y + Cy)
2

WM(x, y) = (m+s2h)
a2+q2+Ch·h

(y + Cy)
2

x = arctan [(q + s1
√

h)/a] a ≥ 0

x = π+ arctan [(q + s1
√

h)/a] a < 0

(2)

where a, q, h, and m denote the relative speed, relative flow, relative water head, and relative moment,
respectively, x and y denote the relative flow angle and relative opening, respectively. s2 > |M11max|/M11r,
s1 = 0.5~1.2, Cy = 0.1~0.3, and Ch = 0.4~0.6. The WH(x,y) and WM(x,y) curves based on an improved
Suter transformation are given in Figure 2 as follows [2].Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 19 
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3. An Autoencoder and Partial Least Aquares Regression Based Extreme Learning Machine
Model

An accurate pump-turbine model is the key to the modeling and simulation of PTGS.
In this study, an autoencoder and partial least squares regression-based extreme learning machine
model (AE-PLS-ELM) is proposed for the nonlinear modeling of pump turbine characteristics.
The AE-PLS-ELM model is introduced in this section.

3.1. Extreme Learning Machine

ELM is a new type of single hidden layer forward neural network. It randomly generates the
connection weights and biases between the input layer and the hidden layer. The connection weights
and biases do not need to be adjusted during the training process. Once the number of hidden neurons
is determined, the optimal solution can be obtained. Compared with the traditional training methods,
ELM has the advantages of fast learning speed and good generalization performance [27].

Suppose that there are N samples
(
xk, yk

)
, k = 1, 2, . . . , N, where xk ∈ Rp and yk ∈ Rq.

The mathematical expression for an ELM model with L hidden neurons is as follows.

fL =
L∑

i=1

βig(ai·xk + bi) = ŷk k = 1, 2, . . . , N (3)

where ŷk denotes the simulated output of the kth sample, ai and βi are the connection weights between
the ith hidden neuron and the input layer and hidden layer, respectively, bi is the bias of the ith hidden
neruon, and g(·) is the activation function. Equation (3) can be reformulated below.

Hβ = Ŷ (4)

where

H =


h(x1)

...
h(xN)

 =


g(a1·x1 + b1) · · · g(aL·x1 + bL)
... · · ·

...
g(a1·xN + b1) · · · g(aL·xN + bL)


N×L

(5)

β =


β1

T

...
βL

T


L×m

and Y =


y1

T

...
yN

T


N×m

(6)

where H is known as the hidden layer output matrix, and β is the output weight matrix.
Based on the Moore-Penrose generalized inverse matrix theory, β can be calculated as:

β̂ = H†Y =
(
HTH

)−1
HTY (7)

where H† is the generalized inverse matrix of H. To improve the stability and the generalization of the
ELM network, Huang et al. [28] added a positive constant 1/C to the diagonal of HTH

(
or HHT

)
. β can

then be calculated as:

β∗ =
( 1

C
+ HTH

)−1
HTY (8)

3.2. The ELM-Autoencoder Technique

The convergence speed of ELM is fast and the generalization capability is well compared with
the traditional BP neural networks. However, the initial parameters of ELM are independent of
the modeling data. Thus, the characteristics and internal relations of the modeling data cannot be
effectively reflected. To obtain better initial parameters of ELM, the Autoencoder technology, which
has been widely employed in deep learning, is introduced to ELM for modeling [29]. The traditional
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Autoencoder technology developed by Rumelhart et al. in 1986 is an unsupervised learning method
based on a BP algorithm. The purpose of the Autoencoder technology is to approximate an identity
function such that the output data is the same as the input data [30]. The ELM-Autoencoder technology
based on the ELM algorithm is introduced in this study to avoid repeated iterative training of the BP
network [31]. The Autoencoder based extreme learning machine (AE-ELM) proposed in this study
can be implemented mainly in two stages. First, the ELM-Autoencoder technology is employed to
establish the mapping relationship between X to X (X is the input data) using the ELM algorithm.
The output weights of the ELM-Autoencoder is taken as the initial weights of the AE-ELM model.
Second, the AE-ELM model, which takes X and Y (Y is the output data) as training data, is trained
with the initial weights taken from the first stage.

The ELM-Autoencoder is a type of unsupervised network and the input weights and hidden
biases should be orthogonal. Assume the number of input neurons is Np, and the number of the hidden
neurons is NL. In this study, the number of input neurons is smaller than the number of hidden neurons.
Therefore, a sparse ELM-Autoencoder architecture is adopted [32]. Given a set of N data samples, i.e.,(
xk, yk

)
for k = 1, 2, . . . , N, the hidden layer output of the ELM-Autoencoder can be expressed as:

h(xi) = g
(
aTxi + b

)
i = 1, 2, . . . , N (9)

where h(xi) ∈ RNL denotes the hidden layer output with respect to the ith input, aTa = I, bTb = I, I is
a unit matrix, a = [a1, a2, . . . , aN] denotes the orthogonal weights connecting the input layer and the
hidden layer, b = [b1, b2, . . . , bN] denotes the orthogonal biases of the hidden nodes, and g(·) is the
activation function.

The output weight β is optimized to minimize the squared loss of the training error.
The optimization problem can be expressed as the equation below.

min
β

Oβ = min
β

1
2
‖β‖2 +

C
2
‖X−Hβ‖2 (10)

where X denotes the input data, H denotes the hidden layer outputs, and C denotes a penalty factor on
the training error.

The first derivative of Oβ with respect to β can be denoted as:

∆β = β−CHT(X−Hβ) = 0 (11)

The final hidden layer output weights can be calculated as:

β =
(
I/C + HTH

)−1
HTX (12)

3.3. Partial Least Squares Regression

PLSR developed by Wold is a multivariate statistical analysis method that takes advantage of
both principal component analysis and the least square method [33]. Compared with the least square
method, the PLSR method can deal with the multicollinearity problem. The PLSR method allows for
regression modeling when the number of samples is smaller than the number of independent variables.
In addition, the PLSR model considers information of both the independent and responsible variables,
which makes it easier to identify system information and noises.

Given a set of N observed data samples, which were composed of p input and q output variables,
i.e., S = (xi, yi) for i = 1, 2, . . . , N, where xi ∈ Rp denotes the independent variable and yk ∈ Rq denotes
the responsible variable. The objective of PLSR is modeling the linear relationship between the p
independent variables and q response variables. The modeling process of PLSR can be denoted as
follows [26].
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First, the independent matrix X =
(
x1, x2, . . . , xp

)
n×p

and response matrix Y =
(
y1, y2, . . . , yq

)
n×q

are normalized into a zero mean and one variance. The normalized matrix of X and Y are denoted as
E0 and F0, respectively. Second, the PLSR method is applied to X and Y to extract the first pair of score
vectors u1 and v1, respectively. The score vectors u1 and v1 are the combination of the independent
variable and responsible variables, respectively, and should contain the maximum variation information
of them. The relationship between u1 and v1 should be as maximum as possible. Then the regression
model between Y and u1 is deduced. Third, the residual matrix E1 and F1 are calculated to replace E0

and F0, respectively, to skip to the next step iteration until the residual matrix meets the stopping criteria.

3.4. The Proposed AE-PLS-ELM Model

In the Autoencoder based extreme learning machine (AE-ELM) model, the Moore-Penrose
generalized inverse based on least square is exploited to calculate the output weights, which makes it
possible to apply the PLSR method by replacing the least square method. The employment of PLSR
in the AE-ELM model can avoid the multicollinearity problem when applying the Moore-Penrose
generalized inverse especially when the hidden layer output matrix is highly correlated and contains
noises [34]. Based on the description of AE-ELM and PLSR, the key to establish the AE-PLS-ELM
model is to model the linear relationship between the hidden layer output matrix H and the output
layer matrix Y using the partial peast squares regression (PLSR) method. As has been described in
Section 3.2, the hidden layer output matrix H is an N × L dimension matrix with L hidden layer output
variables. The output layer matrix Y is a N × q dimension matrix. The detailed modeling process of the
AE-PLS-ELM model can be given as follows.

Step 1: Randomly assign the input weights ai, i = 1, 2, . . . , n and hidden layer bias bi, i = 1, 2, . . . , L.
Step 2: Calculate the hidden layer output matrix of the training data H, according to Equation (3).
Step 3: The hidden layer output matrix H is taken as the independent matrix of the PLSR model.

Let E0 = H and F0 = Y.
Step 4: Extract the first pair of score vectors of E0 and F0. The score vectors are denoted as u1 and

v1, respectively. u1 and v1 can be denoted below.

u1 = E0ω1

v1 = F0c1
(13)

where ω1 = [ω11,ω12, . . . ,ω1L]
T is the load factor of E0 and ‖ω1‖ = 1, and c1 = [c11, c12, . . . , c1L]

T is the
load factor of F0 and ‖c1‖ = 1.

The relevance between u1 and F0 should be as maximum as possible. Then u1 and v1 should
satisfy the following two criterions.

(1) u1 and v1 should contain the maximum variation information of E0 and F0.
(2) u1 and v1 should have maximum relevance.
The deduction of ω1 and c1 can be transformed to the following optimization problem.

max (u1, v1) = (E0ω1, F0c1) = ω1
TE0

TF0c1

s.t.
{
ω1

Tω1 = ‖ω1‖
2 = 1

c1
Tc1 = ‖c1‖

2 = 1
(14)

According to the Lagrange multiplier method, the following equation is true.

L = ωT
1 E0

TF0c1 − λ1
(
ωT

1ω1 − 1
)
− λ2

(
cT

1 c1 − 1
)

(15)
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The partial derivatives of L on ω1, c1λ1, and λ2 can be expressed by the equation below.
∂L
∂ω1

= E0
TF0c1 − 2λ1ω1 = 0

∂L
∂c1

= F0
TE0ω1 − 2λ2c1 = 0

∂L
∂λ1

= −
(
ωT

1ω1 − 1
)
= 0

∂L
∂λ2

= −
(
cT

1 c1 − 1
)
= 0

(16)

From Equation (16), it can be deducted that:

2λ1 = 2λ2 = ωT
1 E0

TF0c1 = 〈E0ω1, F0c1〉 (17)

Note that:
θ1 = 2λ1 = 2λ2 = ωT

1 E0
TF0c1 (18)

θ1 is the objective function of the optimization problem, and Equations (19) and (20) are true.

E0
TF0c1 = θ1ω1 (19)

F0
TE0ω1 = θ1ω1 (20)

From Equation (19) and Equation (20), it can be deducted that:

E0
TF0F0

TE0ω1 = θ1
2ω1 (21)

where ω1 is the eigenvector of E0
TF0F0

TE0, θ1
2 is the eigenvalue, and ω1 and c1 can be obtained

according to Equation (19) and Equation (20). After obtaining ω1 and c1, the score vectors u1 and v1

can be calculated according to Equation (13).
Step 5: Establish the linear regression model between E0 and u1, and F0 and v1 according to the

least square method. {
E0 = u1α1

T + E1

F0 = v1γ1
T + F1

(22)

where α1 = [α11,α12, . . . ,α1L] and γ1 = [γ11,γ12, . . . ,λ1L] are regression coefficients, and E1 and F1 are
the residual matrix. The least square estimation of α1 and γ1 can be denoted below. α1 = E0

Tu1
‖u1‖

2 ,

γ1 = F0
Tv1
‖v1‖

2 .
(23)

Step 6: If F1 satisfy the stopping criteria, Equation (22) is the final regression model and the
iteration stops. Otherwise, replace E0 and F0 with E1 and F1, respectively, and skip to Step 3 to get the
second pair of score vectors.

u2 = E1ω2

v2 = F1c2
(24)

{
E0 = u1α1

T + u2α2
T + E2

F0 = v1γ1
T + v2γ2

T + F2
(25)

where α2 and γ2 are regression vectors and can be denoted as: α2 = E1
Tu2
‖u2‖

2 ,

γ2 = F1
Tv2
‖v2‖

2 .
(26)
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Step 7: Repeat Steps 4–5 until r principal components are calculated. The remaining m − r
components are small and are considered as noises. The residuals Er and Fr are very small. E0 and F0

can be expressed by the equation below.{
E0 = u1α1

T + u2α2
T + . . .+ urαr

T + Er = UαT + Er,
F0 = v1γ1

T + v2γ2
T + . . .+ vrγr

T + Fr = VγT + Fr
(27)

The relationship between uk and vk can be expressed by the equation below [1].

vk = ukb1, k = 1, 2, . . . , r. (28)

Then F0 can be translated into:

F0 = VγT + Fr =
r∑

i=1

u1b1γ1
T + u2b2γ2

T + . . .+ urbrγr
T + Fr = UBγT + Fr (29)

where Û = E0W, then the regression equation can be denoted as:

F̂0 = E0WBγT + Fr (30)

According to the description above, the hidden layer output weight vector can be expressed by
the equation below.

β̂PLS = WBγT (31)

where W denotes the component matrix and B denotes the diagonal matrix.
Based on the above modeling process, the structure of the proposed AE-PLS-ELM model is shown

in Figure 3 as follows.
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4. Modeling Process of the Pump Turbine Based on AE-PLS-ELM

The proposed AE-PLS-ELM model is used to model the pump turbine characteristics of a
PSU. The flow and moment characteristic curves of the pump turbine are preprocessed using an
improve Suter transformation method. Two independent AE-PLS-ELM models are used to model
the preprocessed complete curves. The preprocessed complete curves are then converted into target
variables to construct a neural network model that can be used for real-time simulation. The input
of the AE-PLS-ELM model is the relative flow angle x and the relative vane opening y. The full
characteristic curves based on improved Suter transformation (Figure 2) are employed as data samples.

The specific steps of the modeling process of the pump turbine characteristics based on
AE-PLS-ELM are as follows.

Step 1: Apply the improved Suter transformation to the complete characteristic curves of the
pump turbine provided by the power station and the corresponding preprocessed WH and WM curves
are obtained.

Step 2: Extract data points from the curves. Convert the relative flow angle x, the relative vane
opening y, and the extracted data points into input and output sample pairs.

Step 3: Divide the above sample data into training data and test data. Since the dimensions and
magnitudes of the data samples are different, the input and output data are normalized to facilitate the
modeling and calculation process.

Step 4: Set the Sigmoid function as the activation function of the hidden layer and determine
the range of the number of hidden layer nodes, according to the Kolmogorov empirical formula.
The optimal number of hidden nodes is selected using a trial calculation modeling error.

Step 5: Import the normalized training data to the AE-PLS-ELM model for training, and a
well-trained AE-PLS-ELM model is obtained.

Step 6: Import the normalized test data to the well-trained AE-PLS-ELM model and de-normalize
the output data to obtain the test output.

5. Numerical Experiments and Analysis

In this section, a PSU in China is used as the research object to carry out the nonlinear modeling of
the pump turbine [8]. A total number of 1125 data points are extracted from the pre-processed WH and
WM characteristic curves using the improved Suter transformation (Figure 2). Thus, 1125 data pairs
are generated for constructing an AE-PLS-ELM model. In addition, 90% of the data pairs (1012 points)
are employed as the training samples and the remaining 10% (112 points) as the test sample.

5.1. Parameters Setting

To highlight the effectiveness of the proposed model, four conventional data-driven techniques
named the Bagtree, the support vector regression (SVR), the BP neural network [35], and the ELM
are employed as a control group to simulate the complete characteristic curve of the pump turbine.
The Bagtree model is constructed using MATLAB’s “Bag” function. The parameters of the SVR
model including the penalty factor C and the kernel parameter σ are obtained using the grid search
(GS) algorithm. The search range of C is set as [2−8, 28], and the search range of σ is set as [2−5, 25].
The “trainlm” algorithm is employed in training the BP neural network. The maximum number of
iterations is set as 500 and the target error is 1e-5. The number of the hidden nodes is selected using a
trial-and-error method.
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5.2. Comparative Analysis of the Results

To evaluate the performance of different models, four evaluation indices were used to include
the root mean square error (RMSE), the mean absolute error (MAE), the mean absolute percent error
(MAPE) [23,36], and the Nash-Sutcliffe Efficiency (NSE) [37] are employed. The four indices are defined
as follows.

RMSE =

√√√
1
N

N∑
i=1

( fs(i) − fo(i))
2 (32)

MAE =
1
N

N∑
i=1

∣∣∣ fs(i) − fo(i)
∣∣∣ (33)

MAPE =
1
N

N∑
i=1

∣∣∣ fs(i) − fo(i)
∣∣∣

fo(i)
× 100% (34)

NSE = 1−

∑N
i=1( fs(i) − fo(i))

2∑N
i=1

(
fo(i) − fo(i)

)2 (35)

where fs(i) and fo(i) denote the simulated and observed value of the ith sample point, respectively,
fo(i) denotes the mean observed value, and N denotes the size of the data set.

The 3D spatial surfaces for the WH and the WM characteristics based on the AE-PLS-ELM model
are shown in Figures 4 and 5, respectively. As can be seen from Figures 4 and 5, the WH and WM
spatial surfaces based on the AE-PLS-ELM model are smooth and uniform. In addition, the complete
characteristic curves are continuous derivative, which make it easy to ensure the convergence of the
water hammer calculation process. The AE-PLS-ELM model can also be used to encrypt and extend
the WH and WM characteristic surfaces, according to the practical requirements for research and
engineering applications. Therefore, the transition between different opening lines on the surface is
smoother and it is convenient for operators to obtain the pump turbine characteristics of different
working conditions.
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The results of the Bagtree, SVR, BP, ELM, and AE-PLS-ELM models for WH characteristics are
shown in Table 1. It can be seen from the table that the five models have good training and test accuracy
and can model the WH characteristics of the PSU accurately. The AE-PLS-ELM model performs the
best in terms of the four indices in both the training and test period among the five models, which
indicates that the AE-PLS-ELM model can enhance the modeling accuracy of pump turbine for the
WH characteristic curve effectively. Taking the RMSE value of the test period as an example, the RMSE
value of ELM is 0.00297, which is lower than that of the Bagtree, SVR, and BP models. The neural
network models as BP and ELM perform better than the Bagtree and SVR models. The performance of
ELM is slightly better than BP and the Bagtree model performs the worst.

Table 1. Statistics error indices for WH characteristics of different models.

Characteristics Model
Training Test

RMSE MAE MAPE NSE RMSE MAE MAPE NSE

WH

Bagtree 0.01827 0.01214 0.13402 0.99232 0.02034 0.01404 0.16405 0.98938
SVR 0.01019 0.00711 0.05071 0.99646 0.01069 0.00749 0.05963 0.99464
BP 0.00317 0.00222 0.02438 0.99977 0.00324 0.00236 0.02524 0.99973

ELM 0.00290 0.00207 0.02198 0.99981 0.00297 0.00234 0.02467 0.99977
AE-PLS-ELM 0.00229 0.00130 0.00599 0.99988 0.00217 0.00142 0.00697 0.99988

Compare the training and test results between the ELM and AE-PLS-ELM models, it can be found
that the performance of the AE-PLS-ELM model is significantly better than the ELM model. For the
training samples, the RMSE, MAE, MAPE, and NSE values of the AE-PLS-ELM model were 0.00229,
0.00130, 0.00599, and 0.99988, respectively, which were improved by 21.03%, 37.20%, 72.75%, and
0.007% compared with the 0.00290, 0.00207, 0.02198, and 0.99981 obtained by the ELM model. For
the test samples, the RMSE, MAE, MAPE, and NSE values of the AE-PLS-ELM model were 0.00217,
0.00142, 0.00697, and 0.99988, respectively, which were improved by 26.93%, 39.32%, 71.75%, and
0.011% when compared with the 0.00297, 0.00234, 0.02467, and 0.99977 obtained by the ELM model.
In a word, the proposed AE-PLS-ELM model overcomes the instability and multi-collinearity of the
single ELM model, and can improve the generalization ability and fitting accuracy of the ELM for
modeling the pump turbine characteristics.

The comparison of the residuals for the WH characteristics between the AE-PLS-ELM model and
the Bagtree, SVR, BP, and ELM models are shown in Figure 6a–d, respectively. It can be seen from
Figure 6 that the prediction accuracy of the AE-PLS-ELM model is significantly better than that of the
Bagtree and SVR models at all test sample points. In addition, the residual of the AE-PLS-ELM model
is generally smaller than the BP and ELM models at most of the test points.
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Figure 6. Comparison of the test residuals for WH characteristics between Bagtree, SVR, BP, ELM, and
AE-PLS-ELM. (a) Bagtree vs. AE-PLS-ELM, (b) SVR vs. AE-PLS-ELM, (c) BP vs. AE-PLS-ELM, (d)
ELM vs. AE-PLS-ELM.

The training and test results of the Bagtree, SVR, BP, ELM, and AE-PLS-ELM models for the
WM characteristic are shown in Table 2. The comparison of the residuals for the WH characteristics
between the AE-PLS-ELM model and the Bagtree, SVR, BP, and ELM models are shown in Figure 7a–d,
respectively. The results obtained from Table 2 and Figure 7 are consistent with Table 1 and Figure 7.
The neural network models that BP, ELM, and AE-PLS-ELM performed better than the Bagtree and the
SVR models. The AE-PLS-ELM model can overcome the instability and multi-collinearity of the single
ELM model, and obtain higher modeling accuracy.

Table 2. Statistics error indices for WM characteristics of different models.

Characteristics Model
Training Test

RMSE MAE MAPE NSE RMSE MAE MAPE NSE

WM

Bagtree 0.18222 0.12422 0.14329 0.99315 0.21125 0.15082 0.18732 0.99001
SVR 0.10730 0.07476 0.05411 0.99763 0.11193 0.07852 0.06372 0.99719
BP 0.03227 0.02232 0.02680 0.99979 0.03508 0.02601 0.03050 0.99972

ELM 0.02656 0.01713 0.01582 0.99985 0.02950 0.02081 0.02110 0.99981
AE-PLS-ELM 0.02315 0.01269 0.00539 0.99989 0.02027 0.01306 0.00615 0.99991
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ELM vs. AE-PLS-ELM.

The regression analysis scatter diagram of the residual and actual value for the WH and WM
characteristics is shown in Figure 8. It can be seen from Figure 8 that the scatter plot of the single
ELM model is more divergent around the axis, and the points of the AE-PLS-ELM model distributes
more closely, which demonstrates the superiority of the AE-PLS-ELM model in modeling the complete
characteristic curves of the pump turbine.Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 19 
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where 1,2,...,800k  , which means 800 data pairs are generated for testing. The RMSE, MAE, MAPE, 

and NSE for the test problem of the Bagtree, SVR, BP, ELM, and AE-PLS-ELM models are given Table 

3. The test results of the five different models are shown in Figure 9. As can be seen in Table 3, the 

AE-PLS-ELM outperforms the other four models in terms of the four indices in the test period. The 

performance of the SVR model is the worst. The Bagtree model performed the second worst and the 

BP and ELM models perform better than the Bagtree model. It can also be observed from Table 3 that 

the SVR and ELM models encounter the overfitting problem during the test period. Their training 

performances are much better than the other models while the test performances are much worse. 

Table 3. Statistics error indices for the test problem of different models. 

Model 
Training  Test 

RMSE MAE MAPE NSE  RMSE MAE MAPE NSE 

Bagtree 0.06928  0.00911  0.02077  0.98817   0.03897  0.02709  0.20570  0.99174 

SVR 0.00002  0.00001  0.00004  1.00000   0.05423  0.04805  0.41004  0.98400 

BP 0.00010  0.00007  0.00027  1.00000   0.02675  0.02348  0.20595  0.99611 

ELM 0.00004  0.00003  0.00007  1.00000   0.02506  0.02220  0.19029  0.99658 

AE-PLS-ELM 0.00010  0.00007  0.00021  1.00000   0.02038  0.01793  0.14956  0.99774 

Figure 8. Comparison of the Scatter diagram for the test residuals between ELM and AE-PLS-ELM.
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6. Additional Test Problem

To further demonstrate the effectiveness of the proposed AE-PLS-ELM model, a widely used
nonlinear differential equation is studied as an additional test problem [38]. The nonlinear differential
equation can be expressed by the equation below [9].

y(k + 1) =
y(k)y(k− 1)y(k− 2)u(k− 1)(y(k− 2) − 1) + u(k)

1 + y2(k− 2) + y2(k− 1)
(36)

where u(k) is the control variable and is randomly generated in [−2,2] in the training period.
Furthermore, 800 data pairs are generated for training. y(k + 1) is taken as the output variable.
y(k), y(k− 1), y(k− 2), u(k), u(k− 1) are taken as the input variables. In the test period, u(k) is
generated using the following equation.

u(k) =
{

sin(3πk/250), k ≤ 500
0.25 sin(2πk/250) + 0.2 sin(3πk/50), k > 500

(37)

where k = 1, 2, . . . , 800, which means 800 data pairs are generated for testing. The RMSE, MAE, MAPE,
and NSE for the test problem of the Bagtree, SVR, BP, ELM, and AE-PLS-ELM models are given Table 3.
The test results of the five different models are shown in Figure 9. As can be seen in Table 3, the
AE-PLS-ELM outperforms the other four models in terms of the four indices in the test period. The
performance of the SVR model is the worst. The Bagtree model performed the second worst and the
BP and ELM models perform better than the Bagtree model. It can also be observed from Table 3 that
the SVR and ELM models encounter the overfitting problem during the test period. Their training
performances are much better than the other models while the test performances are much worse.

Table 3. Statistics error indices for the test problem of different models.

Model
Training Test

RMSE MAE MAPE NSE RMSE MAE MAPE NSE

Bagtree 0.06928 0.00911 0.02077 0.98817 0.03897 0.02709 0.20570 0.99174
SVR 0.00002 0.00001 0.00004 1.00000 0.05423 0.04805 0.41004 0.98400
BP 0.00010 0.00007 0.00027 1.00000 0.02675 0.02348 0.20595 0.99611

ELM 0.00004 0.00003 0.00007 1.00000 0.02506 0.02220 0.19029 0.99658
AE-PLS-ELM 0.00010 0.00007 0.00021 1.00000 0.02038 0.01793 0.14956 0.99774
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7. Conclusions

PTGS plays an extremely important role in maintaining the safe and stable operation of the power
system. However, it is a closed-loop control system with a complex structure, variable parameters, and
strong nonlinearity. As a crucial part of PSU, an accurate pump turbine model is the key to the accurate
modeling and simulation of PTGS. This study first introduced an improved Suter transformation to
process the complete characteristic curves of the pump turbine. The crossing, aggregating phenomena,
and multi-value problems in the “S” characteristic region of the pump turbine were reduced through
the improved Suter transformation. Furthermore, an AE-PLS-ELM model was proposed to model the
pump turbine characteristics precisely. The AE technique was introduced to the single ELM model
for feature extraction of input data to improve its stability. In addition, the PLSR algorithm was
employed to replace the Moore-Penrose generalized inverse in ELM to reduce the multicollinearity
of the output weight. Results have shown that the proposed AE-PLS-ELM model has better fitting
precision and generalization performance than traditional models such as Bagtree, SVM, BP, and ELM.
Essentially, the proposed modeling framework is an effective technique in modeling the pump turbine
characteristics and the proposed AE-PLS-ELM can be used in other regression problems in a future
study. However, the performances of some other data-driven methods with different structures, such as
the multivariate adaptive regression spline (MARS), the gene expression programming (GEP) [39], the
general regression neural network (GRNN), the genetic programming (GP), and the cascaded neural
network (CCNN) have not been studied. More attention will be paid to the performances of different
data-driven methods for nonlinear modeling of pump turbine characteristics in the future study.
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Nomenclature

Pump turbine model Improved Suter transformation
M11 unit moment a relative speed
Q11 unit flow q relative flow
N11 unit speed h relative water head
a guide vane opening m relative moment

x relative flow angle
ELM y relative opening(
xk, yk

)
Training samples AE-PLS-ELM

ŷk Simulated output ui, vi Score vectors
N Number of training samples ωi, ci Load factors
L Number of hidden neurons λ1,λ2 Lagrange multipliers
ai,βi Connection weights Er, Fr Residual matrix
bi Bias αi,γi Regression coefficients
g(·) Activation function θi Objective function
H Hidden layer output matrix W Component matrix
H† Generalized inverse matrix of H B Diagonal matrix
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Abbreviations
AE Autoencoder GS Grid search

AE-ELM
Autoencoder based extreme
learning machine

MAE Mean absolute error
MAPE Mean absolute percent error

AE-PLS-ELM
Autoencoder and partial least
squares regression based
extreme learning machine

NSE Nash-Sutcliffe Efficiency
PLSR Partial least squares regression
PSU Pumped storage unit

BP Backpropagation PTGS Pump turbine governing system
RBF Radial basis function RMSE Root mean square error
ELM Extreme learning machine SVR Support vector regression
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