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Abstract: With a rising demand for utilizing unmanned aerial vehicles (UAVs) to deliver materials 
in outdoor environments, particular attention must be given to all the different aspects influencing 
the deployment of UAVs for such purposes. These aspects include the characteristics of the UAV 
fleet (e.g. size of fleet, UAV specifications and capabilities), the energy consumption (highly affected 
by weather conditions and payload) and the characteristics of the network and customer locations. 
All these aspects must be taken into account when aiming to achieve deliveries to customers in a 
safe and timely manner. However, at present, there is a lack of decision support tools and methods 
for mission planners that consider all these influencing aspects together. To bridge this gap, this 
paper presents a decomposed solution approach, which provides decision support for UAVs’ fleet 
mission planning. The proposed approach assists flight mission planners in aerospace companies 
to select and evaluate different mission scenarios, for which flight-mission plans are obtained for a 
given fleet of UAVs, while guaranteeing delivery according to customer requirements in a given 
time horizon. Mission plans are analyzed from multiple perspectives including different weather 
conditions (wind speed and direction), payload capacities of UAVs, energy capacities of UAVs, fleet 
sizes, the number of customers visited by a UAV on a mission and delivery performance. The 
proposed decision support-driven declarative model supports the selection of the UAV mission 
planning scenarios subject to variations on all these configurations of the UAV system and 
variations in the weather conditions. The computer simulation based experimental results, provides 
evidence of the applicability and relevance of the proposed method. This ultimately contributes as 
a prototype of a decision support system of UAVs fleet-mission planning, able to determine whether 
is it possible to find a flight-mission plan for a given fleet of UAVs guaranteeing customer 
satisfaction under the given conditions. The mission plans are created in such a manner that they 
are suitable to be sent to Air Traffic Control for flight approval. 

Keywords: unmanned aerial vehicles; UAV routing and scheduling; UAV fleet mission planning 
 

1. Introduction 

The immense development of unmanned aerial vehicle (UAV) capabilities has promulgated its 
influence in many domains, such as defense, search and rescue, agriculture, manufacturing, and 
environmental surveillance [1–4] to execute complex industrial functions. Fleet-mission planning for 
UAVs in the context of materials delivery has become a major research topic [5–8] and could be 
treated as an extension of the vehicle routing problem (VRP) [9] which belongs to the class of planning 
problems that are NP-hard [10,11]. Various objectives could be used in UAV mission planning such 
as reducing individual UAV costs, enhancing its profit, increasing safety in operations, reducing lead 
time, or increasing the load capacity of the entire system [12,13]. UAV routing in 3-D environments 
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has different degrees of attractiveness when evaluated against multiple decision criteria, which 
relates to finding the sequence of waypoints that connects the start to the destination locations [14–
17]. Existing studies on UAV routing for transporting materials and surveillance [9] have given less 
attention to changing weather conditions and the non-linear fuel consumption behaviors of UAVs 
[18]. 

This study addresses the problems of routing and scheduling of a UAV fleet, considering the 
changing weather conditions. The focus of the study is the solutions that allow for finding feasible, 
collision-free flight plans ensuring non-empty batteries for a fleet of UAVs. This approach maximizes 
the satisfaction of the orders from given customers. The proposed declarative solution approach 
enables one to state a decision support-driven reference model aimed at the analysis of the 
relationships between the structure of a given UAV-driven supply network and its potential 
behavior, resulting in a sequence of sub-missions following required deliveries. From this perspective, 
the results of this study fall within the scope of the research presented in the papers [19–24].  

Numerous parameters and constraints influence the decision criteria for UAV fleet mission 
planning. Typical limitations of UAVs in transportation systems include the limited flight range, 
which depends on the battery capacity, the payload of the UAV, overlapping air corridors designated 
for UAV movement and the technical specifications of UAVs [8]. Furthermore, the decision space 
consists of aspects which include routing and scheduling in the 3-D environment, the carrying 
payload of the UAVs and collision avoidance with moving or fixed objects, energy consumption affected 
by the changing conditions like wind speed, wind direction and air density [8]. 

Thus, these various interdependent aspects emphasize the intractability of UAV fleet-mission 
planning because it is challenging to develop models considering all the influencing aspects together. 
There is little knowledge on how the changes in these influencing parameters affect the solutions, 
even concerning deterministic approaches. For instance, the collision avoidance solutions differ 
regarding fixed obstacles vs. moving flying obstacles and single obstacles vs. many obstacles. Studies 
in the literature have used methods for UAV mission planning where the routes have been derived 
by satisfying the UAV dynamics using linear approximations for energy-consumption models 
[25,26]. Certain existing models have not considered all the significant physical properties related to 
UAVs and have used approaches such as VRP with time windows (VRPTW) [27,28]. 

Depending on the context of the problem, mission planning can be done online or offline. Most 
of the online mission planning has been done assuming that the UAVs can detect the obstacles using 
sensors to avoid collisions [29]. Because of the recent advances in collision-avoidance technology, 
most small UAVs can sense the air traffic and alter flight altitudes or turn to avoid collisions. Studies 
regarding routing problems in communication networks do not explicitly avoid collisions between 
UAVs [11]. Because this study does not consider small UAVs, such assumptions are not valid, and 
the study has to create offline mission plans with flight plans for each UAV where it needs to be sent 
to the authorities in advance to get the approval to be executed afterward. In offline planning, 
collision avoidance could be done by predicting potential collisions where online planning reacting 
strategies are utilized. 

Moreover, the techniques to avoid collision change when the fleet of UAVs are flying in free 
space vs. dedicated corridors. Depending on the context of the problem, different strategies have to 
be adopted for collision avoidance [30]. This study focuses on offline mission planning of UAVs by 
predicting the collisions in advance and planning missions ensuring collision avoidance, where the 
principle of prevention is used as a guarantee of UAV deadlock-freeness.  

The payload capacity and the flight range of the UAVs are related to the energy capacity, and 
these aspects are vital in mission planning [31,32]. Studies have proposed to segregate the whole 
network area considering the UAVs’ relative capabilities and proposed clusters in the area to reduce 
the problem size [33–36]. In this study, customer nodes are clustered to reduce the complexity of the 
network, where each cluster has a set of feasible UAVs fleet routings, and accompanying schedules 
are provided. 

Weather conditions are pertinent to UAV routing because wind speed and wind direction could 
agitate the travel speed of the UAV, and the air density, appeased by the temperature in the 
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atmosphere, affects the energy consumption in UAVs [9] where cold temperatures may adversely 
affect battery performance [9]. The majority of the current state of research has paid less attention to 
weather factors and ignores the impact of weather on performance [14,33,37]. The current literature 
has sporadically considered wind conditions on energy consumption and the use of that information 
in planning the missions [9,38,39]. The studies have assumed constant wind speed and direction [38] 
and have used linear approximations for energy consumption, giving less focus on the impact of 
weather [9]. Because of the UAVs used in this study, linear approximations are not coherent. The 
weight of the UAVs used here are heavier than the UAVs used in existing research because the studies 
have stated that their models are not reasonable when the weight of UAVs increases [9]. Accordingly, 
the non-linear models proposed in the literature are used in this study in calculating energy 
consumption considering weather conditions [24]. 

The mission-planning problems addressed in this study cover different layers of system 
architecture, which include fleet level where the fleet is managed to provide delivery service and the 
platform level where it focuses on the individual functioning of the UAVs. Thus, the contributions of 
this study cover both fleet and platform levels as shown in Figure 1. The goal of this study is to fill 
the gap in literature addressing UAV fleet-mission planning in changing weather conditions,  
maximizing customer demand satisfaction in a given time period. Because of the novelty of the 
problem and the fact it covers different layers of decisions, the initial objective of this study is to find 
a reasonable way to solve the problem. It is difficult to claim that any proposed method is the best 
way to solve a problem, but this method allows future research to find better approaches to solve the 
problem. 

 
Figure 1. Overall hierarchical representation of the system related to the problem. 

The remainder of the paper is organized as follows: Section 2 provides the problem formulation 
and the composition of the central problem concerning UAV fleet-mission planning with changing 
weather conditions. Section 3 presents models for the problem of UAV mission planning. Then, the 
already stated problem formulated with a declarative solution approach aimed at addressing 
problem composition is considered in Section 4 An illustrative example of the proposed approach is 
discussed in Section 5, and the concluding remarks are presented in Section 6. 

2. Problem Formulation 

The central problem addressed in this study focuses that a given set of customers at different 
points is to be served during a time period, which consists of changing weather conditions by a fleet 
of UAVs. 

The main problem boils down to the general question of: Is it possible to find a sequence of UAV 
missions (termed as sub-missions) which contain routes; schedules and an amount of transported materials 
𝑦 , 𝑐 , 𝑓 , ) of a given UAV fleet, which maximize the customer demand fulfilment under changing weather 
conditions, while considering energy limits of UAVs and ensuring collision avoidance? 

As mentioned in the literature analysis presented, there are still no effective solutions which 
allow operators to plan the routes and schedules for a fleet of UAVs under changing weather 
conditions. In order to find a solution, the problem is deconstructed into four sub-problems, where 
each sub-problem helps to reduce the complexity of the main problem. 
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2.1 Determining the Sub-Mission Time Windows 

In order to reduce the complexity of the weather conditions in the main problem, the first sub-
problem considered assumes that a given time period with changing weather conditions is to be 
divided into several sub-mission time windows (STWs). The STWs consist of analogous weather 
conditions. The goal is to determine the length of STWs and create a sequence of STWs, such that 
each window consists of a range of wind speed and a wind direction. 

The weather forecast is constant for the assumed time period, and the weather data is used to 
determine the STWs, in which the weather conditions are held constant, such as the speed and 
direction of the wind. The minimum and maximum ranges of wind speed for each sub-mission time 
window are known in advance. The wind direction is the same inside any given sub-mission time 
window. The sub-mission time windows can be subdivided into flying-time windows (FTWs) 
assuming that a given time duration with similar weather conditions is to be divided into several 
flying time windows. The intention is to determine the length of FTWs depending on the time used 
in the flying of UAVs, considering the maximum energy limit and maximum carrying payload. 

The UAV airspeed is the speed of a UAV relative to the air. Because the UAV needs to maintain 
a constant ground speed, the UAV needs to adjust its airspeed to fly in the desired flight path. Each 
sub-mission time window consists of a minimum and a maximum range of wind speed and a specific 
wind direction. This information leads to a min and max range of airspeed because of the effect of 
the wind speed and direction. Using the min and max range of air speed, the range of energy 
consumption is calculated. Every travelled route of a UAV starts and finishes within a given FTW. 
All UAVs are filled with full energy capacity before they start to fly and one UAV can fly only one 
time during the FTW. Each UAV has enough energy capacity to travel directly to the farthest 
customer in the network and come back directly to the depot in the worst acceptable weather 
conditions. The results of this sub-problem provide a sequence of STWs where the time period is 
divided into several STWs where each STW is divided into FTWs. 

2.2. Determining the Clusters of Customers 

In order to reduce the complexity of the network and the customer demand requirements in the 
main problem, the second sub-problem considered assumes that a given set of customers at different 
points will be grouped into customer clusters (CL). These customers in the cluster can be served by 
UAVs considering the maximum energy limit. The claim is to create alternative clusters for each 
flying-time window, such that customers in each cluster could be served by UAVs to deliver a portion 
of customer demand. The output of this sub-problem provide a set of alternative clusters of customers 
for each flying-time window. 

2.3. Creating a Possible Set of Sub-Missions  

In order to reduce the complexity in the scheduling and routing of UAVs, the third sub-problem 
considered assumes that a given set of customers in a cluster will be served during a given flying-
time window. The flying-time windows consist of a set of sub-missions, such that each sub-mission 
consists of routes with schedules of the UAVs delivering materials to the customers. The goal is to 
create a set of sub-missions for each cluster, such that the customers in the cluster are reached with a 
portion of the demand during each flying-time window while obeying the energy constraints and 
assuring collision avoidance. 

This study assumes that more than one UAV can start to fly from the base at the same time and 
that all UAVs fly at the same altitude. The amount of weight allocated to the customers in a route is 
an integer where similar kinds of material are delivered to customers in differing amounts [Kg] and 
customers can accept deliveries during the time period. The output of this sub-problem provide a 
possible set of sub-missions for each cluster of customers for each flying-time window. 

2.4. Finding Sequences of Sub-Mission Deliveries which Give the Maximum Customer Satisfaction 
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In order to reduce the complexity in the main problem, the fourth sub problem considered 
assumes a given set of customers is to be served during a time period at different points by a planned 
mission using a fleet of UAVs, which consist of a sequence of sub-missions. The goal is to find 
admissible missions which maximize the customer demand fulfilment, such that the sum of the sub-
mission deliveries provide maximum demand fulfilment. A secondary objective is to find the 
admissible solutions with minimized total time travelled/total energy consumed. The output of this 
sub-problem provide a sequence of sub-missions, which maximize customer demand fulfilment. 

2.5. Interdependency between Sub-Problems 

Figure 2 shows the relationships between the sub-problems based on the influences from the 
outputs of each sub-problem. The interdependencies between the sub-problems, illustrated in Figure 
2, are as follows. 

 
Figure 2. Interdependency between the decomposed sub-problems. 

Sub-problem 1 to sub-problem 2: for each STW, a set of selected clusters of customers in the 
network are considered to plan the delivery missions. Sub-problem 2 to sub-problem 3: for each 
customer cluster, a set of feasible collision-free UAV routings and accompanying schedules are 
created. Sub-problem 1 to sub-problem 3: each sub-mission is created inside a given STW where the 
range of wind speeds and direction is known. The creation of sub-missions is influenced by the nature 
of weather condition in each STW. Sub-problem 3 to sub-problem 4: the sequence of sub-missions 
from each FTW provides a full mission. The sub-missions created in sub-problem three are searched 
to find the sequence which provides the maximum customer satisfaction. 

As we consider the whole problem with the constraints and the system requirements, a general 
approach has to be designed to deliver feasible output addressing the whole problem with an overall 
quality solution. If each sub-problem is focused on individually, better different alternatives could be 
found but when all the sub-problems are considered together because of the interdependency 
between the sub-problems a general approach is proposed. An interdependency analysis 
substantiates that sub-problem 3 is the most difficult problem to focus on because all of the rest of the 
sub problems are linked with it. Moreover, sub-problem 3 has the most generic aspects to focus on. 
Hence this paper focuses more on sub-problem 3. 
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The mathematical formulation of the model considered employs the following symbols 
explained in Table 1. 

Table 1. Notation table. 

Sets and Sequences 
𝐺 = (𝑁, 𝐸) The graph representing the transportation network 

𝑁 = {0 … 𝑛} The set of nodes representing the base and customer locations 
𝐸 = {{𝑖, 𝑗}| 𝑖, 𝑗

∈ 𝑁, 𝑖 ≠ 𝑗} The set of edges defined between each pair of nodes 

𝐶𝐿 ,

= 𝑁 , , 𝐸 ,  

The subgraph of 𝐺 representing mth cluster in lth flying-time window; 𝜎(𝑙)—number of 
clusters in lth flying-time window 

𝑁 ,  The set of nodes in the mth cluster in the lth flying-time window, 𝑁 , ⊆ 𝑁 
𝐸 ,  The set of edges in mth cluster in the lth flying-time window, 𝐸 , ⊆ 𝐸 

Parameters Unmanned Aerial Vehicle (UAV) Technical Parameters 
Q The maximum loading capacity of a UAV [Kg] 
ep The empty weight of a UAV [Kg] 

𝑣𝑔 ,
  The ground speed of a UAV from node i to j [m/s] 

𝜗 ,  The angle of the vector of ground speed 𝑣𝑔 ,  [degrees] 
𝑣𝑎 ,  The airspeed of a UAV from node i to j in the lth flying-time window [m/s] 
𝑣𝑎 ,  The maximum range of 𝑣𝑎 ,  [m/s] 
𝑣𝑎 ,  The minimum range of 𝑣𝑎 ,  [m/s] 
𝑃  The maximum energy capacity of a UAV [J] 
𝑃 ,  The amount of energy consumed per time unit from node i to j by kth UAV [J/s] 

w The time spent for take-offs and landings of UAVs [s] 
K The size of the fleet of UAVs  
Network Parameters 

𝑑 ,  The travel distance from node i to j [m] 
𝑡 ,  The travel time from node i to j [s]  
𝐷  The demand at node i ∈ N0 = N ∪ {0} [Kg] 

𝑏{ , };{ , }
  

The binary variable of crossing edges  

𝑏{ , };{ , }
 =

1 when an edge {𝑖, 𝑗} and {𝛼, 𝛽} is utilized

0 otherwise
 

Environmental Parameters 
𝐻 The time period 𝐻 = [0, 𝑡 ] 

𝑆𝑇𝑊  The sub-mission time window 𝑇: 𝑆𝑇𝑊 = [𝑆𝑇𝑊𝑆 , 𝑆𝑇𝑊𝐸 ], 𝑆𝑇𝑊𝑆  / 𝑆𝑇𝑊𝐸  is a 
start/end time of 𝑆𝑇𝑊  

𝐹𝑇𝑊  The flying-time window 𝑙: 𝐹𝑇𝑊 = [𝐹𝑇𝑊𝑆 , 𝐹𝑇𝑊𝐸 ], 𝐹𝑇𝑊𝑆 /𝐹𝑇𝑊𝐸  is the start time of 
𝐹𝑇𝑊  

Φ The number of flying-time windows 
𝑣𝑤    The Wind Speed in the lth flying-time window   
𝑣𝑤    The Maximum range of 𝑣𝑤    
𝑣𝑤    The Minimum range of 𝑣𝑤   

𝜃  The Wind direction in the lth flying-time window   

WUV The Weather utility value 𝑊𝑈𝑉 = α (the standard deviation of the wind direction) + β 
(the standard deviation the wind speeds) 

α, β The Weighted parameters corresponding to wind speed and wind direction 
Variables Decision Variables 

𝑥 ,  
The binary variable used to indicate if kth UAV travels from node i to node j  

𝑥 , =
1 if 𝑘 UAV travels along from node i to node j  
0 otherwise

 

𝑦  The time that kth UAV arrives at the node i  
𝑠  The time that kth UAV starts to fly from node 0 
𝑐  The payload weight amount delivered to node i by kth UAV 
𝑓 ,  The payload weight carried by a UAV from node i to j by kth UAV 

Output Variables 
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𝑆 , ,  
The nth sub-mission in the mth cluster in the lth flying-time window,  
𝑆 , ,  = ( 𝑅 , , , 𝑃 , , , 𝐶 , , ) ; 𝜓(𝑚,𝑙) – the number of sub-missions in the mth cluster in 
the lth flying-time window 

𝐶 , ,  The customer satisfaction levels of nth sub-mission in mth cluster in the lth flying-time 
window 

𝑅 , ,  The routes of the nth sub-mission in the mth cluster in the lth flying-time window 
𝑃 , ,  The schedules of nth sub-mission in mth cluster in the lth flying-time window 

𝑅𝐿 , ,  
The sth scenario in the mth cluster in the lth flying-time window, 𝑅𝐿 , , =

𝑅𝑜 , , , 𝑃𝑙 , , , 𝐶𝑆 , , ; ¥(𝑚,𝑙) – the number of scenarios in the mth cluster in the lth 
flying-time window 

𝑅𝑜 , ,  The rth route in the mth cluster in the lth flying-time window 
𝑃𝑙 , ,  The schedule of the rth route in the mth cluster in the lth flying-time window  

𝐶𝑆 , ,  The customer satisfaction levels of the rth route in the mth cluster in the lth flying-time 
window  

𝐶𝑠 , , ,  The customer satisfaction level of the ith node of the nth sub-mission in the mth cluster in 
the lth flying-time window 

3. Problem Modeling 

The concept of the considered problem is illustrated in Figure 3. In this illustrative example, a 
set of customers located at different points in a delivery distribution network are to be serviced by a 
fleet of UAVs during a specified time period in which changing weather conditions are encountered. 
Figure 3 illustrates the time period as a sequence of STWs, which consists of different weather 
conditions. Each STW consists of a range of wind speed and a given wind direction so that in the 
creation of routes and schedules for the UAV fleet, the weather data of each STW are considered. The 
specifications of the UAVs, network data with flying corridors and customer locations, customer 
demands and weather conditions are given as input data. A solution strategy should be used to create 
a final mission plan, which consists of a sequence of sub-missions, which consists of routes and 
schedules (orange and blue lines) for the UAVs fleet as shown in the latter part of Figure 3. The 
objective function and the constraints are as specified below. 
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Figure 3. Problem modeling illustration. 

The objective function 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒:   𝑚𝑖𝑛
 ∈ 

 {∑  
( , ) ∑  

 ( ) ∑ 𝐶𝑠 , , , }. (1) 

The objective is to maximize the customer satisfaction levels for all the customers by delivering 
as much as demanded as possible. 

The constraints  
Arrival time at nodes: Relationship between 𝑥 ,  and 𝑦 . 
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(𝑥 , = 1)
 

⇒  ( 𝑦 = 𝑦 + 𝑡 , + 𝑤), ∀(𝑖,𝑗) ∈ 𝑁, ∀𝑘 ∈ 𝐾 .   (2) 

If an edge (𝑖, 𝑗) is utilized by UAV 𝑘 in a given flying-time window then the arrival time 𝑦  to 
node 𝑗 is equal to the sum of travel time 𝑡 ,  between node 𝑖 to 𝑗, time spent for take up landing 𝑤 
and the arrival time 𝑦  to node 𝑖 (2). 

Collision avoidance: When two edges are crossing (𝑏{ , };{ , }
 = 1), UAVs occupied in those two 

edges (𝑥 , = 1 and 𝑥 , = 1) must not be occupied at the same time. 
𝑏{ , };{ , }

 = 1 ∧ 𝑥 , = 1 ∧ 𝑥 , = 1 ⇒  (𝑦  ≤ 𝑦 ) ∨ (𝑦  ≤ 𝑦 ) ,     

  𝑘, 𝑣 = 1 … 𝐾, 𝑘 ≠  𝑣 and {𝑖, 𝑗}, {𝛼, 𝛽} ∈ 𝐸 ,  
(3) 

Capacity: The demand assigned to a UAV should not exceed its capacity. 

 

∈ ,

 

∈ ,

𝑥 , 𝑐
 

⩽ 𝑄 ,       𝑘 = 1 … 𝐾 .  (4) 

Sum of all the carried weights 𝑐  by UAV 𝑘  should not exceed the maximum carrying 
payload 𝑄. 

The flow of UAVs: When a UAV arrives at a node that UAV must leave from that node.  

   

∈ ,

𝑥 , −  

∈ ,

𝑥 , = 0, 𝑘 = 1 … 𝐾, ∀𝑖 ∈ 𝑁 = 𝑁 , ∪ {0} . (5) 

The sum of all the occupied edges which goes to node 𝑖 (∑  ∈ ,
𝑥 , ) should be equal to the sum 

of all the edges which leave from node 𝑖 (∑  ∈ ,
𝑥 , ). 

Start and end of routes: Each UAV that departs from the depot (Node 0) should come back to the 
depot. 

  (𝑥 , > 0)
 

⇒  (  

∈ ,

𝑥 , =  

∈ ,

𝑥 , = 1), 𝑘 = 1 … 𝐾 .      (6) 

Constraint (6) make sure that each UAV departs from the depot and comes back to the depot. 
The sum of all the edges which starts from depot and sum of all the edges which returns to depot 
should be equal to one. 

Energy: Each UAV has a maximum energy capacity of Pmax, and in flight, it is not possible to 
consume more than the max energy capacity. 

    

∈ ,

 

∈ ,

𝑥 , 𝑃 , 𝑡 , ⩽ 𝑃 , 𝑘 = 1 … 𝐾 .   (7) 

𝑃 , =
1

2
𝐶 𝐴𝐷(𝑣𝑎 , ) +

𝑒𝑝 + 𝑓 , 𝑔

𝐷𝑏 𝑣𝑎 ,

 .  (8) 

Where 𝐶  is the aerodynamic drag coefficient, A is the front facing area, 𝑒𝑝 is the empty weight 
of the UAV, D is the density of the air, b is the width of the UAV and g is gravitational acceleration 
(A. Thibbotuwawa et al. 2020). The air speed of a UAV 𝑣𝑎 ,  is defined in the following way: 

𝑣𝑎 , = 𝑣𝑔 , 𝑐𝑜𝑠 𝜗 , − 𝑣𝑤 𝑐𝑜𝑠 𝜃 + 𝑣𝑔 , 𝑠𝑖𝑛 𝜗 , − 𝑣𝑤 𝑠𝑖𝑛 𝜃  .  (9) 

The main question for this study to focus on is: is it possible to find a sequence of UAVs’ sub-missions, 
(which are determined by decision variables: 𝑆 , , , 𝑅𝐿 , , RL , , , 𝑥 , 𝑦 , 𝑐 , 𝑓 , ) of given UAV fleet, which 
maximize the customer satisfaction (1) (customer demand (Di) fulfilment) under changing weather conditions 
considering energy constraints of UAVs (7), ensuring collision avoidance (3), and satisfying the constraints 
(2),(4)-(6))? 

4. Declarative Solution Approach  
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In order to solve the main problem by addressing the deconstructed sub-problems stated in 
Section 2 and depending on the link between the sub-problems, either a sequential approach or a 
parallel approach can be used [40]. In this study, a sequential approach is proposed, which is 
illustrated in Figure 4. 

 
Figure 4. Proposed solution approach. 

4.1 The Method to Determine the Sub-Mission Time Windows 

Given the variable about the weather: data about weather forecast in the time period [0, 𝑡 ] 
Question: How many sub-mission time windows should be extracted in the time period [0, 𝑡 ] and 

how many flying time windows should be extracted in each sub-mission time window? What are the values of 
variables determining the STWs: 𝑆𝑇𝑊 , 𝐹𝑇𝑊  ? 

By using the weather forecast data, the possible length of STWs are determined by using the 
following steps. 

Step 1: Take the forecast data for the planning time period. 
Step 2: For each consecutive R hours of sliding time windows, calculate the weather utility value 

(WUV). R is a parameter with a range of [1,3]. 𝑊𝑈𝑉 = α (standard deviation of the wind direction) + 
β (standard deviation the wind speeds). α and β are the weighted parameters. 

Step 3: Sort the sliding time windows in ascending order of 𝑊𝑈𝑉 . Select the time windows based 
on the weather utility value and divide the time period into different sub-mission time windows. 

The method mentioned above creates a sequence of STWs where the time period is divided into 
several STWs. The purpose is to create sub-missions during a time where there are similar weather 
conditions. Based on the traveling time of the UAV, assuming that it is flying against the wind and 
considering the maximum energy limit, the flying-time windows are determined. The STWs are 
divided in flying-time windows based on the time used in flying the UAVs considering the maximum 
fuel limit and maximum carrying payload. 

4.2. The Method to Determine the Clusters of Customers 

The given variables are 𝐺 = (𝑁, 𝐸), 𝐹 , 𝑣𝑤  = [𝑣𝑤   , 𝑣𝑤   ], 𝜃  
Question: How do we determine clusters of customers 𝐶𝐿 , = 𝑁 , , 𝐸 ,  which should be extracted 

from the transportation network in each flying time window? 
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Determining the number of customers to be put in the cluster can be achieved in several ways 
such as hierarchical clustering and expectation–maximization clustering and “k-means” clustering. 
The “k-means” clustering algorithm is selected to do the clustering because it is less time consuming 
and it is already used in existing literature [36,41]. Customer locations are taken as the feature of the 
clustering algorithm. 

4.3. The Method to Create a Possible Set of Sub-Missions 

Given are l-th flying time window: 𝐹 ,, 𝑣𝑤  = [𝑣𝑤   , 𝑣𝑤   ], 𝜃 , 𝐶𝐿 ,  , 𝑑 ,  ,𝑣𝑔 ,
 , 𝑡 ,  

Question: Does a set 𝑆 , = {𝑆 , , , … , 𝑆 , , }  of admissible sub-missions satisfying the energy 
constraints and collision avoidance exist? 

The method of creating a possible set of sub-missions for a cluster in a given flying time window 
has two stages as shown in Figure 5. Stage one creates a list of scenarios for the cluster and stage two 
creates sub-missions using the scenarios made in stage one. 

 
Figure 5. Illustration of the method to create sub-missions for each mth cluster in each lth flying-time 
window (FTW). 

Stage one and stage two is executed for each cluster for each FTW. The sub-missions are created 
for each mth cluster in each lth FTW. This calculation provides a set of sub-missions for each cluster in 
each time window. All the sub-missions in all clusters in a flying-time window equal to the total 
number of sub-missions made for that flying time window. As the output, it provides sets of sub-
missions for each flying time window. 𝑃 ,  is calculated assuming that UAV travels with maximum 
payload using (6). 

Stage one: Create possible scenarios (𝑅𝐿 , , = 𝑅𝑜 , , , 𝑃𝑙 , , , 𝐶𝑆 , ,  ), which consist of routes 
with schedules and levels of customer satisfaction for a cluster in a FTW. Scenarios consist of a 𝐶𝑛 
number of customers and each customer receives a portion of materials which is equal to the payload 
of the UAV divided by 𝐶𝑛. 𝐶𝑛 is a parameter with the range of [1, max number of customers in the 
cluster]. Scenarios are created which have one customer to a maximum number of customers in the 
cluster. The desired number of scenarios are given as the input in this method and the method stops 
when, the list of scenarios (RL) consists of the desired number of scenarios. 

Stage two: Input for stage two is the list scenarios (RL) for routes with plans and customer 
satisfaction levels made in stage one for a cluster. The sub-missions for each cluster are created as per 
the method shown in Figures 6 and 7. The elements are explained below. 

Step 1 takes all scenarios in the scenario list (RL) as input data, which comes from stage one, and 
move to condition a. Input data includes the UAV fleet size, priority of UAVs and the desired number 
of sub-missions. An empty tab list (TL) is created in this step to store the pairs of scenarios. 

Condition a checks whether a pair of scenarios exist in R which do not exist in TL. If yes, it moves 
to step 2 and, if not, it moves to step 3. 

Step 2 adds R to TL and assign the UAVs to R. Then it moves to condition b. 
Condition b checks whether the routes in R satisfies the collision avoidance constraint (2). If yes, 

it moves to step 1’ (which goes as an input to condition e in Figure 7) and, if no, it moves to condition 
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c. Condition c checks whether schedules of R can be rescheduled in order to satisfy collision 
avoidance constraints (2). If yes it moves to step 6 and if not, it moves to step 4. 

Step 1’ sends the output from Figure 6 as the input to Condition e in Figure 7. 
Step 3 deletes one scenario assigned to the UAV with less priority from R and moves to condition 

d. Condition d checks whether there exists a scenario nR in RL, which does not make a pair R which 
is already in TL. If no, it stops the process and, if yes, it moves to step 5. 

Step 4 adds R to TL and moves to condition b. 
Step 5 creates new schedules for R and move to step 1’ (which goes as an input to condition e in 

Figure 7). 
Step 2’ takes the output from Figure 6 and moves to condition e where it checks whether there 

exists an available UAV in the fleet of UAVs. If yes, it moves to condition f and if not, it moves to step 
10. Condition f checks if there exists a scenario nR in RL which does not make an R which is in TL. If 
no, it stops the process and if yes, it moves to step 6. 

Step 6 adds the created R to TL. Then moves to condition g. 
Condition g checks whether the routes in R satisfies the collision avoidance constraint (2). If yes, 

it moves to step 8 and if not, it moves to condition h. 
Condition h checks whether the schedules of R can be rescheduled in order to satisfy the collision 

avoidance constraints by only changing the schedule of nR. If yes, it moves to step 7 and if not, it 
moves to step 9. 

Step 7 creates new schedules for R and moves to step 9. 
Step 8 assigns next UAV to R moves to condition i. 

 
Figure 6. The heuristic to create sub-missions with collision avoidance for a cluster in an FTW. 
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Figure 7. The heuristic to create sub-missions with collision avoidance for a cluster in an FTW. 

Step 9 removes the scenario nR from R and moves to step 10. Condition i checks whether all the 
UAVs in the fleet are used. If yes, it moves to step 10, and, if not, it moves to condition f. 

Step 10 creates the sub-missions (Sn,m,l) and adds to the list of sub-missions LS. Customer 
satisfaction levels of a customer in a sub-mission are equal to the total of customer satisfaction levels 
of that customer in all the routes in that sub-mission. Then it moves to condition j. 

Condition j checks whether the desired number of sub-missions are reached. If yes, it stops the 
process and, if not, it moves to step 3’ (which goes as an input to condition a in Figure 6). The output 
of this algorithm provides a possible set of sub-missions. 

Step 3’ sends the “No” signal from Condition j (Stopping criteria) to Condition a in Figure 6. 
Stage one and Stage two should be executed for each cluster in the flying-time window. This 

approach provides a set of sub-missions for each cluster in each flying-time window. Sum of all the 
sub-missions in all clusters in a flying-time window equals to the total number of sub-missions made 
for that flying-time window. As the output of the solution in it provides sets of sub-missions for each 
flying-time window. 

4.4. The Method to Find Sequences of Sub-Mission Deliveries, which Give the Maximum Customer 
Satisfaction  

Given data are: a set of flying-time windows: 𝐹𝑆 ,𝐹𝐸 , set of clusters 𝐶𝐿 , = 𝑁 , , 𝐸 ,  and the set 
𝑆 , = {𝑆 , , , … , 𝑆 , , } of admissible sub-missions for each cluster in each flying-time window. 

Question: How to find the sequence of sub-mission deliveries that maximize the customer demand 
fulfilment? 

All sets of possible sequences of sub-missions are searched using brute-force search for small 
instances where networks, having less than 15 customer nodes. For large instances, the depth-first 
iterative-deepening (DFID) algorithm is proposed to find admissible missions which gives the 
highest customer satisfaction because it does not have the drawbacks of most of the other searching 
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algorithms [42,43]. Since DFID expands all nodes to a given depth before expanding any nodes to a 
greater depth, it is guaranteed to find an asymptotically optimal solution [42]. 

5. Numerical Example, Results and Discussion 

5.1 Numerical Example and Results 

The objective of the study is to find an admissible sequence of sub-missions where customer 
satisfaction is maximized by the end of the time period. Based on the approach for the proposed 
solution it can be seen that the creation of sub-missions is the most critical element because of the 
interdependency analysis of the sub-problems. Hence, in this section, the method for the proposed 
solution for sub-problem 3 is tested using numerical examples to observe the changes in the output 
for the different inputs for the parameters shown in Table 2. All experiments were performed with a 
fleet of UAVs having the characteristics mentioned in Figure 2. The STWs considered consist of 
different lengths where the STW are the outputs of step 1 of the solution. 

For each FTW which falls under a STW, the input parameters for the UAV fleet size, maximum 
carrying payload, the number of customers per route and the maximum energy of the UAV are 
changed to make the sub-missions while all remaining parameters are kept constant. Weather data 
are taken from the actual and forecast weather data from Denmark from 2006 to 2016. Distance data 
is taken from the network shown in Figure 8. All experiments were implemented in Java using 
Netbeans IDE 8.2 (Apache Software Foundation, Oracle Corporation, Las Vegas, USA) and 
conducted on a personal computer with a 2.7 GHz processor and 8 Gb RAM. 

Table 2. Input data for the experiments. 

Input Data Values 
The maximum energy of UAV (𝑃 ) 6000; 12,000 (KJ) 
UAV fleet size (K) 2,3,4,5 
Number of sub-mission time windows 5 
Number of clusters per STW (𝜎) [2,4] 
Number of scenarios per cluster per FTW (¥) [3,5] 
Number of sub-missions per cluster (𝜓) 2 
Number of customers per route (Cn) 1,2,3,4,5 
Distances between nodes (𝑑 , ) Figure 8 
Ground speed (𝑣𝑔 ,

 ) 20 (m/s) 
Length of 𝐹𝑇𝑊  30,60,90,120,150 (minutes) 
Maximum loading capacity of UAV (Q) 12,24 (Kg) 
Empty weight of UAV (ep) 42 Kg 
The demand of the customers (𝐷 ) [80,100] (Kg) 
Time period (𝐻) 12 hours 
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Figure 8. Map with customer locations and network. 

By using the input data, sub-missions are created for each cluster for each flying time window. 
The creation of sub-missions is done by the method proposed in Figure 5. The example of a cluster 
containing five customers (1–5) and an FTW of 20 minutes is considered here to illustrate the creation 
of sub-missions (Figure 9, 10, 11 and 12). 

 
Figure 9. Scenarios assigned to UAVs, which have routes with common edge occupied at different 
times. 
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Figure 10. Scenarios assigned to UAVs with collisions, which are not possible to reschedule. 

Figure 11. Checking the condition h for UAVs by rescheduling the only nR. 
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Figure 12. An illustration showing that adding nR satisfies the collision avoidance constraint. 

For possible sub-missions, which contain a different number of customers per route, the average 
total distance travelled by a sub-mission concerning a different size of the fleet is shown in Figure 13.  

 
Figure 13. Average total distance travelled in km when the number of customers per route and fleet 
size is changing for sub-missions. 

The length of the FTWs regarding the changes in the number of customers per route and the 
UAV fleet size is shown in Figure 14. This data can be used to determine the parameters of fleet size 
and the number of customers per route in different lengths of FTWs. Depending on the length of the 
FTWs, sub-missions having different parameters for fleet size and number of customers per route can 
be used to deliver materials to customers. 
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Figure 14. The average end time of sub-missions in minutes when the number of customers per route 
and fleet size is changing for sub-missions. 

Customer satisfaction levels are shown in Figure 15 for different wind speeds (m/s) for sub-
missions having different fleet sizes and numbers of customers per route. (Cn- number of customers 
per route, K-fleet size). It shows that depending on the wind speed, the number of materials which 
can be delivered to customers is changing for the sub-missions, which consist of various combinations 
of fleet size and numbers of customers per route. 

 
Figure 15. Customer satisfaction levels for the sub-missions created at different wind speeds. 

The customer satisfaction levels are shown in Figure 16 for different wind directions for sub-
missions having different fleet sizes and numbers of customers per route. It shows how the different 
combinations of fleet sizes and numbers of customers per route are changing regarding the changes 
in wind direction for a given wind speed. These results can be used to choose the parameters for sub-
missions depending on the weather conditions in the FTW. 
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Figure 16. Customer satisfaction levels for the sub-missions created for different wind directions and 
with different combinations of fleet size and numbers of customers per route. 

The length of the FTWs regarding the changes in the number of customers per route and the 
UAV fleet size without putting the collision avoidance constraint is shown in Figure 17. This data can 
be used to analyze the increased percentage of the length of FTWs in comparison with the scenarios 
where the collision avoidance constraints are considered. 

 
Figure 17. The increased percentage of length of FTWs because of collision avoidance. 

The obtained flight mission for the first, second and last FTWs are shown in Figures 18, 19 and 
20. The colored lines (blue line, orange line and purple line) are corresponding to the routes of the 
UAVs and the customers’ satisfaction levels are shown for each FTW where by the last FTW it shows 
that all the customers are fully satisfied by the output.  
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Figure 18. Obtained flight-mission plan for the first FTW. 

 
Figure 19. Obtained flight-mission plan for the second FTW. 

 
Figure 20. Obtained flight-mission plan for the last FTW. 

Based on the experiment results, sub-missions having different combinations of fleet size and 
numbers of customers per route could be used to deliver similar amounts of customer demands. 
However, depending on the length of FTWs different sub-missions can be chosen to execute the 
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missions. It is observed that the collision avoidance constraint increases the flying time of the sub-
missions and if a different network can be used where there is less crossing between flying corridors, 
then the flying time of sub-missions will be reduced, compared to the current network. Hence, the 
nature of the network influences the results of the creation of sub-missions. Based on the results 
shown in Figure 14, the sub-missions having different parameters for fleet size and numbers of 
customers per route can be used to deliver materials to the customers, depending on the length of 
FTWs. Figures 16 and 17 indicate that different combinations of fleet size and numbers of customers 
per route are changing concerning the changes in wind direction and wind speed. These results can 
be used to choose the parameters for sub-missions depending on the weather conditions in the FTW. 

5.2. Discussion 

Previous studies have first formulated the mission planning problem for a fleet of UAVs as a 
mixed-integer non-linear programming problem, but subsequently approximated it as a mixed-
integer linear programming problem and used Gurobi (Version 6.2, Gurobi GmbH, Berlin, Germany) 
for solving this formulation of the problem [44,45]. Fügenschuh and Müllenstedt [44] consider energy 
limitations of UAVs, but do not consider the effects of weather conditions in deriving the energy 
consumptions and used linear approximations of the energy consumption of UAVs. In the study 
presented in this paper, linear approximations were not used and weather conditions were 
considered when calculating the energy consumption of UAVs. Furthermore, in Radzki et al. [46] the 
problem is formulated as an extension of the VRPTW and is solved in a constraint-programming 
environment (IBM ILOG). Such programming environments could only provide solutions for 
relatively small networks in which the number of UAVs are lower than or equal to 4, and the number 
of customers is lower than or equal to 8 [46]. Thus, in contrast to the existing literature this study 
proposes the first declarative model for the UAV fleet-mission planning problem, which enables 
decision support for UAVs’ fleet-mission planning considering all the influencing aspects together. 
These aspects include characteristics of UAVs fleet, characteristics of energy consumption affected 
by the weather conditions, characteristics of the network and customer locations. Furthermore, the 
weight of the UAVs used here exceed these used in existing research (this study uses large UAVs 
with an empty payload weight more than 40 Kgs). As the weight of the UAV is critical in terms of 
energy consumption, it is not reasonable to use linear approximations for energy consumption of 
large UAVs [9]. Thus, this study has used the non-linear models in calculating energy consumption 
while considering weather conditions. This closes a realism gap between current state of research and 
practical execution and, therefore, ensures that the mission plans generated through the proposed 
approach will have a higher degree of realism and therefor a higher likelihood of being executed as 
planned. 

The proposed model can with the UAVs fleet size and characteristics (payload, energy capacity 
etc.) as input, provide the maximum customer satisfaction level, which can be achieved by that fleet 
in the given weather conditions. Furthermore, the presented model can be used by a UAV fleet-
mission planner to give a desired customer satisfaction level as an input and find the required 
number of UAVs to accommodate that desired satisfaction level. In this method, all the customers 
have been given a similar priority when serviced by the fleet of UAVs, but the model can be modified 
if certain customers should be given higher priority than other customers in receiving their goods. 

The proposed method can be used as a decision support tool (Figure 21), which allows one to 
answer questions regarding the analysis (evaluation) of the robustness of the UAV fleet mission plan 
to different influencing parameters of wind speed and direction, UAV fleet size, specifications, 
payload capacity and energy capacity. An example of such a question is: is it possible to find a flight 
mission plan using the given fleet size to deliver the required amount of deliveries to customers 
within a given time period with the given weather forecast? When the answer is positive, the flight 
mission planners can proceed to send the mission plans to air traffic control to get approval for 
execution. When the answer is negative, then the decision-maker can use the proposed method to 
obtain an answer to the question regarding the synthesis of the system parameters (describing the 
network, UAVs fleet, weather conditions), which guarantee to deliver the required amount of 
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material to customers. In other words, it allows one to search for the parameters of the UAV fleet 
(fleet size, UAV capacity, etc.) for which a flight-mission plan meeting specific expectations exists 
(e.g. robustness of the mission plan to provide the maximum possible deliveries in the given weather 
forecast). 

  
Figure 21. Decision support of UAVs fleet mission planning. 

When the answer is positive, the decision-maker can obtain the parameters of the system which 
guarantee to deliver the assumed amount of deliveries to the customers. A negative answer informs 
the decision-maker that it is impossible with the given inputs to find a flight mission plan. The 
conducted simulations of this study have been provided to aerospace companies, as a proposal input 
for a UAV fleet-planning decision support system enabling them to prototype alternative mission 
proposals for execution. Investigations on potential approaches and an offline-based system are 
carried out to ensure that only missions suitable to be sent to flight approval from air traffic control 
[47,48] are accepted and the results of the study will be implemented as a technical tool in the decision 
support systems of aerospace companies. 
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6. Conclusion 

In this paper, a novel decision support-driven approach is presented to solve the complex 
problem of multi-trip fleet mission planning subject to changing weather conditions for a fleet UAVs. 
This problem involves the management of complex characteristics during the process of mission 
planning while considering factors such as weather dependencies, collision avoidance, and 
addressing the non-linear energy consumption behavior of UAVs that is affected by the weather 
conditions and the carrying payload. 

In that context, the main problem can be seen a special case of the vehicle routing and scheduling 
problems, where the final flight plan consists of deliveries to customers that are arranged as a 
sequence of sub-missions. Therefore, the problem considered of UAVs mission planning match that 
of vehicle routing concerning the VRP which is NP-hard. Besides the presented UAVs fleet mission 
planning perspectives, the research scope regards a quite large class of logistics networks that share 
common properties even though they could have certain differences. In other words, besides UAVs 
that could be treated as a goods transport mode, other emerging trends concerning logistics and 
military issues can be modelled. 

The proposed declarative decomposed solution approach offers a reasonable way to solve the 
problem reducing its complexity, and different alternative approaches could be tested in future 
research. The proposed approach leads to feasible solutions based on sufficient conditions that could 
be used as a prototype of a decision support system (DSS) addressing various influencing parameters 
involved in UAVs fleet-mission planning. Each sub-problem can be replaced by different alternatives 
in future research while ensuring the overall feasibility considering interdependency between the 
sub-problems to find optimal solutions. However, in further research, real-life verification of the 
method should be done by reducing the assumptions that have been made in this study, which 
constrain its application. Overall, this study should be used as a starting point for further research of 
online mission planning approaches, where the results of the study can be used to develop an 
interactive DSS that supports on-board UAV fleet-mission planning. 
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