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Abstract: Day-ahead forecasting of solar radiation is essential for grid balancing, real-time unit
dispatching, scheduling and trading in the solar energy utilization system. In order to provide
reliable forecasts of solar radiation, a novel hybrid model is proposed in this study. The hybrid
model consists of two modules: a mesoscale numerical weather prediction model (WRF: Weather
Research and Forecasting) and Kalman filter. However, the Kalman filter is less likely to predict
sudden changes in the forecasting errors. To address this shortcoming, we develop a new framework
to implement a Kalman filter based on the clearness index. The performance of this hybrid model
is evaluated using a one-year dataset of solar radiation taken from a photovoltaic plant located at
Maizuru, Japan and Qinghai, China, respectively. The numerical results reveal that the proposed
hybrid model performs much better in comparison with the WRF-alone forecasts under different
sky conditions. In particular, in the case of clear sky conditions, the hybrid model can improve the
forecasting accuracy by 95.7% and 90.9% in mean bias error (MBE), and 42.2% and 26.8% in root
mean square error (RMSE) for Maizuru and Qinghai sites, respectively.

Keywords: WRF (Weather Research and Forecasting) model; kalman filter; hybrid model; clearness
index; solar radiation forecasting

1. Introduction

The utilization of solar energy has increased several fold in recent years due to the drop in pricing
of the solar panels and the improvement in the solar panel efficiency. However, integrating this large
scale solar yields existing energy supply structures and maximizing the exploitation of such renewable
resources are still significant challenges, due mainly to the fluctuating nature of solar radiation at
Earth’s surface and its high dependence on different atmospheric conditions (e.g., distribution of
humidity and clouds). Accurate solar radiation predictions over several time horizons which are
essential to grid balancing, real-time unit dispatching, scheduling and trading are required.

Intra-hour forecasts can be determined from advection of clouds observed with ground-based
all-sky cameras [1]. The use of a satellite image shows acceptable forecasting skill from 30 min up to
six hours [2,3]. For very short-term solar radiation forecasting, statistical approaches that are based on
the learning process of historical information have been proposed. These approaches can be divided
into two groups, that is, time series and artificial intelligence (AI) based methods. The support vector
machines (SVM), linear regressions, autoregressive moving average (ARMA) and the autoregressive
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integrated moving average (ARIMA) derived from ARMA that belong to the first group have been
widely applied for different applications of solar radiation prediction [4–6]. The AI-based methods,
in combination with historical data at the site, is also frequently employed to predict solar radiation.
Among them, the artificial neural network (ANN) is more popular and robust to respond to sudden
changes dynamically [7]. Al-Alawi and Al-Hinai [8] used it to forecast solar radiation for a target site
and a better result compared to an empirical model has been found. Moreover, Benghanem et al. [9]
have developed six ANN-based models to predict solar radiation, and the results indicate that the
forecasting skill is dependent on sunshine duration and temperature. Recently, ANN and random
forest methods have been used to predict the solar radiation [10]. Torres et al. [11] adopted the deep
neural network (DNN) to predict the global solar radiation in the Netherlands, showing that the DNN
model is much better than the traditional models with low relative RMSE. A long short-term memory
(LSTM) model has also been implemented for predicting day-ahead global horizontal irradiance [12,13].
Specific mathematical equations and detailed information related to statistical approaches have been
summarized by Raza et al. [7].

Day-ahead forecasting usually is vital to grid integration and decision-making in the energy
market. Although Mellit and Pavan [14] proposed a multi-layer perceptron (MLP) model from which
the 24-h forecasts of solar irradiance can be obtained, the accuracy of most of the aforementioned
statistical approaches decreases rapidly with the extension of the forecasting horizon. Thus,
the numerical weather prediction (NWP) model-based approaches become more appropriate and
accurate when the prediction horizon is beyond six hours [15,16]. The approaches based on
NWP models can generate forecasts of wind speed, direction, surface temperature, humidity and
pressure, which can be regarded as indicators for making appropriate strategies. Several NWP
models, for example, the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5) [17] and
Weather Research and Forecasting (WRF) [16,18–20] are widely used in solar radiation prediction.
Lara-Fanego et al. [18] evaluated the reliability of three-day ahead global horizontal irradiance and
direct normal irradiance in southern Spain using the WRF model with a spatial resolution of 3 km.
Later, Diagne et al. [19] adopted the same horizontal resolution to investigate the ability of the WRF
model for forecasting solar radiation at Reunion Island. Both studies show reasonable results that
indicate that the WRF model with relatively high-resolution (3 km) can be a better choice in short-term
prediction of the solar energy field.

The first objective of this study being to obtain better forecasts with very high resolution under
complex terrain conditions, we also employ the WRF as a physical model with the horizontal resolution
of 0.5 km rather than 3 km as in the references, as mentioned earlier. However, merely using
one physical model that certainly has uncertainties due to inaccurate initial/boundary conditions,
simplifications in physics, and numerical approximations [21] might not be able to provide an adequate
numerical prediction. It is addressed in Mejia et al. [20] that combining a model output statistics (MOS)
approach with WRF forecasts can improve the forecasting skill of solar radiation to some extent. Many
existing studies proved that the Kalman filter is much more efficient than the MOS method in the
wind prediction field. Thus, our second objective is to develop a novel hybrid model consisting of the
high-resolution (0.5 km) WRF model and the clearness index-based Kalman filter, in order to provide
day-ahead solar radiation prediction.

Unlike the conventional way of using a Kalman filter [22], we choose the forecasting bias instead
of the variable itself as the state variable [23]. More importantly, in our work, the combination of the
clearness index and Kalman filter, to the best knowledge of the authors, is proposed to forecast solar
radiation for the first time. The clearness index is used to define the different sky conditions (i.e., clear,
cloudy and overcast) and then cluster the forecasts series into three groups to conduct Kalman filter
separately, to overcome the shortage of a Kalman filter, which is the lack of being able to resolve huge
day-to-day changes.

The rest of the paper is organized as follows. Section 2 introduces the model and all the methods
we used in this study. The specific information on study areas and the dataset are stated in Section 3,
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and Section 4 presents the results and discussions. The paper ends with concluding remarks in
Section 5.

2. Model and Methodology

2.1. High-Resolution Physical Model

The latest Advanced Research WRF (ARW) model version 3.9.1, which is a limited-area mesoscale
model based on a fully compressible and non-hydrostatic dynamic core, is chosen to predict day-ahead
surface solar radiation (hourly interval).

The high-resolution model is operated with the WRF Single-Moment 6-class (WSM6) microphysics
parameterization [24], the Kain–Fritsch convective parameterization [25], the Noah land surface model
(LSM) [26], and the planetary boundary layer scheme we selected is the YSU (Yonsei University)
scheme [27]. The specific information of the short- and longwave radiation schemes we have chosen is
discussed in Section 4.1. We re-initialized the WRF model using “cold-start” mode at 6:00 p.m. UTC
each day and each re-initialization runs for 30-h. The outputs during initial 6-h are excluded because
of the consideration of spin-up time. It is worthwhile to note that, in this study, UTC of WRF output is
converted to the local time of the study site, in order to compare with in situ observations conveniently.

2.2. Kalman Filter

The Kalman filter is an estimation algorithm named after Rudolf E Kálmán, which operates
recursively on streams of input data (containing random variations) to produce a statistically optimal
estimate of the underlying system state. It is over 50 years old but is still one of the most essential and
standard data fusion algorithms in use nowadays. The great success of the Kalman filter is due to
its adaptive, recursive, optimal characteristics and small computational requirement. Therefore, it is
widely used in various fields from radar and computer vision to meteorological purposes. Similar to
our previous study [23], the specific set of mathematical equations, which are used to estimate and
remove the errors in the solar radiation forecasts, are described as follows.

In this work, the forecasting bias, rather than the variable itself as used in [28,29], is chosen as the
state variable in the Kalman filter equations. The forecasting bias xt at time t is related to the state at
previous time step t− δt:

xt|t−δt = xt−δt|t−2δt + ηt−δt, (1)

where δt is a time lag, t|t− δt indicates that the value of a variable at time t depends on values at time
t− δt, and η is the white noise that has the variance (σ2

η,t) being uncorrected in time. Due to some of
the unavoidable factors including numerical noises, the lack of accuracy in the description of sub-grid
physical processes and complex geographic conditions, the Kalman filter algorithm further assumes
that the forecast error yt could be stated as follows:

yt = xt + εt = xt|t−δt + ηt + εt, (2)

where εt is normally distributed with zero-mean and variance σ2
ε,t.

Following the idea of Kalman [30], xt can be written as a combination of the previous predicted
bias and the previous forecast error with a parameter of Kalman gain (Gt):

x̂t+δt|t = x̂t|t−δt + Gt(yt − x̂t|t−δt), (3)

Gt =
pt−δt + σ2

η,t

pt−δt + σ2
η,t + σ2

ε,t
, (4)

pt = (pt−δt + σ2
η,t)(1− Gt), (5)
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where the hat (ˆ) notation indicates the estimation of the variable, and p is the expected mean square
error. Given a reasonable initial guess of p0 and G0, this Kalman filter will quickly converge. The time
lag δt of 24-h is used in this study. In addition, the estimation of two white noises σ2

η,t and σ2
ε,t is

crucial to the implementation of the Kalman filter procedure. The detailed information can be found in
Appendix A of Delle Monache et al. [31].

2.3. The Clearness Index Based Kalman Filter

In general, the Kalman filter is implemented on a time-sequence of forecasts to reduce the
systematical and random forecasting errors. As mentioned earlier, however, Kalman filter is not
able to handle substantial day-to-day changes in the forecasting error. For the sake of improving the
performance of the Kalman filter for day-ahead solar prediction, a new framework of implementing
Kalman filter is proposed in this study based on the clearness index. It is a dimensionless number
between 0 and 1, which is usually used to measure the clearness of the atmosphere, and is defined as
the surface radiation divided by the horizontal extraterrestrial radiation,

Kt =
∑i=1

24h I
H0

, (6)

where I and H0 stand for the solar radiation (hourly) and the extraterrestrial horizontal radiation per
day, respectively. H0 is the horizontal insolation without any atmosphere effects and usually calculated
for specific sites from the following formulation [32],

H0 =
24× 3600Gsc

π
(1 + 0.033 cos

360n
365

)× (cos φ cos δ sin ωs +
πωs

180
sin φ sin δ), (7)

where Gsc is the solar constant (1367 W/m2), n is the day of the year, φ is the latitude of the location in
degree, δ is the declination angle in degree and ωs is the sunset hour angle in degree. The horizontal
extraterrestrial radiation H0 is a function of the day of year and latitude. Thus, the H0 at two target
sites (i.e., Maizuru and Qinghai) in Japan and China for all years can be easily obtained (Figure 1) and
then used to calculate clearness index that is used to define the sky conditions in this study.

Figure 1. The extraterrestrial horizontal radiation H0 (W/m2) series for two sites.

We choose the clearness index defined in Equation (6) to rearrange the time-sequences of
forecasts and observations to three new kinds of data series that might have similar forecasting
error characteristics, in order to conduct a Kalman filter efficiently. To be specific, three kinds of sky
conditions, i.e., clear (Kt > 0.65), cloudy (0.4 ≤ Kt ≤ 0.65) and complete overcast (Kt < 0.4), are
defined firstly based on the values of the clearness index. Then, we implement the Kalman filter on
three new data series under different sky conditions. Such a framework for implementing the Kalman
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filter in solar radiation forecasting, to the best knowledge of the authors, is proposed for the first
time. We compare the performance of the clearness index-based Kalman filter against the results of
merely implementing the Kalman filter to the time-sequence of forecasts, WRF raw forecasts and the
corresponding observed data in Section 4.

2.4. System Overview

We summarize the hybrid day-ahead solar radiation forecasting model described in Figure 2.
The procedure mainly involves two steps, that is, the solar radiation from WRFv3.9.1 model given the
best configuration of radiation schemes and the implementing Kalman filter considering the clearness
index. In order to validate whether the forecasts from the novel hybrid model can be improved,
a controlled experiment is conducted as displayed in Figure 2:

• KF_TS: Implementing Kalman filter on the time-sequence of forecasts.
• KF_Kt: Implementing the clearness index based Kalman filter on three rearranged forecasts data

series stated in Section 2.3.

The total length of the sequence of forecasts is 12 months and the proportions of the three
rearranged data series are mentioned in Section 4.2. Two weeks are chosen as a training period for
implementing the Kalman filter properly for both cases.

Figure 2. A schematic diagram of the hybrid system of forecasting day-ahead solar radiation.

3. Study Area, Dataset and Evaluation Metrics

3.1. WRF Domain Configuration

Two entirely different study areas (as shown in Figure 3) are involved in this study to validate
the forecasting ability of the proposed hybrid model, as summarized in Figure 2. One is the area that
covers the site of Maizuru located in the middle of Japan; the other one is located in Qinghai, China.

The WRF domain configuration follows the steps recommended by Warner [33]. For the Maizuru
site, it consists of a parent domain and two nested domains with horizontal resolutions of 6.0 km,
1.5 km and 0.5 km, respectively, in order to obtain high-resolution predictions. For the Qinghai site,
there are four domains with horizontal resolutions of 12.5 km, 4.5 km, 1.5 km, and 0.5 km, respectively.
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The resolutions of the parent domains for both sites are based on GFS (Global Forecast System)
real-time forecasts.

(a)

(b)

Figure 3. Domain configurations of the WRF (Weather Research and Forecasting) model for Qinghai
(a) and Maizuru (b) sites in Japan and China, respectively. This image is taken from Google Earth.

3.2. Dataset

GFS real-time forecasts are chosen as initial/boundary conditions for the high-resolution WRF
model. The horizontal resolution is 0.25 × 0.25 degrees for the Maizuru site while 0.5 × 0.5 degrees for
the Qinghai site. The study periods are also different, i.e., 31 December 2017 to 31 December 2018 and
31 December 2016 to 31 December 2017 for Maizuru and Qinghai sites, respectively.

Numerical results of the present study are evaluated based on ground data of solar radiation
collected at two radiometric stations (35.5N, 135.4E; 36.4N, 95.2E), which are all in the centre of our
study regions. The data quality has been controlled using the method introduced in [34]. The length of
the observed data series adopted in the study is the same as the WRF simulation period.

3.3. Evaluation Metrics

To evaluate the proposed hybrid model quantitatively, the following set of statistical metrics
are used.

Mean bias error (MBE):

MBE =
1
N

N

∑
i=1

( f orei − obsi), (8)

where i is the time point and N is the total number of verification time points. f ore and obs represent
the forecasts and observations, respectively.

Mean absolute error (MAE):

MAE =
1
N

N

∑
i=1
| f orei − obsi|, (9)

Root mean square error (RMSE):

RMSE =

√√√√√ N
∑

i=1
( f orei − obsi)2

N
. (10)
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Normalized root mean square error (nRMSE):

nRMSE =

√
1
N ∑N

i=1( f orei − obsi)2

Max{obs} −Min{obs} . (11)

4. Results and Discusstion

In this section, we have firstly tuned the WRF model for the solar radiation prediction in two target
regions via a set of sensitivity tests of radiation parameterization schemes. Then, the overall results of
the comparison between the raw WRF solar radiation forecasts and the corresponding observations
are presented based on the statistical parameters described in Section 3.3. Finally, the performances
of KF_TS and KF_Kt for improving the raw solar radiation forecasts of the WRF-alone model have
been investigated.

4.1. Sensitivity Experiments of Radiation Schemes

Solar radiation is one of the most critical drivers to planetary boundary layer dynamics. There
are a couple of short- and longwave schemes to handle the surface downward short- and longwave
radiation for the ground heat budget in the current WRF model. The impact of different schemes
on surface solar radiation prediction in winter and summer is needed to understand given a target
region. The setup of the numerical experiments for inter-comparison of shortwave parameterization
schemes is summarized in Table 1. The longwave scheme we adopt in this test is the Rapid Radiative
Transfer Model (RRTM) [35]. Two-week in January and July is chosen to represent winter and summer,
respectively, with consideration of relatively limited computation resources.

Table 1. Shortwave schemes included in the sensitivity analysis.

Experiment Short Wave Scheme

Dudhia Dudhia scheme [36]
Goddard Goddard shortwave scheme [37]
CAM_SW Community Atmospheric Model [38]
RRTMG_SW Rapid Radiative Transfer Model for general circulation model [39]
New_Goddard New Goddard shortwave scheme [40]

Figure 4 illustrates the variations of the predicted solar radiation from the five sets of experiments
with different shortwave parameterization schemes, referred to as Dudhia, Goddard, CAM_SW,
RRTMG_SW, and New_Goddard. It is easy to find that outputs of the WRF model underestimate the
solar radiation in winter while overestimate it in summer for the Maizuru site. Opposite phenomena
can be found for the Qinghai site. Among five shortwave schemes, the case of RRTMG_SW has
the smallest normalized standard deviation (NSD) in both winter and summer for the Maizuru site.
For the Qinghai site, the case of Dudhia has the smallest NSD and the most considerable correlation.
In addition, we have also examined the impact of longwave parameterization schemes; however, no
significant difference has been found. Thus, the RRTM longwave scheme is adopted for both two sites;
the schemes of the RRTMG shortwave and Dudhia shortwave are chosen for Maizuru and Qinghai
sites, respectively.
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Figure 4. Taylor diagrams for Maizuru (left) and Qinghai (right) sites. The diagrams show normalized
standard derivations and correlations of solar radiation forecasts for five experiments referred to
observations (REF) in winter (January) and summer (July). The number of samples for each experiment
is 336.

4.2. WRF-Alone Forecasts of Solar Radiation

With proper configurations of the WRF model, a 12-month time series of the solar radiation
forecasts are generated for two sites, respectively. The forecasting skills of WRF model have been
verified with observed data. Figure 5a,c depict the comparison of diurnal variations (over one-year) of
predicted and observed solar radiation for the Maizuru and Qinghai sites, respectively. It is observed
that the WRF raw forecasts of solar radiation can capture well the pattern of the corresponding
observations for both sites. Overestimations of WRF forecasts have been found.

(a) (b)

( )c ( )d

Maizuru Maizuru

Qinghai Qinghai

Figure 5. The 12-month mean solar radiation (W/m2) series from 12:00 a.m. to 11:00 p.m. (a) and the
monthly averaged series of 2018 solar radiation (b) for the Maizuru site; (c) and (d) display similar
results but for the Qinghai site in 2017. Note that the time mentioned is local time. The marked black
and red lines stand for forecasts and the corresponding observations, respectively.
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The monthly variations of predicted and observed solar radiation are plotted in Figure 5b,d for
the Maizuru and Qinghai sites, respectively. From Figure 5b, we can find slight overestimation for
each month except for July. Similarly, the forecasts of the Qinghai site also meet the observed data well
and have overestimations for most of the months.

Furthermore, the forecasting ability of WRF model under different sky conditions (defined in
Section 2.3) is investigated, and the results are summarized in Table 2. Note that the statistical
performance of hourly solar radiation forecasts under different sky conditions is calculated based on
their occurrence frequency in the whole year, which is displayed in the second row of Table 2.

Table 2 reveals that the WRF model can predict well the solar radiation for all three sky conditions
since the relatively small values of MBE and RMSE can be obtained for both Maizuru and Qinghai sites.
It is also observed that the nRMSE of the whole time series (denoted by “All-year”) reaches a relatively
small value of 0.2 and 0.1 for Maizuru and Qinghai sites, respectively. Considering all the above
results, we may conclude that the WRF model has a relatively high ability of forecasting short-term
solar radiation while there are slight differences among different sky conditions and different locations.
Such differences can also be found in Figure 6.

Table 2. Performance statistics of hourly WRF (Weather Research and Forecasting) raw forecasts of
solar radiation (W/m2) under different sky conditions from 1 January to 31 December 2018 for the
Maizuru site, and from 1 January to 31 December 2017 for the Qinghai site, respectively.

Site Parameters Clear-Day Cloudy-Day Overcast-Day All-Year

Frequency of occurrence 57% 17% 26% —
MBE 124.7 47.1 −18.1 70.4

Maizuru MAE 145.8 116.2 62.9 117.4
RMSE 247.6 210.3 130.0 213.3
nRMSE 0.2 0.2 0.2 0.2

Frequency of occurrence 41% 39% 20% —
MBE 89.9 0.33 −1.1 24.9

Qinghai MAE 113.7 161.9 132.8 96.1
RMSE 204.7 298.7 251.2 181.1
nRMSE 0.2 0.3 0.23 0.1

A period of five-day forecasts of the Maizuru site is chosen as an example to show the different
performances under three sky conditions. It is also used to explain the reason that we conduct the
clearness index-based Kalman filter for the sake of improving the raw forecasts. Figure 6a–c show
comparative forecasts of solar radiation (hourly interval) for clear, cloudy and overcast sky conditions,
respectively. It can be found that the forecasting patterns under clear sky conditions are very similar.
Relatively large variation has been observed in WRF forecasts of solar radiation as well as observations
under cloudy sky conditions (Figure 6b). In addition, it can be observed in Figure 6c that the values of
solar radiation forecasts are much smaller than the values under the clear and cloudy sky conditions.
Such a significant difference in forecasting errors among three kinds of sky conditions might limit the
performance of KF_TS for improving the forecasting accuracy. In other words, searching analogues
using the clearness index will enhance the role of the Kalman filter in reducing forecasting errors.
In the following sections, the performance of the Kalman filter on time-sequence (KF_TS) and clearness
index-based Kalman filter (KF_Kt) are discussed.
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(a)

(b)

c)(

Figure 6. The solar radiation (W/m2) series over five days of clear (a), cloudy (b) and overcast (c)
sky conditions for the Maizuru site. The solid black and dotted red lines stand for forecasts and the
corresponding observations, respectively.

4.3. Kalman Filtered Forecasts of Solar Radiation

Having confirmed the forecasting ability of the WRF model for the solar radiation prediction,
we further apply the Kalman filter to improve the raw prediction. This section is concluded with an
analysis of the advantages of KF_Kt with respect to KF_TS.

4.3.1. KF_TS Forecasts

The statistics of MBE, MAE, RMSE, and nRMSE are listed in Table 3 to quantitatively assess the
effects of applying the Kalman filter on the time-sequence of forecasts, in comparison with the WRF
raw forecasts. It is worthwhile to point out that the values in the second and fourth rows of Table 3 are
slightly different with the values in the last column of Table 2. The reason is that we excluded two-week
period data from the original data series for training the Kalman filter. Examining the third row of
Table 3, the positive value of MBE is observed. It indicates that the KF_TS forecasts of solar radiation
are still overestimated for the Maizuru site; however, compared to the raw predictions, the MBE of
KF_TS is reduced by 80.2%. The value of RMSE of KF_TS forecasts is much smaller compared to raw
estimates, with a relative error reduction of 22.9%. Similarly, for the Qinghai site, smaller MBE value of
KF_TS indicates that conducting the Kalman filter on a time-sequence has reduced part of systematic
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errors in the raw forecasts. Consistent with MBE, MAE, RMSE, and nRMSE of raw forecasts are all
improved to some extent.

Given these results, we can affirm that KF_TS can provide apparent improvement in the situation
where the raw forecast presents large errors.

Table 3. Performance statistics of hourly WRF raw and KF_TS forecasts of solar radiation, respectively.

Site Case MBE (W/m2) MAE (W/m2) RMSE (W/m2) nRMSE

Maizuru Raw 70.2 117.3 213.8 0.21
KF_TS 13.9 87.9 164.8 0.17

Qinghai Raw 27.1 97.6 183.4 0.08
KF_TS −10.0 79.4 158.1 0.06

4.3.2. KF_Kt Forecasts

The comparison of the WRF model and KF_Kt forecasts of solar radiation under clear sky
conditions is plotted in Figure 7. It presents hourly WRF raw forecasts (black line) and observed solar
radiation at the target site (red line) as well as the KF_Kt predictions (blue line) for a period of 14
days. It is observed from Figure 7a that the WRF model demonstrates the capability of predicting the
day-ahead solar radiation at the Maizuru site. Nevertheless, the KF_Kt can improve the raw prediction
of the WRF model significantly, with reductions of MBE by 90.1% and RMSE by 43.4%. As expected,
from Figure 7b, we also can see the positive impact of KF_Kt on the WRF raw solar prediction for the
Qinghai site.

(a)

(b) Qinghai

Maizuru

Figure 7. The solar radiation (W/m2) series over 14 days under clear sky condition for Maizuru (a) and
Qinghai sites (b). The solid black, blue and dotted red lines stand for WRF raw forecasts, KF_Kt
forecasts and the corresponding observations, respectively.
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Based on the above discussions, we can primarily conclude that KF_TS and KF_Kt both can make
the performance of WRF raw forecasts better. To help to illustrate the priority between those two,
the comparison of MBE and RMSE under three sky conditions for both ways of conducting the Kalman
filter, are plotted in Figures 8 and 9.

Figure 8a depicts the MBE of the KF_TS and KF_Kt forecast concerning the WRF raw prediction
for three sky conditions at the Maizuru site. It can be easily found that the WRF model overestimates
the solar radiation under clear and cloudy sky conditions while it underestimates the solar radiation
of an overcast day. The most massive MBE value of raw forecasts is found for clear sky conditions
(124.8 W/m2), followed by the cloudy day. Both the KF_TS and KF_Kt can mainly alleviate the
systematic error tendency in the raw forecasts of the solar radiation. In the case of clear sky conditions,
the reduction of MBE from the KF_TS correction around 54.5%, while that of the KF_Kt is 95.7%, which
indicates that KF_Kt performs significantly better than KF_TS under clear sky conditions in removing
the systematical errors. Nearly the same positive effects for both KF_TS and KF_Kt can be found for
cloudy sky conditions. Note that the Kalman filter without considering the clearness index hardly
corrects the systematical errors of solar radiation forecasts under overcast sky conditions.

Figure 8b displays the results of RMSE for the Maizuru site. Similar to MBE, the largest value of
RMSE (247.6 W/m2) and meanwhile the smallest value (130.0 W/m2) are found for clear and overcast
sky conditions, respectively. As expected, for clear sky conditions, the KF_Kt reduces RMSE by 42.2%,
which is more significant compared to that of KF_TS forecasts (23.4%). The improvements in RMSE of
both KF_TS and KF_Kt are around 12.0% for the cloudy days. KF_Kt can improve the RMSE under
overcast sky conditions by 3.2%; however, a decrease of 7.1% can be found for KF_TS. This means
that neither Kalman filter nor clearness index-based Kalman filter can improve the day-ahead solar
radiation largely under overcast conditions, due maybe to the complexity of WRF outputs.

(a) (b)

M
B

E

Figure 8. A comparison of the MBE (a) and RMSE (b) of KF_TS (solid gray bar) and KF_Kt (solid white
bar) predictions with respect to the raw WRF predictions (solid black bar) for three sky conditions.
The marked lines stand for the relative improvement of the KF_TS (red) and KF_Kt (black) against the
raw forecasts of the WRF model at the Maizuru site.

The characteristics of MBE and RMSE for the Qinghai site are summarized in Figure 9.
The significant advantage of KF_Kt against KF_TS for reducing the systematical errors can be found in
Figure 9a. The corrections of MBE by KF_Kt are all around 90% for three sky conditions. As in the
case of MBE, RMSE (Figure 9b) of KF_Kt are consistently much smaller than KF_TS under different
sky conditions.
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(a) (b)
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Figure 9. The same as in Figure 8, but for the Qinghai site.

Overall, although the forecasting errors of solar radiation can be reduced by using both KF_TS
and KF_Kt, the impact of the latter is much more apparent for both sites, especially the site of Qinghai.
This might indicate that the clearness index-based Kalman filter can overcome the shortcomings to
some extent when the Kalman filter resolves the data series with substantial day-to-day changes.

5. Conclusions

In the present work, we have established a novel hybrid model for day-ahead solar radiation
prediction, based on the mesoscale meteorological WRF model and the clearness index-based Kalman
filter post-processing procedure. The hybrid model has been validated at two study sites, i.e., Maizuru
and Qinghai, in Japan and China, respectively.

The WRFv3.9.1 model, with a high horizontal resolution of 0.5 km × 0.5 km, is chosen.
A sensitivity test of the radiation parameterization schemes was firstly conducted to tune the WRF
model for solar radiation forecasts. Based on the results of sensitivity tests, the RRTM longwave
scheme is adopted for both sites; the schemes of RRTMG shortwave and Dudhia shortwave are chosen
for Maizuru and Qinghai sites, respectively.

Then, the forecasting ability of the WRF model for solar radiation has been validated at two sites.
The results indicate that the WRF model has a relatively high ability of forecasting short-term solar
radiation, though there are differences among different sky conditions and different locations.

For the sake of improving the raw WRF forecasts of solar radiation, the KF_Kt is conducted,
and the result was compared with the corresponding observations, as well as the results of KF_TS.
The KF_Kt is able to largely improve MBE by around 80% and RMSE by 20% in day-ahead solar
radiation under clear and cloudy sky conditions at the Maizuru site. The performance of KF_Kt is
better at the Qinghai site than the Maizuru site. The result also shows the notable advantage of KF_KT
against KF_TS for both sites. A relatively small impact of KF_KT under overcast conditions can be
found at both study sites.

The hybrid solar radiation model proposed in this present work can be expected as an effective
tool for day-ahead operational control for any target sites. It also indicates some new directions worthy
of further investigations, for example, development of a more reliable approach which is able to search
and group the solar radiation forecasts with similar characteristics of forecasting errors.
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Abbreviations

The following abbreviations are used in this manuscript:

NWP Numerical weather prediction
WRF Weather research and forecasting
GFS Global forecasting system
MBE Mean bias error
MAE Mean absolute error
RMSE Root mean square error
nRMSE Normalized root mean square error
UTC Coordinated universal time
MOS Model output statistics
LSTM Long short-term memory

References

1. Peng, Z.; Yu, D.; Huang, D.; Heiser, J.; Yoo, S.; Kalb, P. 3D cloud detection and tracking system for solar
forecast using multiple sky imagers. Sol. Energy 2015, 118, 496–519. [CrossRef]

2. Hammer, A.; Heinemann, D.; Lorenz, E.; Lückehe, B. Short-term forecasting of solar radiation: A statistical
approach using satellite data. Sol. Energy 1999, 67, 139–150. [CrossRef]

3. Diagne, M.; David, M.; Lauret, P.; Boland, J.; Schmutz, N. Review of solar irradiance forecasting methods
and a proposition for small-scale insular grids. Renew. Sustain. Energy Rev. 2013, 27, 65–76. [CrossRef]

4. Olatomiwa, L.; Mekhilef, S.; Shamshirband, S.; Mohammadi, K.; Petković, D.; Sudheer, C. A support vector
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