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Featured Application: This work can be used in many fields, such as robot navigation, intelligent
video monitoring, industrial detection, etc.

Abstract: The attention mechanism plays a crucial role in the human visual experience. In the cognitive
neuroscience community, the receptive field size of visual cortical neurons is regulated by the additive
effect of feature-selective and spatial attention. We propose a novel architectural unit called a
“Feature-selective and Spatial Receptive Fields” (FSRF) block that implements adaptive receptive
field sizes of neurons through the additive effects of feature-selective and spatial attention. We show
that FSRF blocks can be inserted into the architecture of existing convolutional neural networks to
form an FSRF network architecture, and test its generalization capabilities on different datasets.

Keywords: attention mechanism; additive effect; feature-selective and spatial attention; convolutional
neural network

1. Introduction

In recent years, the field of computer vision has undergone tremendous changes, with deep
learning becoming a powerful tool. Owing to its data-driven nature and the availability of massively
parallel computing, deep neural networks have achieved state-of-the-art results in most areas, and
researchers have designed many advanced network architectures [1–12]. The ImageNet competition
champion AlexNet [8] was the first to apply convolutional neural networks (CNNs) to a deep
network. Subsequently, more deep neural network architectures have been proposed, such as
VGGNet [1], GoogLeNet [2], ResNet [6], WideResNet [7], ResNeXt [9], Xception [10], MobileNet [11],
and DenseNet [12]. Many other visual recognition algorithms [13–22] have been inspired by these
designs, notably [1,2,6,8]. With improvements in detection accuracy and real-time performance, the
object detection algorithm based on deep learning has gradually developed into two types: the
two-stage approach and one-stage approach. The one-stage approach [19–22] incorporates training
and detection in a network and solves object detection as a regression problem. Compared with
the two-stage approach [13,16–18], the one-stage approach has a better real-time performance while
maintaining better detection accuracy.

In addition to deep learning and object detection methods, previous research has studied the
importance of attention [23–25]. We focus on the interaction between feature-selective and spatial
attention and the impact on receptive fields (RFs). The classical RF (CRF) of neurons in the V1 region
was discussed in [26]. Researchers have proposed that in such a visual zone as the V4 region, attention
should be paid to the effects of neuronal discharge rates in two ways [27]. One is the input gating model.
In this model, the RF of the mediators in the theory corresponds to the stimulus that is noted or ignored
in the field of view. Another theory is the neuronal strobing model, which states that neurons in the V4
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region themselves have enhanced and inhibited effects on attention. In addition, Nelson et al. [28]
found that stimulation outside the CRF also affected neuronal responses. [29–32] report important
interactions between feature-selective and spatial attention, and each type of attention enhances the
effect of another type of attention. Moreover, SKNet [33] propose Selective Kernel Networks with a
Selective Kernel convolution, to aggregate information from multiple kernels to realize the adaptive RF
sizes of neurons in a nonlinear approach. However, SKNet [33] may be insufficient to provide neurons
with powerful adaptation ability.

In this paper, we propose a novel architectural unit called a “Feature-selective and Spatial Receptive
Fields” (FSRF) block that implements adaptive RF sizes of neurons through the additive effects of
feature-selective and spatial attention. To achieve this, we use a set of operators in the FSRF block:
Multi-branch Convolution, Fuse, and Interactions between Feature-selective and Spatial Attention.
The Multi-branch Convolution generates multiple paths corresponding to different RF sizes. The
Fuse operator combines information from multiple paths to obtain a global weight representation.
The Interactions between Feature-selective and Spatial Attention operator aggregates feature maps
of different RF sizes according to the additive effects of feature-selective and spatial attention. The
structure of the FSRF block is simple and can be used directly in the state-of-the-art architectures
currently available. Besides, the problem of fast objects recognition is also very important in monitoring
the electromagnetic environment where signals generated by different types of emitters (radars,
jammers) are in many situations noisy, misshaped or changing in relation to the weather condition,
task and application, thus the FSRF network (FSRFNet) may also be directly applied in recognition
and identification emitter signals [34–37].

Main contributions of this work are summarized as follows: (1) We propose a simple and effective
attention block (FSRF) that can be widely applied to boost representation power of CNNs; (2) We
validate the effectiveness of the FSRF block through extensive ablation studies; (3) We demonstrate that
the FSRFNet outperforms previous state-of-the-art models on datasets of different sizes, and successfully
embed an FSRF block into lightweight models (e.g., ShuffleNetV2 [38] and MobileNetV2 [39]).

2. Related Work

2.1. Deeper Architectures

Convolutional neural networks (CNNs) exhibit excellent performance when dealing with visual
tasks owing to their rich characterization capabilities [8,40]. In visual research, well-designed network
architectures can significantly improve performance in a variety of applications. Increasing the depth
of the neural network is a simple and effective design method in neural network design. VGGNet [1]
and GoogLeNet [2] show that increasing the depth of the network can significantly improve the ability
of model learning representation. However, as the network becomes increasingly deeper, gradient
propagation becomes more difficult. Batch normalization [3] improves the stability of the network while
learning by adjusting the distribution of each layer of input in the network. By using a well-designed
multi-branch architecture, inception models [2–5] enable a more flexible convolutional combination
and improve the network’s feature learning capabilities. Further improvements have been achieved.
Firstly, in order to alleviate the problem of gradient disappearance caused by increasing network depth,
ResNet [6] proposes an identity-based skip connection, which makes it possible to achieve a better
learning ability in deeper networks. WideResNet [7] shows that using more channels and a wider
convolution in the network model can improve performance. ResNeXt [9] and Xception [10] prove
that grouped convolutions can improve the accuracy of classification. MobileNet [11] uses depthwise
separable convolutions to enable the network to be applied on mobile terminals. Finally, DenseNet [12]
is a densely connected network architecture proposed by Huang et al., which provides maximum
information transmission between layers in the network.
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2.2. Attention Mechanisms

Evidence from the human perception process [23] illustrates the importance of the attention
mechanism. Attention is generally divided into two types: top-down conscious attention and bottom-up
unconscious attention. It is worth noting that the mechanism uses top-down information to guide
the bottom-up feed-forward process, which biases the distribution of the most informative feature
expressions while suppressing the less useful [41–43]. Attention is the ability to focus perception on a
stimulus while ignoring other potential stimuli. It has proven to be one of the most interesting areas of
research in cognitive neuroscience. The benefits of the attention mechanism have been demonstrated
in many tasks, including neuro-machine translation [44], image subtitles [45], and lip reading [46]. In
order to enhance the performance of image classification, some researchers have introduced attention
mechanisms into their network models [33,47,48]. In Brad Motter’s neurophysiological study of
attention in macaque monkeys [49], all regions of the visual cortex showed a greater sensitivity to
attention when the target stimulus was presented with competing stimuli, compared to the condition
when the target stimulus was presented alone. Another study of macaques similarly found that
attention regulated sensory responses in areas V2 and V4 primarily when two or more simultaneous
stimuli competed for access to a neuron’s receptive field; no such effect was observed when only a
single stimulus was inside the receptive field [50]. An fMRI study found that selective attention in
humans modulates neural activity in the visual cortex through top-down biasing signals [48]. When a
monkey or a person is asked to pay attention to a particular area of space, corresponding increases in
neural activity can be observed in V1, V2, and V4 [49–51]. Such activation enhancement is described as
a “gain” of the sensory process [52] or as an increase in neuronal sensitivity. [29–32] show that there is
a small but significant interaction between feature-selective and spatial attention. Recent research [53]
suggests that feature-based attention operates in a spatially global manner throughout the field of
view, and that the spatial focus of attention should be carefully controlled to maximize the global
feature-based attention effect.

3. Feature-selective and Spatial Receptive Fields (FSRF) Blocks

In order to implement adaptive receptive field (RF) sizes of neurons through the additive effects of
feature-selective and spatial attention, we propose a novel architectural unit called a “Feature-selective
and Spatial Receptive Fields” (FSRF) block. The structure of the FSRF block is depicted in Figure 1. We
implement the FSRF block via three operations: Multi-branch Convolution, Fuse, and Interactions
between Feature-selective and Spatial Attention.
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3.1. Multi-Branch Convolution

The goal of using multi-branch convolution is to provide various filters for multiple branches,
ultimately aggregating more informative and multifarious features. For any given feature map X ∈
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RH′×W′×C′ , firstly we conduct two transformations Ftr: X→ U ∈ RH×W×C and F̃tr: X→ Ũ ∈ RH×W×C .
Note that Ftr and F̃tr are composed of efficient convolutions, with batch normalization and ReLU
functioning in sequence. A 3 × 3 convolution kernel is used in the transformation Ftr, and a 5 × 5
convolution kernel is used in the transformation F̃tr. H, W, and C denote the height, width, and number
of channels of the feature map, respectively. Let Wc = [w1, w2, . . . , wc] and Oc = [o1, o2, . . . , oc] denote
the learned set of 3 × 3 and 5 × 5 convolution kernels, where Wc and Oc refers to the parameters
of the corresponding c-th convolution kernel. We can then write the outputs of Ftr and F̃tr as
Uc = [u1, u2, . . . , uc] and Ũc = [ũ1, ũ2, . . . , ũc], where

uc = wc ∗X =
C′∑

s=1

ws
c ∗ xs, ũc = oc ∗X =

C′∑
s=1

os
c ∗ xs (1)

Here ∗ denotes convolution, wc =
[
ws

1, ws
2, . . . , ws

c

]
, oc =

[
os

1, os
2, . . . , os

c

]
and X =

[
x1, x2, . . . , xC′

]
.

ws
c and os

c is a 2D spatial kernel representing a single channel of wc and oc, respectively.

3.2. Fuse

Our goal is to enable neurons to adaptively adjust their RF sizes through the additive effects of
feature-selective and spatial attention. The basic idea is to use two gates from the average and max
channel (AMC) and average and max spatial (AMS) attention building blocks to control the flow of
multiple branches carrying different scales of information into neurons in the next layer. We first
combine the results of multiple branches (such as the two shown in Figure 1) by summing the elements,
as follows:

U = U + Ũ (2)

We then input the feature map obtained from the previous step into the AMC and AMS attention
building blocks, and flexibly select different information-space scales under the guidance of compact
feature descriptors.

The structure of the AMC attention building block is depicted in Figure 2. The AMC attention
building block generates a channel attention map by using the inter-channel relationship of features.
To compute the channel attention efficiently, we squeeze the spatial dimension of the input feature
map into a channel descriptor by using global average pooling and global max pooling. We describe
the detailed operation below.
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The preprocessed feature map U passes through two branches of the AMC attention building
block. The first branch uses global average pooling to generate channel-wise statistics. Finally, a
statistic z ∈ RC is generated by shrinking U through its spatial dimensions H ×W, such that the c-th
element of z is calculated by:

zc = Fga(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (3)

where Fga(uc) indicates the global average pooling operator.
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Further, in order to take advantage of the information aggregated in the global average pooling,
we then conduct a second operation, the purpose of which is to make full use of the dependencies
between different feature maps. In order to achieve this effect, we use a dimensionality-reduction
layer with parameters T1 and reduction ratio r, a ReLU layer, and a dimensionality-increasing layer
with parameters T2. The fully connected layers are used in the dimensionality-reduction layer and
dimensionality-increasing layer. The average attention of the channel is computed as:

s = Fex(zc, T) = T2δ(T1z) (4)

where δ refers to the ReLU function, T1 ∈ R
C
r ×C, and T2 ∈ RC×C

r .
The second branch uses global max pooling to generate channel-wise statistics. A statistic z̃ ∈ RC

is generated by shrinking U through its spatial dimensions H ×W, such that the c-th element of z̃ is
calculated by:

z̃c = Fgm(uc) = max

 H∑
i=1

W∑
j=1

uc(i, j)

 (5)

where Fgm(uc) indicates the global average pooling operator.
Additionally, we conduct a second operation in order to take advantage of the information

aggregated in the global max pooling, the purpose of which, as with the first branch, is to make full
use of the dependencies between different feature maps. The maximum attention of the channel is
computed as:

s̃ = Fex (̃z, T) = T2δ(T1z̃) (6)

Finally, a multiplication activation function is used to process the feature information of the two
branch outputs:

s = Fadd(s, s̃) = s + s̃ (7)

where s ∈ RC. The Fadd(s, s̃) indicates the channel-wise summation between s and s̃.
The structure of the AMS attention building block is depicted in Figure 3. The role of the AMS

attention building block is to produce a spatial attention map by exploiting the inter-spatial relationship
of features. we first apply global average pooling and global max pooling operations along the channel
axis to generate an efficient feature descriptor, respectively, and then concatenate the previous two
feature maps together. Based on the concatenated feature descriptors, we use a convolution layer to
generate a spatial attention map. In order to use the spatial attention map by gated operation, we apply
a convolution layer with c channels and a global average pooling operation after the last convolution
layer. We describe the detailed operation below.
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For a preprocessed feature map U, firstly we conduct two transformations Hmean:
U→ V ∈ RH×W×1 and Hmax: U→ Ṽ ∈ RH×W×1 . These are connected together to create the spatial
attention map M′ ∈ RH×W×2:

M′ = cat
(
V, Ṽ

)
= cat(Hmean(U), Hmax(U)) (8)
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The map is then convoluted by a 7 × 7 filter to produce a 2D spatial attention map M′′
∈ RH×W :

M′′ = F7×7(cat(Hmean(U), Hmax(U))) (9)

The 2D spatial attention map generated in the previous step, then resulting in a multidimensional
spatial attention map M ∈ RH×W×C:

M = F1×1
(
F7×7(cat(Hmean(U), Hmax(U)))

)
(10)

where F1×1 represents a convolution operation with the filter size of 1× 1, F7×7 represents a convolution
operation with the filter size of 7 × 7, and ‘cat’ denotes the concatenate function. Hmean(U) and
Hmax(U) refer to global average pooling and global max pooling operations along the corresponding
channel axis.

We then use global average pooling to generate channel-wise statistics. A statistic n ∈ RC is
generated by shrinking M through its spatial dimensions H ×W, such that the c-th element of n is
calculated by:

nc = Fga(mc) =
1

H ×W

H∑
i=1

W∑
j=1

mc(i, j) (11)

3.3. Interactions between Feature-selective and Spatial Attention

In order to take advantage of the information aggregated in the AMC and AMS attention building
blocks, we conduct a soft attention across channels that achieves interactions between feature-selective
and spatial attention. Firstly, a SoftMax operator is applied on the channel-wise digits at the output of
the AMC building block:

ac =
eAcs

eAcs + eBcs
, bc =

eBcs

eAcs + eBcs
(12)

Similarly, a SoftMax operator is applied on the channel-wise digits at the output of the AMS
building block:

cc =
eJcn

eJcn + eKcn
, dc =

eKcn

eJcn + eKcn
(13)

where A, B, J, K ∈ RC×C
r , a and c denote the vector for U, and b and d denote the vector for Ũ. Note that

ac is the c-th element of a and Ac ∈ R1×C
r is the c-th row of A; likewise for bc, Bc, cc, Jc, dc and Kc.

A simple sigmoid operator is applied on the channel-wise digits at the output of the AMC
building block:

ec = σ(sc) (14)

Similarly, a simple sigmoid operator is applied on the channel-wise digits at the output of the
AMS building block:

fc = σ(nc) (15)

The feature maps Y, Ŷ and Ỹ are obtained by rescaling the transformation output U, U and Ũ with
the activations:

Yc = Fmul(uc, ac, cc) = uc · ac · cc

Ŷc = Fmul(uc, ec, fc) = uc · ec · fc
Ỹc = Fmul(ũc, bc, dc) = ũc · bc · dc

(16)

where Y =
[
Y1, Y2, . . . , Yc

]
, Yc ∈ RH×W and likewise for Ŷ and Ỹ. Fmul(uc, ac, cc) refers to channel-wise

multiplication between the scalar ac, cc and the feature map uc, and likewise for Fmul(uc, ec, fc) and
Fmul(ũc, bc, dc). The final feature map Y is obtained by the element-wise summation of the vectors Y, Ŷ
and Ỹ:

Yc = Y + Ŷ + Ỹ = uc · ac · cc + uc · ec · fc + ũc · bc · dc, ac + bc = 1, cc + dc = 1 (17)
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where Y = [Y1, Y2, . . . , Yc], Yc ∈ RH×W .

3.4. Instantiation

The FSRF block can be integrated into a standard architecture such as ResNet [6] with a non-linear
insertion after each convolution. In addition, the flexibility of the FSRF block means that it can be
applied directly to conversions beyond standard convolution.

Here, FSRF blocks are used with residual modules. By making this change to each such module
in the architecture, we can obtain an FSRF-ResNet network. Figure 4 depicts the schema of an
FSRF-ResNet module. Further variants that integrate FSRF blocks with ResNeXt [9], ShuffleNetV2 [38],
and MobileNetV2 [39] can be constructed by following similar schemes, as discussed below.
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4. Network Architecture

An FSRF network (FSRFNet) can be constructed by simply stacking a set of FSRF blocks. For
concrete examples of FSRFNet architectures, a detailed description of FSRF-50 is presented in Table 1.
It is recommended that FSRFNet consists primarily of a bunch of duplicate bottlenecks called “FSRF
units,” in a similar fashion to ResNeXt [9]. Each FSRF unit consists of a series of 1× 1 convolutions,
FSRF blocks, and further 1× 1 convolutions. In ResNeXt [9], large kernel convolutions in all original
bottleneck blocks are replaced by the proposed FSRF blocks. FSRF-50 uses {3, 4, 6, 3} FSRF units. Table 1
shows a 50-layer FSRFNet-50 architecture with four phases, using {3, 4, 6, 3} FSRF units. Different
architectures can be obtained by changing the number of FSRF units per stage.
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Table 1. Network architecture based on the ResNeXt-50 backbone.

Output ResNeXt-50 (32× 4d) SENet-50 SKNet-50 FSRFNet-50

112× 112 conv, 7× 7, 64, stride 2
112× 112 max pool, 3× 3, stride 2

56× 56

 1× 1, 128
3× 3, 128, G = 32

1× 1, 256

× 3


1× 1, 128

3× 3, 128, G = 32
1× 1, 256

f c, [16, 256]

× 3


1× 1, 128

SK
[

M = 2, G = 32,
r = 16

]
, 128

1× 1, 256

× 3


1× 1, 128

FSRF
[

M = 2, G = 32,
r = 16

]
, 128

1× 1, 512

×
3

28× 28

 1× 1, 256
3× 3, 256, G = 32

1× 1, 512

× 4


1× 1, 256

3× 3, 256, G = 32
1× 1, 512

f c, [32, 512]

× 4


1× 1, 256

SK
[

M = 2, G = 32,
r = 16

]
, 256

1× 1, 512

× 4


1× 1, 256

FSRF
[

M = 2, G = 32,
r = 16

]
, 256

1× 1, 512

×
4

14× 14

 1× 1, 512
3× 3, 512, G = 32

1× 1, 1024

× 6


1× 1, 512

3× 3, 512, G = 32
1× 1, 1024

f c, [64, 1024]

× 6


1× 1, 512

SK
[

M = 2, G = 32,
r = 16

]
, 512

1× 1, 1024

× 6


1× 1, 512

FSRF
[

M = 2, G = 32,
r = 16

]
, 512

1× 1, 1028

×
6

7× 7

 1× 1, 1024
3× 3, 1024, G = 32

1× 1, 2048

× 3


1× 1, 1024

3× 3, 1024, G = 32
1× 1, 2048

f c, [128, 2048]

× 3


1× 1, 1024

SK
[

M = 2, G = 32,
r = 16

]
, 1024

1× 1, 2048

×
3


1× 1, 1024

FSRF
[

M = 2, G = 32,
r = 16

]
, 1024

1× 1, 2048

×
3

1× 1 global average, 1000− d fc, soft max

* The four columns show the architectures of ResNeXt-50 with a 32×4d template, SENet-50, SKNet-50, and
FSRFNet-50. Filter sizes and feature dimensionalities of a residual block are shown inside the brackets; the number
of stacked blocks for each stage is shown outside the brackets.

In the FSRF units of the FSRF-50, the reduction ratio of the number of parameters in the control
fuse operator determines the final setting of the FSRF block. There are two important hyperparameters
that determine this final setting: the group number G that controls the cardinality of each path and
the reduction ratio r of the number of parameters in the control fuse operator. In Table 1, we set the
reduction ratio r = 16 and cardinality G = 32.

5. Experiments

In this section, we conduct experiments to study the effectiveness of the FSRF block in a range of
tasks, datasets, and model architectures. To benchmark, we compare single crop top-1 performance on
datasets of different sizes.

5.1. Tiny ImageNet Classification

Tiny ImageNet [54] has 200 classes. Each class has 500 training images, 50 validation images, and
50 test images. We train the network on the training set and report the top-1 errors on the validation set.
For data enhancement, we follow standard practices and perform random size cropping to 224 × 224
and random horizontal flipping [2]. We use synchronous SGD with a momentum of 0.9, a mini-batch
size of 32, and a weight decay of 1 × 10−4. The initial learning rate is set to 0.5 and decreased by
a factor of 10 every 30 epochs. All models are trained for 100 epochs from scratch on one GPU,
using the weight initialization strategy in [55]. We first compare FSRFNet-50 and FSRFNet-101 with a
publicly competitive model of similar complexity. The results show that the FSRF block is consistent in
improving the performance of state-of-the-art attention-based CNNs.

We begin by comparing FSRFNets to the public competitive models with different depths. Table 2
and Figure 5 show the comparison results on the Tiny ImageNet [54] validation set. As the illustrations
show, FSRFNet-50 and FSRFNet-101 improve the performance of state-of-the-art attention-based
network models at different depths compared to models of similar complexity. FSRFNet-50 and
FSRFNet-101 achieve performance improvements of 5.1% and 5.5% over ResNeXt-50 and ResNeXt-101,
respectively. In addition, FSRFNet-50 and FSRFNet-101 achieve performance increases of 2.9% and
3.7% compared to SENet-50 and SENet-101, respectively. We note also that gains of 1.5% and 1.7% can
be obtained for FSRFNet-50 and FSRFNet-101, compared to SKNet-50 and SKNet-101, respectively.
Surprisingly, FSRFNet-50 is not only 1.27% higher than the absolute accuracy of ResNeXt-101, but the
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parameters and calculations of FSRFNet-50 are 22% and 27% smaller than ResNeXt-101, respectively,
which demonstrates the superiority of the additive effects of feature-selective and spatial attention.

Table 2. Single 224 × 224 cropped top-1 error rates (%) on the Tiny ImageNet validation set and
complexity comparisons. SENet, SKNet, and FSRFNet are all based on the corresponding ResNeXt
backbones. The definition of FLOPs follows [56], i.e., the number of floating-point multiplication-adds.
and #P denotes the number of parameters.

Models #P GFLOPs Top-1 Err. (%)

ResNeXt-50 (our impl.) 25.7M 4.36 36.12
ResNeXt-101 (our impl.) 45.3M 8.07 35.54
SENet-50 (our impl.) 28.6M 4.51 35.31
SENet-101 (our impl.) 49.7M 8.13 34.87
SKNet-50 (our impl.) 28.1M 4.78 34.79
SKNet-101 (our impl.) 49.2M 8.45 34.16
FSRFNet-50 (ours) 35.5M 5.86 34.27
FSRFNet-101 (ours) 56.8M 11.32 33.58
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We plot the top-1 error rate of the proposed ResNeXt-50, ResNeXt-101, SENet-50, SENet-101
SKNet-50, SKNet-101, FSRFNet-50 and FSRFNet-101 with respect to the number of parameters in the
Figure 5. we can also find that FSRFNets utilizes parameters more efficiently than these models. For
instance, FSRFNet-50 outperforms ResNeXt-50 by achieving ∼34.3 top-1 error with similar model
complexity. Remarkably, FSRFNet-50 achieves ∼20.2 top-1 error, although SENet-101 and SKNeXt-101
is 40.0% and 38.6% larger in parameter.

Additionally, we choose the representative compact architecture of ShuffleNetV2 [38] and
MobileNetV2 [39], which represents one of the strongest lightweight models, to evaluate the
generalization capabilities of FSRF blocks. For comparison, SE, SK and FSRF blocks are embedded
in ShuffleNetV2 [38] and MobileNetV2 [39]. Similar to [56], the number of channels in each block is
scaled to generate networks of different complexities, marked as 0.5×, 0.75×, and 1×.

By exploring the different scale models in Tables 3 and 4, we can observe that FSRF blocks
improve the accuracy based on ShuffleNetV2 [38] and MobileNetV2 [39] baselines. From Figures 6
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and 7, we can also see that FSRF blocks perform well compared to the ShuffleNetV2 [38] and
MobileNetV2 [39] baseline models based on SENet and SKNet, respectively. The results show that
ShuffleNetV2_1.0 ×+ FSRF performs well at ∼35.6 top-1 error level with comparable complexity
than ShuffleNetV2_1.0×, ShuffleNetV2_1.0 ×+ SE and ShuffleNetV2_1.0 ×+ SK. Notably, we note
that MobileNetV2_0.75×+ FSRF outperforms MobileNetV2_1.0× by above 0.66% accuracy, although
MobileNetV2_1.0× is 25.7% larger in parameter.

Table 3. Single 224 × 224 cropped top-1 error rates (%) on the Tiny ImageNet validation set and
complexity comparisons, with all models based on the corresponding ShuffleNetV2.

ShuffleNetV2 #P MFLOPs top-1 err. (%)

0.5× (our impl.) 1.47M 37.62 47.82
0.5×+SE(our impl.) 1.59M 36.25 46.51
0.5×+SK(our impl.) 1.54M 38.78 45.01
0.5×+FSRF(ours) 1.87M 40.41 43.33
1.0× (our impl.) 2.35M 142.35 40.17
1.0×+SE(our impl.) 2.72M 140.93 38.64
1.0×+SK(our impl.) 2.67M 143.66 37.41
1.0×+FSRF(ours) 3.23M 144.57 35.62

Table 4. Single 224 × 224 cropped top-1 error rates (%) on the Tiny ImageNet validation set and
complexity comparisons, with all models based on the corresponding MobileNetV2.

MobileNetV2 #P GFLOPs top-1 err. (%)

0.75× (our impl.) 1.61M 0.22 41.31
0.75×+SE(our impl.) 7.35M 1.61 40.68
0.75×+SK(our impl.) 8.01M 2.13 39.83
0.75×+FSRF(ours) 8.89M 2.85 39.07
1.0× (our impl.) 2.48M 0.31 39.73
1.0×+SE(our impl.) 12.63M 2.67 39.22
1.0×+SK(our impl.) 13.52M 3.54 38.43
1.0×+FSRF(ours) 14.76M 4.36 37.65
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5.2. CIFAR Classification

To further evaluate the performance of FSRFNets, we conduct experiments on CIFAR-10 and
CIFAR-100 [57]. The CIFAR-10 [57] dataset consists of 60,000 32× 32 color images in 10 classes, with
6000 images per class. There are 50,000 training images and 10,000 test images. The CIFAR-100 [57]
dataset resembles the CIFAR-10 [57], except that it has 100 classes containing 600 images each. There
are 500 training images and 100 testing images per class. The 100 classes in the CIFAR-100 [57] are
grouped into 20 superclasses. Each image comes with a “fine” label (the class to which it belongs) and
a “coarse” label (the superclass to which it belongs).

We use the same approach as above to integrate FSRF blocks into several popular baseline
frameworks (ResNeXt-29 [9], ShuffleNetV2 [38], and MobileNetV2 [39]). Each baseline and its FSRFNet
counterpart were trained using standard data enhancement strategies [58,59]. During the training
process, the image is flipped horizontally, filled with four pixels on each side, and then randomly
32× 32 cropped. We report the performance of each baseline and its FSRFNet counterpart on CIFAR-10
and CIFAR-100 [57] in Tables 5 and 6. From the results, we can find that FSRFNets outperform
the baseline architectures in every comparison, suggesting that the benefits of FSRF blocks are not
confined to the Tiny ImageNet [54] dataset. Remarkably, FSRFNet-29 outperforms ResNeXt-29,
16×64d by above absolute 0.21% accuracy, and almost halves the number of parameters, which is
extremely efficient. For Lightweight models, we compare FSRF blocks with the ShuffleNetV2 [38] and
MobileNetV2 [39] baseline models based on SE blocks and SK blocks. ShuffleNetV2_0.5×+ FSRF and
ShuffleNetV2_1.0×+ FSRF achieve better performance than other models with corresponding scaling.

Table 5. Top-1 errors (%) on CIFAR, with all models based on the corresponding ShuffleNetV2.

ShuffleNetV2 CIFAR-10 CIFAR-100

0.5× (our impl.) 6.98 39.31
0.5×+SE(our impl.) 6.73 37.87
0.5×+SK(our impl.) 6.61 36.38
0.5×+FSRF(ours) 6.46 34.64
1.0× (our impl.) 6.29 33.24
1.0×+SE(our impl.) 6.17 32.32
1.0×+SK(our impl.) 5.93 30.71
1.0×+FSRF(ours) 5.85 29.68
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Table 6. Top-1 errors (%) on CIFAR, with SENet-29, SKNet-29, and FSRFNet-29 all based on ResNeXt-29,
16 × 32d.

Models #P CIFAR-10 CIFAR-100

ResNeXt− 29, 16× 32d(our impl.) 24.5M 5.74 28.75
ResNeXt− 29, 8× 64d(our impl.) 32.9M 5.58 28.37
ResNeXt− 29, 16× 64d(our impl.) 66.7M 5.47 27.99
SENet− 29(our impl.) 34.1M 5.63 28.42
SKNet− 29(our impl.) 26.8M 5.42 27.68
FSRFNet− 29(ours) 29.6M 5.26 27.51

5.3. Visualization with Grad-CAM

To intuitively understand the adaptive RF sizes of neurons through the additive effects of
feature-selective and spatial attention of FSRFNet, we use the Grad-CAM method [60] to visualize the
class activation mapping (CAM) of SKNet-50 and our proposed FSRFNet-50 backbone networks. In the
visualization examples shown in Figure 8, the areas with light colors indicate that the current area has
great influence on the classification result. SKNet achieves good results in multi-scale information
selection. However, Since FSRFNet has stronger ability to adaptively select the appropriate convolution
kernel size, the FSRFNet has activation maps that tend to cover the whole object. Finally, compared
with SKNet, our FSRFNet has a better class activation maps.
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6. Conclusions

In this paper, inspired by the additive effect of feature-selective and spatial attention on the
receptive field sizes of the visual cortex neurons, we constructed the Feature-selective and Spatial
Receptive (FSRF) block and inserted it into existing convolutional architecture to form the FSRFNet
architecture. The FSRF block is implemented via three operations: Multi-branch Convolution, Fuse,
and Interactions between Feature-selective and Spatial Attention. Fuse combines the results of multiple
branches with different kernel sizes, and constructs attention building blocks (average and max channel;
and average and max spatial), on which SoftMax and sigmoid operators are applied. Numerous
experiments have demonstrated the effectiveness of FSRFNet from large models to small models and
from large datasets to small datasets, including various benchmarks.
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