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Abstract: The conflict resolution problem in cooperative unmanned aerial vehicle (UAV) clusters
sharing a three-dimensional airspace with increasing air traffic density is very important. This paper
innovatively solves this problem by employing the complex network (CN) algorithm. The proposed
approach allows a UAV to perform only one maneuver—that of the flight level change. The novel UAV
conflict resolution is divided into two steps, corresponding to the key node selection (KS) algorithm
based on the node contraction method and the sense selection (SS) algorithm based on an objective
function. The efficiency of the cooperative multi-UAV collision avoidance (CA) system improved a
lot due to the simple two-step collision avoidance logic. The paper compares the difference between
random selection and the use of the node contraction method to select key nodes. Experiments
showed that using the node contraction method to select key nodes can make the collision avoidance
effect of UAVs better. The CA maneuver was validated with quantitative simulation experiments,
demonstrating advantages such as minimal cost when considering the robustness of the global
traffic situation, as well as significant real-time and high efficiency. The CN algorithm requires
a relatively small computing time that renders the approach highly suitable for solving real-life
operational situations.

Keywords: Multi-UAV; collision avoidance; complex network; key nodes; robustness; connected
component

1. Introduction

Collision is an inherent problem in unmanned aerial vehicle (UAV) systems [1–6]. Path planning
is important in performing different tasks. Therefore, the demand for the collision avoidance (CA) of
UAVs has emerged. With increasing UAV cluster densities, it has become more difficult to perform
multi-UAV collaborative tasks, especially if collision avoidance requirement cannot be met. Therefore,
the effective planning of flight trajectories and collision avoidance among UAV flight trajectories has
become critical in UAV clusters for safe and smooth operation [7].

Various conflict detection and resolution (CDR) theories with different techniques have been
proposed to solve this problem. In conventional aviation, several widely used CA systems exist.
For example, the traffic alert and CA system (TCAS) is recognized worldwide as an airborne collision
avoidance system, and it is the last line of the CDR approach. Technological development has enabled
the increase in air traffic density to be mitigated [8,9]. Many studies regarding UAV collision avoidance
have been performed in recent years [10–12]. CDR and the optimization of different resolutions
have been discussed widely by many researchers and practitioners. These methods can be classified
into two primary types of algorithms: Geometric and path planning. Geometric algorithms focus
on analyzing the relationship between UAVs and intruders within a specific space to implement
passive CA operations. Meanwhile, path planning algorithms focus on obtaining a path for an optimal
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connection between the start and end points with minimal security constraints [13–15]. Dimensionality,
direction selection, the number of participants, and resolutions are four key elements that should be
considered for a UAV’s CDR. A detailed summary of publications regarding the different methods of
CA is provided in Table 1.

Geometric algorithms exploit state information such as the location, velocity, and the heading
of UAVs and intruders to geometrically perform the CA operation. Park, Oh, and Tahk (2008) [16]
demonstrated a typical example of this approach, in which a single resolution maneuvering logic
called ‘vector sharing resolution’ was proposed. This method calculates the subtraction of two UAVs’
movement vectors in a two-dimensional space and adjusts the trajectories of the UAVs based on the
shortest distance vector obtained. Another instant of this method can be found in [17] by Chakravarthy
et al. In contrast, this paper solves the problem of obstacles being irregular objects. A collision cone
approach is employed by which the irregularly shaped moving objects can be modelled through general
quadric surfaces and dynamic inversion-based avoidance strategies can be derived. The limitations of
this type of method is the need for information from the intruder UAV, as well as sensitivity to noise
from the input data of the sensors.

Path planning algorithms include sampling-based, artificial heuristic, numerical optimization,
and decoupled path planning approaches. Each method exhibits its own strength over others in
certain aspects. The philosophy of sampling-based approaches is transforming the path-planning
problem to obtain a suitable problem from a limited quantity of candidates that is a continuous
state space. Lin and Saripalli (2017) [18] presented a method based on the closed-loop rapidly
exploring random tree algorithm and three variations of it. Artificial heuristic approaches are
highly advantageous during the optimization process, and typical methods include the genetic
algorithm [19], particle swarm optimization [20], and artificial bee colony optimization [21]. Numerical
optimization approaches rely on some geometric trajectory calculations and aim to obtain an optimal
path with respect to a specific objective in the solution sense. The relevant methods include mixed
integer linear programming [22], nonlinear programming [23], Dynamic programming [24], quadratic
programming [25], and Pontryagin’s minimum principle [26]. In decoupled path planning approaches,
the basic principle involves obtaining an optimal trajectory under the specific constraints in the first
phase; subsequently, the trajectory has to be steered out of the dangerous region. The A*(A-Star) search
algorithm was applied to obtain a solution in [27]. The Coronoid graph can be used to generate an
initial path that can be subsequently refined by curve fitting with curvature and other constrains [28].
The concepts of space–time reachability of aircraft and space–time potential conflict space were
proposed in [29] to consider the uncertainty of the pilot intent. The conflict resolution problem was
modeled as a constraint optimization problem in [30,31]. Based on the Single European Sky Air Traffic
Management Research and Next Generation Air Transportation System initiatives, [32] proposed a
new separation management service to shift the centralized air traffic control interventions to more
efficient decentralized tactical operations based on a surrounding traffic analysis tool.

The rapid development of real-time communication technology has made real-time communication
between UAVs possible. Therefore, this paper was able to consider using the real-time information of
UAV to prevent collision. It is a great idea to use a complex network to analyze the nature of a system.
Networks are everywhere, including the internet, electric power grids, supply chains, urban road
networks, and the world trade web [33]. The work already done has mainly been about preventing
networks from being destroyed [33]. The collision avoidance network is exactly the opposite of most
networks, and it is necessary to destroy the network as soon as possible. The collision avoidance
based on a complex network (CACN) model grounds the generation of optimal direction changes
of the objective function, which integrates the number of intruder UAVs of designated direction,
the robustness of the network, and the connected components of the network. The CACN strategy can
reduce the domino effect to a certain extent thus improve computational consuming time. In particular,
the generated points by the CACN model are recorded and can be further analyzed.
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Table 1. Summary of publications addressing the CDR problem.

Publication

Dimension Maneuvers Multiple Resolution

3D T/V/S/C Pairwise Global

Geometric Algorithm Path Planning Algorithm

CPA CCA
Sampling-Based

Path Planning
Approaches

Artificial Heuristic
Approaches

Numerical
Optimization
Approaches

Decoupled Path
Planning

Approaches

Park, Oh, and Tahk (2008) X C(T,S) X X

Chakravarthy, Animesh, and Ghose (2012) X C(T,V,S) X X

Lin and Saripalli (2017) X C(T,V) X X

Pehlivanoglu (2012) X C(T,V) X X

Karimi and Pourtakdoust (2013) X C(T,V) X X

Xu, Duan and Liu (2010) C(T,V) X X

Campbell, Bragg and Neogi (2013) X C(T,V) X X

Tisdale, Kim and Hedrick (2009) V X X

Jorris and Cobb (2008) C(V,S) X X

Grancharova et al. (2014) X C(T,V,S) X X

Sridhar, Ng and Chen (2011) V X X

Kim, Gu and Postlethwaite (2008) X V X X

Dai and Cocharan (2010) V X X

Hao, Cheng and Zhang (2018) X X

Yang, Yin and Shen. (2018) X X X

Yang et al. (2019) X X

Radanovic et al. (2018) X X X

Note: T = Turns; V = Vertical maneuvers; S = Speed; C() = Combined maneuvers.
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The layout of this paper is as follows. Section 2 describes the CA system architecture; Section 3
illustrates the key node selection algorithm and the sense selection algorithm; Section 4 shows the
simulation experiments and analyzes the experimental results; finally, conclusions and prospects for
future research are summarized in Section 5.

2. The Proposed Collision Avoidance System Architecture

Many algorithms in the collision avoidance system support its operation. The core step of
the system is to process the information of each trajectory input, which is the four-dimensional
(three-dimensional (3D) position + time) information of each UAV, and an analysis on whether any
threat is present in the next time interval. If a threat is detected, the system immediately reacts to
calculate a suitable CA strategy. The instructions are subsequently communicated to each UAV to
synergistically resolve the current threat.

The distributed dynamic optimization approach (DDOA) is used to generate suitable direction
changes for the UAVs such that the problem of CA can be mitigated. The core of this approach
consists of two parts: The conflict detection (CD) module is used to forecast the threats, and the conflict
resolution (CR) module is applied to resolve the detected conflicts. The complex network (CN) aims to
avoid collisions by choosing the suitable UAV and the corresponding UAV with a local optimization
scope. The CN algorithm only allows for one UAV to perform conflict resolution at one time, which is
the principle of DDOA.

3. Core Algorithm Analysis

This section describes the complex network model for UAV collision avoidance system and
the collision avoidance algorithm in detail. The collision avoidance algorithm consists of two parts:
The key node selection algorithm and the collision avoidance direction-selection algorithm.

3.1. Representation of Cooperative UAV Flight and Conflict Detection

The background of the problem is that when large scale UAV clusters meet, it is very likely
that conflicts will occur. For simplicity, weather perturbations are not discussed when analyzing the
trajectories. UAVs share a common airspace in the same or different flight levels, and a UAV cluster
can be considered safe only if the separation between each UAV is larger than the given safety distance.
A sequence of discrete points is used to model the trajectories of the UAV, and speed information can
also be obtained from these discrete tracking points.

Because UAV clusters frequently experience threats, and some threats are regarded as potential
threats, it is more efficient to perform one resolution at a time rather than comprehensively considering
each threat. By constructing a complex network of UAV groups and analyzing the nature of the
network under threat conditions to determine the appropriate CA strategy, the human–machine group
can self-organize CA under the condition of performance constraints, thus significantly improving the
real-time performance and applicability of CA in UAV clusters.

The key node in the complex network theory exhibits important properties [33–36], and it exhibits
the greatest effect on the entire complex network system. The UAV CA algorithm based on the complex
network proposed herein considers the safety indicators of the UAV group system at each moment,
such that the overall safety of the entire flight process is maximized. The CA system consists of
two key algorithms: A key node selection algorithm and a collision direction-selection algorithm.
The algorithm expresses the threat between the UAVs using a complex network. The UAV network
model is established based on three parameters: Flight speed, flight angle, and security zone. In a
real-time communication environment, all UAVs fly toward a given target and must perform CA
operations. Each UAV owns a flight trajectory control module, and the CA resolution calculated by the
CA system interacts with the surrounding UAVs through real-time data links.

The UAV node is used to indicate that the state of the UAV is monitored by the system in real time.
Its attributes are expressed as {UAV, velocity, position, angle, t, state, sense, strength, approaching
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time, time cost, key-node}. The UAV indicates the UAV number, velocity indicates the UAV speed,
position indicates the current position of the UAV, angle indicates UAV flight angle, t indicates the
current time of the UAV, state indicates the UAV flight status, ‘sense’ indicates that the UAV collision
direction is selected, ‘strength’ indicates the change direction of the UAV, ‘approaching time’ indicates
the remaining time of the UAV approaching the nearest point, ‘time cost’ indicates the entire flight
time consumption, and ‘key-node’ indicates whether the UAV was selected as a key node.

To detect collisions, UAVs are identified in the Cartesian system. The motion of each UAV is
driven by the following:

→

Ri(t) =


→
r x,i(t)
→
r y,i(t)
→
r z,i(t)

, Vi(t) =
.
→

Ri(t) =


.
→
r x,i(t).
→
r y,i(t).
→
r z,i(t)

 =

→
v i(t) cosϕt

i cosθt
i

→
v i(t) cosϕt

i sinθt
i

→
v i(t) sinϕt

i

 (1)

In the above formula,
→

Ri(t) and Vi(t) are defined as the position vector and speed vector,
respectively, of UAVi at time t. The foot mark i represent i-th UAV. The subscript indicates the
horizontal axis system and refers to the height. Let θt

i designate the horizontal angle which is the
direction of speed Vi(t) in the x− y plane (counter-clockwise along the x axis). Let ϕt

i represent the
angle of climb, which is the direction of speed Vi(t) in the vertical plane (measured from the x − y
plane, with positive being the upwards direction and negative being the downwards direction).

The maximum climb (tilt) angle, which is determined by the performance of the UAV, is defined
to limit the maximum angle at which the UAV will rise and fall in the vertical plane when performing a
CA mission, thus setting the maximum pitch change angle. The constraint can be expressed as follows:

ϕi,min ≤ ϕi(t) ≤ ϕi,max (2)

The collection of points in the next time step is as follows:

P(i) = {s ∈ V|‖
→

Ri −
→

Rs‖ = v · ∆t;ϕmax = arg sin(|zi − zs|/‖
→

Ri −
→

Rs‖)} (3)

Note that zi and zs are defined as the current attitude of UAVi and the candidate attitude of UAVi
in the next time step, respectively. The symbols v and ∆t refer to the absolute velocity of UAVs and
time interval of each time step, respectively.

When the first pair of UAVs involved in the conflict is detected, each UAV maintains its speed
before the first pair of UAVs reaches the danger point to simplify the conflict situation. To determine if
a threat of conflict exists, the scope and vertical criteria must be met. This time interval is defined as
the time closest to the point of approach (CPA) on the horizontal plane:

Tt
h,i j =

∣∣∣∣∣→r t
h,i −

→
r

t
h, j

∣∣∣∣∣∣∣∣∣∣→v t
h,i −

→
v

t
h, j

∣∣∣∣∣ · cos(αt
i j − β

t
i j)

, (
→
r

t
h,i j ·

→
v

t
h,i j < 0) (4)

αt
i j = arctan(

∣∣∣∣∣→r t
x,i j

∣∣∣∣∣/∣∣∣∣∣→r t
y,i j

∣∣∣∣∣) (5)

βt
i j = arctan(

∣∣∣∣∣→v t
x,i j

∣∣∣∣∣/∣∣∣∣∣→v t
y,i j

∣∣∣∣∣) (6)

The formula defines Tt
h,i j as the time to CPA in the case of a horizontal plane between UAVi and

UAV j at time t. The subscript h indicates the horizontal plane, while i and j indicate the serial numbers
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of the UAVs. The equation is defined on the condition that the denominator is not equal to zero. The
following equation is defined as the time CPA in the case of a vertical plane:

Tt
z,i j =

∣∣∣∣∣→r t
z,i j

∣∣∣∣∣∣∣∣∣∣→v t
z,i j

∣∣∣∣∣ , (
→
r

t
z,i j ·

→
v

t
z,i j < 0) (7)

A traffic alert (TA) event will be triggered if the following conditions are satisfied:

(0 < Tt
h,i j < TTA)∧ (0 < Tt

z,i j < TTA)∧ (D
t+Tt

h,i j

h,i j < DMORRA)∧ (D
t+Tt

h,i j

z,i j < ZTHRRA) (8)

DMORRA and ZTHRRA are the range and altitude limit values for safe aviation, respectively,
in case of the appearance of slow-closure-rate encounters which make the time threshold values not

feasible. D
t+Tt

h,i j

h,i j and D
t+Tt

h,i j

z,i j are the horizontal and vertical distances between UAVi and UAV j at CPA,
respectively. We used the time when the first pair of UAVs triggers a TA alert. From that moment, we
built a network where each UAV is represented as a node. If a pair of nodes collides, the node will
establish a connection. At that moment, all nodes in the system will verify if they are approaching; if
they are approaching each other, the two nodes are connected:

(
→
r

t
h,i j ·

→
v

t
h,i j < 0)∧ (

→
r

t
z,i j ·

→
v

t
z,i j < 0) (9)

In the case of a pair of UAVs, CA is based on the following principles. As shown in Figure 1, UAV1

cruises from the right side to the left side, whereas UAV2 and UAV3 cruise from the left side to the right
side. At this time, UAV1 is selected as the key node. According to the scene at this time, the direction
of the CA direction and the target point at the time of the predicted CPA choosing an upward climb or
a downward climb may be selected. Furthermore, UAV2 and the UAV3 must maintain the minimum
safety altitude-limitation. The specific key node selection methods and direction selection strategies
are discussed later.
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Figure 1. Traffic alert and CA (collision avoidance) system (TCAS) coordination for multi-unmanned
aerial vehicles (UAVs).

3.2. Key Node Selection

The first problem to solve in an encounter is choosing a key UAV to amend its trajectory to avoid
collision. The method proposed herein decides the priority of the UAVs via the analysis of the network
formed in the collision space. The most threatened one is chosen as the key node. Obviously, the UAV
with the higher priority performs collision avoidance operations first.

To clarify, it is necessary to define the collision space. When the system detects a pair of UAVs
exhibiting a collision risk, the system obtains all the possible UAV numbers to be hit in the future
through global data analysis, and then it obtains the status of the corresponding UAV. The airspace
formed by these UAVs is called the collision space. Among them, a connection exists between UAVs
that are at the risk of collision, and a network is formed for analysis. An adjacency matrix is applied
to record the status between the UAVs. The node represents the UAV, and the edge represents the
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relationship between the UAVs. A set is defined to contain the nodes that satisfy the condition.
As shown in Figure 2, the nodes represent the corresponding UAVs.
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After the network is completed, a network description is established to describe the internal
characteristics of the multi-UAV system. The nodes in the network exhibit different properties, because
the position and velocity are different and the degree of threat is different. Thus, the key node can be
chosen according to its properties.

First, the easiest method to measure the degree of threat of the UAVs is by examining the situation
of the connected edges in the network; this is called the key node selecting method based on degree.
To render the network closer to the real scene, it is insufficient to only use the number of edges.
The degree approach requires more detailed information, and the edge is a good choice. The edges
should contain extra properties to monitor the true relationship of the UAVs. The relationship includes
the distance and relative speed between UAVs. The closer a pair of UAVs is to each other, the more
dangerous they are. Therefore, the weight of each side depends on the relative distance and relative
speed between the UAVs, which is defined as the edge weight between the UAVs:

ωi j =

→
υ i j ·

→

d i j∣∣∣∣∣→d i j

∣∣∣∣∣ · ∣∣∣∣∣→d i j

∣∣∣∣∣ (10)

where
→
υ i j is the relative speed of the vector direction, and

→

d i j represent the distance between the UAVs.
This implies that the faster the two UAVs approach each other, the greater is the weight of the edge
between the two UAVs. The degree of importance of each node can be based on the weight of all edges.
The summed value represents the degree of importance of the node.

There are many other methods to rank the importance of nodes [34,37]. Another improved
method based on node contraction [38] proposed herein aims to excavate the deeper threat of the UAV
networks. There are three reasons for using the node contraction method in selecting the key node:
First, the principle of key node selection is to fully exploit the importance of the node, for which the
network cohesion is a good measure. The choice of key nodes is not only related to the current degree,
it is also to the location of the node. If the node is in the fortress position, shrinking the node will
result in a much smaller average path length of the network, resulting in greater network cohesion.
This method to obtain key nodes is consistent with the key node selection requirements of the UAV
group in performing CA operations, i.e., to determine the current and potential threats of the drone
to perform CA. Second, the node contraction method has a shorter calculation time than the node
deletion method and the median method, and it does not exponentially increase when the number
of nodes is small. Finally, the original method of selecting the key nodes has its limitations, and the
changes in the structure of the cluster cannot be detected well. Therefore, this method is not considered
for some structurally important points.
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Notation
Sets:

U = {u1, u2, u3, . . . , un} sets of node representing UAV flying in the air sector under control.
C = {c1, c2, c3, . . . , cn} ⊆ U ×U, sets of edge implying pairs of UAV that are potentially in conflict.

V =
{
→
v 1,
→
v 2,
→
v 3, . . . ,

→
v n

}
⊆ U ×U, sets of relative velocity between UAVs.

G = (U, C), graph representing the complex network of the UAV group.

Matrix:

W = [ωi j] the threat matrix implying the degree of threat between pairs of UAVs.
H = [hi j] the adjacency matrix of graph G.
D = [di j] matrix that store the relative distance between UAVs.

Variables:

l(G): The average distance of graph G.
ui: Node that is chosen to be removed.

First, the UAV group is modelled, the UAV is replaced by a node, and the threatened UAV pairs
are connected. Subsequently, the complex network can be represented by G = (U, C) where G is an
undirected connected graph. We assume n nodes and m edges exist, and we represent n UAVs and m
threats among them, respectively.

The threat coefficient ωi j = vi j/di j shows the degree of threat between UAVi and UAV j, where vi j
represents the projection value of the relative speed between UAVi and UAV j on its relative position,
and di j represents the relative position between UAVi and UAV j.

Definition 1. ωi j is defined as follows:

ωi j =



→
υ i j·
→

d i j∣∣∣∣∣→d i j

∣∣∣∣∣·∣∣∣∣∣→d i j

∣∣∣∣∣ ,
→
υ i j·
→

d i j∣∣∣∣∣→d i j

∣∣∣∣∣·∣∣∣∣∣→d i j

∣∣∣∣∣ > 0

0,
→
υ i j·
→

d i j∣∣∣∣∣→d i j

∣∣∣∣∣·∣∣∣∣∣→d i j

∣∣∣∣∣ > 0
(11)

The adjacency matrix of graph G is represented by H = [hi j]; it contains n rows and n columns. The element
hi j is defined as follows:

hi j =

{
1, 0 < di j < ∞
0, di j = ∞

(12)

The network cohesion is defined below. The degree of network cohesion depends on the connectivity of
each node in the network, calculated using the arithmetic mean of the shortest distance between all pairs of
nodes. The degree of network cohesion is still related to the density of the network; this is because in the UAV
network, the more the number of UAVs, the greater is the threat of the entire network and the greater is the
network cohesion.

The cohesion of graph G is defined as follows:

∂[G] =
ω

n · l
=

∑
i, j∈U

ωi j

n ·

∑
i, j∈U

di j

n(n−1)

=

(n− 1) ·
∑

i, j∈U
ωi j∑

i, j∈U
di j

(13)
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The following equation shows the importance of node ui [38]:

IM(ui) = 1−
∂[G]

∂[G− ui]
= 1−

ωn
n·l(G)
ωn−ki

(n−ki)·l(G−ui)

=
n · l(G) ·ωn−ki − (n− ki) · l(G− ui) ·ωn

n · l(G) ·ωn−ki

(14)

Because l(G − ui) < l(G), ki > 1, ωn < ωn−ki , the following inequality 0 < IM(ui) < 1 can
be achieved.

The algorithm is as follows: [38]:
Input: H, W
Output: IM
Step 1: Calculate the shortest relation distance matrix D = [di j] for all pairs of UAV nodes;
Step 2: Calculate the initial cohesion of the UAV network;
Step 3: Assess the node importance of all UAV nodes.
Step 4: Calculate the network cohesion ∂[G − ui] after the node ui shrinks by calculating the

shortest distance matrix Di and the threat matrix Wi between the node pairs after contraction, thereby
obtaining IM(ui).

As shown in the algorithm steps above, the time complexity of the whole algorithm depends on
the calculation of the shortest distance matrix D between all pairs of nodes after the node shrinks,
because the calculation of the threat matrix Wi only requires the deletion of the nodes around the
current node ui. Because the time complexity of the Floyd algorithm is O(n3), the complexity of the
algorithm will reach O(n4), owing to the need to shrink the operation of each node. The algorithm for
calculating Di given below is based on the initial matrix; the calculation can be completed with a small
number of operations, and the time complexity of the entire algorithm will reduce to O(n3).

The direct distance matrix S = [si j]n×n can be obtained by the adjacency matrix H = [hi j].
At this point, the change law of the shortest distance d′pq relative to dpq between any pair of nodes

(up, uq) ∈ U ×U in the UAV network is as follows:

(1) If up , ui and uq , ui:

1O If dpi + diq = dpq, it is implied that node ui is on the shortest path between node up and
node uq; then, d′pq = dpq − 1;

2O If dpi + diq ≥ dpq + 1, it is implied that node ui is not on the shortest path between node up

and node uq; then d′pq = dpq.

(2) If only one node ui exists between node up and node uq, then d′pq = dpq − 1;

(3) If up = uq = ui, then d′pq = dpq = 0.

3.3. Direction of Collision Avoidance

Most of the CA systems use the upward or downward strategy to avoid collision. The sense
selection can reduce the domino effect. For instance, two new encounters will occur if the key UAV
descends, and three will occur if it climbs. The implementation of airborne CA systems II (ACAS
II) [39] indicates that it is effective and safe to perform resolution in the vertical direction; therefore,
the method of this paper only considered the vertical change in direction. As shown in Figure 3, the key
node direction choosing method was as follows.

To generate a suitable direction for CA, we expect the UAV cluster system to minimize the cost
and to choose the fastest method to reach the target, and we expect the domino effect to be as small as
possible in the CA process. The objective function for direction choosing should include three elements:

(1) The Number of Intruder UAV Designated Directions

Zk(m) =
n∑

i=i

sgn(xk(i)), xk(i) =
{

1, zi > zk
−1, zi ≤ zk

(15)
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(2) Network Robustness
Complex networks rely on their robustness, i.e., the ability of a network to maintain its connectivity

when a fraction of its vertices is damaged, for their function and performance [40]. In the context of
this new conflict model, it is important to improve reliability as much as possible. The robustness of
the edge connection is defined as follows:

Rk(m) = R
( Im

Nm

)
=

Mm

Nm − I
, M =

n∑
i=1

n∑
j=1

ωi j

2
, ωi j =

υi j

di j
(16)

(3) Connected Component of the Network

Ck(m) = C(
Im

Nm
) =

Cm

Nm − Im
(17)

Nm stand for N nodes in the network at time m, Im is the number of nodes that are rejected in the
network at time m, and Cm represents the number of sub-maps of the network.

In summary, the objective function at time m consists of three elements and is represented as
follows:

Ok(m) = ω1Zk(m) +ω2Rk(m) +ω3Ck(m) (18)

In this formula, ω1, ω2, and ω3 are the corresponding weight coefficients of the three indicators.
Different weights satisfy the requirements of different scenarios of CA. For instance, if ω2 < ω3, it is
implied that the connected component is more important than the robustness of the network. It is
noteworthy that a normalization process is required in this computation.
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Assuming that the direction is amended to avoid the collision in the period [m, m + N − 1] and the
corresponding position and pitch angle sequences of UAVk are, respectively,

pk = [pk(m), pk(m + 1), . . . , pk(m + N − 1)]T

ψk = [ψk(m),ψk(m + 1), . . . ,ψk(m + N − 1)]T

the following constraints of the optimization process should be satisfied:

q(ϕk(m + ∆t)) =
[

1
−1

]
(ϕk(m + ∆t) −ϕk(m + ∆t)) −

[
B
−A

]
≤ 0

ek(pk(m + ∆t)) =


xk(m + ∆t) − [xk(m) + vk cos(ϕk(m)) cosθk · ∆t]
yk(m + ∆t) − [yk(m) + vk cos(ϕk(m)) sinθk · ∆t]

zk(m + ∆t) − [zk(m) + vk sinϕk · ∆t]
ϕk(m + ∆t) − [ϕk(m) +ωk(m) · ∆t]

 = 0 (19)
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In the formula above, q(ϕk(m + ∆t)) implies that the direction change should be in the range
of (A,B). ek(pk(m + ∆t)) indicates that the pitch angle at time m + ∆t is determined by the global
information at time m and the constrains of the CA system. By repeating the optimization procedure,
the complete amending trajectory is generated.

The goal of this new model is to decompose the network as quickly as possible. This implies
that after the critical node is cleared, the robustness of the connection and the number of connected
components should be as low as possible. This implies that the UAVs are leaving each other and the
risk of crashes is becoming smaller. Meanwhile, this model also considers the number of intruder
UAVs of the corresponding direction, implying that a lesser domino effect will occur because the
density of the intruder UAV is small due to the sense selected by the model. In the simulation step,
the new model obtains the key nodes and evaluates the robustness of the connections or the number
of connected components when different choices are made by the critical nodes. The key nodes will
select the course of change and form a new network in the next simulation step. The new model will
again select the key node. The model will monitor multiple UAV systems to determine if a TA alert is
present; if the model stops searching for critical nodes, multiple UAV systems will be considered safe.

It is noteworthy that this method is a solution to the deadlock problem. The reasons for solving
the deadlock problem are as follows: During the entire simulation period, the threat detection between
real-time UAVs is performed and the network is built in real time; the key nodes are selected, and the
direction of CA is selected. Therefore, the deadlock problem can be avoided.

The algorithm proposed in this paper has a simple logical structure and strong stability. Decision
calculations consume very little time and meet real-time requirements. The algorithm can be applied
to engineering practice due to the following reasons. Firstly, the method we proposed is designed
from the perspective of scheduling. Our innovation was to abstract the collision avoidance problem of
the UAV to the network’s collapse problem, aiming to solve the collision avoidance problem by using
network theory. Second, the proposed method allows the UAV to perform only one maneuver—that of
the flight level change. This maneuver is used in the traffic collision avoidance system (TCAS), and it is
simple but very effective. As such, it can definitely be applied to the UAV collision avoidance system.
The algorithm is shown below as Algorithm 1.

Algorithm 1 Novel Model Based on Key Node Research

Input: Initial position, target position, initial velocity of the UAVs, the number of UAVs N, the simulation step
length S
Output: Trajectories of all the UAVs R
for j = 1:S do
for i = 1:N do

Calculate whether a TA is issued;
while TA is issued do
Construct the network of the UAVs involved;
Calculate the relative distance and relative velocities of all the involved UAVs;
Select the key node;
Calculate the weight (relevant to the number of intruders, robustness and connected component);
Choose the optimal directions for the key node;
Update the current direction of the key node;
if no collision then
break;
else
R[i][j] = the coordinate of the step j of UAV i;
Calculate the state of all the UAVs involved in the scenario;

if all the UAVs have reach the safe area then
break;

return R;
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4. Simulation and Results

We conducted two different simulation experiments on nine UAV scenarios for two different key
node selection methods. The cruise speed set by the UAVs was 10 m/s. The minimum separation
distance was set to 35 m. The simulation step size was set to 1 s. The pitch angle ranged from −0.785
to 0.785. It was assumed that each UAV can sense the global information and, as such, simulation
calculation time can be ignored. The emulation code was run on a T450 laptop(Lenovo Thinkpad T450
Laptop, Lenovo, Beijing, China) with an Intel i7 processor of 2.6 GHz and 8 GB of RAM.

4.1. A Case Scenario

Figure 4a shows the UAV trajectory under the first key node selecting method, which is barely
based on degree. In this scenario, the first time a TA appears is when UAV1 and UAV9 collide with
each other. After the analysis of the CA system, we discovered that when avoiding the imminent
collision, some potential collisions may occur. Therefore, when the TA issues a warning at 18:15:22
for the first time, the system selects UAV1 as the key node and instructs UAV1 to descend to avoid a
conflict. As the simulation step progresses, UAV1 and UAV9 burst into each other’s collision volumes.
This time, UAV1 becomes the key node, and a climb instruction is sent to UAV1 to avoid collision.
The result in Figure 4b demonstrates the conflict resolution maneuver and that the difference in this
method arises because the key node in the same scenario is different. When selecting the key node
by the node contracting method, the system selects the UAV9 as the key node and instructs UAV9 to
descend to avoid conflict. These UAVs form a decentralized CA situation. This can be explained by the
fact that the robustness of the network in this area has been minimized. The intuitive image is that
three UAVs have spread out and no cross routes have appeared, thus avoiding the domino effect.
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UAV9 1482.76 5739.86 688.48 UAV1 1074.25 5925.74 695.53 

18:15:51 UAV1 1007.33 5992.66 671.60 UAV9 1536.05 5743.02 667.60 

Figure 4. Trajectory (a) with key node selecting based on degree and (b) with key node selecting based
on the node contraction method.

Table 2 summarizes the trajectory of UAV1 and UAV9 (the waypoints are recorded every 4 s for
simplicity) in the same scenario under two different key node selecting methods. The UAV starts to
change its angle at 18:15:23 and returns to the original trajectory at 18:17:23.

From this simulation, the results indicate that the CA system can facilitate the UAV cluster to
effectively avoid collision in both scenarios. The figure illustrates the relative distance of each pair of
UAVs that are involved in a collision scenario involving nine UAVs and four conflicts among them. It
is noteworthy that the distance between UAVi and UAV j is defined by di j. Evidently, the separation of
each pair of UAV is never intruded upon, according to Figure 5. For instance, in Scenario 1, UAV1

encounters UAV6 and UAV9, and the distances between them are always larger than the separation
distance even at the closest point such that the safety flight is guaranteed, and it is the same in
Scenario 2.
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Table 2. Waypoints of partial trajectory.

Scenario 1 Scenario 2

Time ID
Amended Trajectory

ID
Amended Trajectory

X(m) Y(m) Z(m) X(m) Y(m) Z(m)

18:15:19 UAV1 876.27 6123.72 695.67 UAV9 1762.27 5756.46 688.52

18:15:23 UAV1 904.54 6095.45 695.53 UAV9 1722.34 5754.09 688.48

18:15:27 UAV1 919.23 6080.77 692.11 UAV9 1695.73 5752.51 685.49

18:15:31 UAV1 933.91 6066.08 688.69 UAV9 1669.11 5750.93 682.51

18:15:35 UAV1 948.60 6051.40 685.27 UAV9 1642.50 5749.35 679.53

18:15:39 UAV1 963.28 6036.71 681.85 UAV9 1615.89 5747.76 676.55

18:15:43 UAV1 977.97 6022.03 678.43 UAV9 1589.28 5746.18 673.57

18:15:47
UAV1 992.65 6007.34 675.02 UAV9 1562.66 5744.60 670.58
UAV9 1482.76 5739.86 688.48 UAV1 1074.25 5925.74 695.53

18:15:51
UAV1 1007.33 5992.66 671.60 UAV9 1536.05 5743.02 667.60
UAV9 1442.83 5737.48 688.48 UAV1 1102.53 5897.46 695.53

18:15:55
UAV1 1022.02 5977.97 668.18 UAV9 1509.44 5741.44 664.62
UAV9 1402.90 5735.11 688.48 UAV1 1130.81 5869.18 695.53

18:15:59
UAV1 1036.70 5963.29 664.76 UAV9 1482.83 5739.86 661.64
UAV9 1362.97 5732.74 688.48 UAV1 1159.10 5840.89 695.53

18:16:03
UAV1 1051.39 5948.60 661.34 UAV9 1456.21 5738.28 658.66
UAV9 1323.04 5730.37 688.48 UAV1 1187.38 5812.61 695.53

18:16:07
UAV1 1066.07 5933.92 657.92 UAV9 1429.60 5736.70 655.67
UAV9 1283.11 5727.99 688.48 UAV1 1215.67 5784.32 695.53

18:16:11
UAV1 1080.76 5919.23 654.50 UAV9 1402.99 5735.12 652.69
UAV9 1243.18 5725.62 688.46 UAV1 1243.95 5756.04 695.53

18:16:15
UAV1 1105.63 5894.36 653.54 UAV9 1366.39 5732.94 651.91
UAV9 1203.25 5723.25 688.48 UAV1 1272.24 5727.75 695.53

18:16:19 UAV1 1133.90 5866.09 653.43 UAV9 1326.46 5730.57 651.86

18:16:23 UAV1 1162.16 5837.83 653.27 UAV9 1286.54 5728.20 651.82

18:16:27 UAV1 1190.43 5809.56 653.13 UAV9 1246.61 5725.83 651.77

18:16:31 UAV1 1218.70 5781.29 652.99 UAV9 1206.68 5723.45 651.72

18:16:35 UAV1 1233.38 5766.61 656.41 UAV9 1180.07 5721.87 654.70

18:16:39 UAV1 1248.07 5751.92 659.82 UAV9 1153.46 5720.29 657.68

18:16:43 UAV1 1262.75 5737.24 663.24 UAV9 1126.84 5718.71 660.67

18:16:47 UAV1 1277.44 5722.55 666.66 UAV9 1100.23 5717.13 663.65

18:16:51 UAV1 1292.12 5707.87 670.08 UAV9 1073.62 5715.55 666.63

18:16:55 UAV1 1306.81 5693.18 673.50 UAV9 1047.01 5713.97 669.61

18:16:59 UAV1 1321.49 5678.50 676.92 UAV9 1020.39 5712.39 672.59

18:17:03 UAV1 1336.18 5663.81 680.34 UAV9 993.78 5710.80 675.58

18:17:07 UAV1 1350.86 5649.13 683.75 UAV9 967.17 5709.22 678.56

18:17:11 UAV1 1365.55 5634.44 687.17 UAV9 940.56 5707.64 681.54

18:17:15 UAV1 1380.23 5619.76 690.59 UAV9 913.94 5706.06 684.52

18:17:19 UAV1 1394.92 5605.07 694.01 UAV9 887.33 5704.48 687.50

18:17:23 UAV1 1416.39 5583.60 695.65 UAV9 850.73 5702.31 688.21
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From this simulation, the results indicate that the CA system can facilitate the UAV cluster to 
effectively avoid collision in both scenarios. The figure illustrates the relative distance of each pair of 
UAVs that are involved in a collision scenario involving nine UAVs and four conflicts among them. 
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Figure 5. Minimal distance of UAVs for two scenarios.

Because the algorithm implements a single-machine change in direction, when the UAV does not
reach the pre-set CA altitude, the relative distance of the UAV will be reduced slightly; however, it will
not collide because it is at the predicted moment of collision. The UAV has already flown to a safe
altitude; therefore, although a close trend may occur during CA, the UAV can maintain a safe relative
distance in the subsequent flight path.

Figure 6 depicts the situation during the final CA of the UAV group. The connection represents
the potential threat between the UAVs. The connection method is the same as the logic of building the
network. It is related to the relative distance between nodes and the relative speed between the nodes.
The network node can identify key nodes and subsequently select the most appropriate CA direction
according to the network properties.
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We defined a new amount to measure the effect of UAVs when selecting key nodes using different
methods. We defined this amount as the residual threat factor. The meaning of this quantity is the
measure of the sum of threats to the UAVs in a certain area centered on the critical node after a conflict
avoidance maneuver. That is, it evaluates the safety of the UAV in a certain area centered on the point
after performing CA maneuver. Therefore, the threat coefficients of the UAVs in the area are added,
and different key node selections are compared. The residual threat coefficient under the algorithm
compares the advantages and disadvantages of the key node selection method. The residual threat
factor (RTF) can be defined as follows:

RTFt =

N∑
i, j=1

tk
i j

N
(20)

To depict the overall threat during the CA procedure, an average residual threat factor was defined
as follows:

RTF =
trt∑

t∈trt

RTFt, TAt<trt = 0 (21)

Table 3 shows that the RTF of the degree method was 0.0126, while the RTF of the node contraction
method was 0.0093. This implies that the node contraction method has an average threat level lower
than the degree method.
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Table 3. RTF (residual threat factor) of two key node selecting approaches in two scenarios.

Key Node Selecting Approach RTF

Node selection based on degree 0.0126
Node contraction method 0.0093

4.2. Further Investigation

This section discusses the primary results obtained using the CN algorithm based on two different
key node selecting algorithms, as well as those obtained by the randomly chosen key node. It also
reports the statistical comparison between those methods.

To validate the performance of the CN, a set of 500 different scenarios were grouped by the UAV
number, from 24 to 48 within 100 tests. The extra consuming time is a frequently used performance
metric to measure the different performance metrics that are used to measure the different performances
of CA system algorithms.

Figure 7 shows the extra consuming time of the CN algorithm compared with the randomly
selected ‘sense.’
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The simulation result presented herein clearly demonstrates the good performance of the
CN algorithm for solving high-density CA problems, owing to the potential threat being solved
preferentially and reducing the domino conflict. This shows that the wasted time increases if the
number of UAVs increases, because more encounters will occur if more UAVs are cruising in the same
limited airspace. This also shows the extra consuming time increases faster than the UAV density, and
the difference between the extra consuming time under the CN algorithm and the extra consuming
time under the random algorithm increases as the density of the UAV increases. However, while the
key node is chosen randomly, the wasted time is always larger than that of the CN algorithm where
the key node is chosen based on the degree or node contraction methods. Under the middle density
circumstance (90 UAVs), the key node selection method by degree consumes more time than the key
node selecting method by node contraction, because the node contraction method can obtain more
potential threat information and can more accurately. choose the most threatened node The opposite
applies for the high airspace density (more than 100 UAVs), because the airspace is sufficiently clouded
such that the most intuitive method can more efficiently handle this type of situation.

We made a comparison of our proposed CN algorithm with the satisficing game theory-based
algorithm (SGTA) [41], the reactive inverse proportional navigation(PN) algorithm (RIPNA) [42] and
the geometric optimization model algorithm (GOM) [43], which is capable of dealing with large scale
UAV cluster collision avoidance scenarios. This paper compared the computational time of different
methods when the scene setting for each method was the same. The results for scenarios consisting of
20 UAVs, 40 UAVs and 60 UAVs are shown in Table 4.
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Table 4. Time consuming comparison of the novel algorithm.

Number of Aircrafts

Time Taken (s)

SGTA RIPNA GOM Complex Network
Based on Degree

Complex Network
Based on Node

Contraction

20 673 68 27 3 3
40 1711 200 68 9 10
60 3009 396 189 20 26

Evidently, the computational efficiency of the CN algorithm is higher than the other three
algorithms, and it is worth mentioning that the average consuming time did not exponentially increase.
Table 4 shows that this method can solve the collision avoidance problem in the case of high-density
traffic airspace within an acceptable range.

5. Conclusions and Future Work

We herein proposed a CA method based on CNs for a group of UAVs in a local airspace.
This method used the CN theory to synchronize the trajectory of the UAV in the global scope as quickly
as possible to achieve CA. The collision avoidance method consisted of two different algorithms: The
key node selection algorithm and the collision direction-selection algorithm. These two sub-algorithms
formed a local space range that guaranteed the threat moment when the UAV groups met. The inner
safety of the UAV group was the optimal core algorithm of the CA system. The key node selection
algorithm constructed the key node selection strategy through the state representation and conflict
detection logic of the UAV. The direction selection algorithm selected the threat cancellation scheme
based on the minimum robustness principle working with the node selection algorithm. The two
algorithms jointly applied a state-of-the-art CN theory to provide a method for resolving threats that
occur when a group of unmanned aircrafts meets, by analyzing various states of the UAV group in
the local airspace. In this paper, we compared the collision avoidance effects of UAVs under key
node selection methods based on random selection and node contraction methods. The experimental
results show that the key node selection strategy based on the node contraction method has better
collision avoidance effects. The computational efficiency of the CN algorithm is higher than the
satisficing game theory-based algorithm (SGTA), reactive inverse PN algorithm (RIPNA) and geometric
optimization model algorithm (GOM), and it is worth mentioning that the average consuming time
did not exponentially increase.

Future research will focus on the following aspects: (1) Using appropriate heuristic algorithms to
improve the efficiency and speed of algorithm implementation; (2) conducting a more comprehensive
study of the safety indicators of UAVs and integrating them into the existing ones, thus establishing
an anti-collision system to enhance the safety of the system for the UAV group; (3) considering more
complicated disturbance situations (such as strong wind) to accommodate more intensive and complex
situations; (4) integrating UAVs into general purpose aviation operations in a non-segregated airspace.
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