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Featured Application: The developed Al-Cu ultrafine lamellar eutectic composites with excellent
mechanical properties have potential widely applications in the realms of aviation, aerospace
and automotive.

Abstract: In this paper, a new class of Al-Cubased composites which combine the ultrafine lamellar
eutectic matrix (α-Al +θ-Al2Cu) and micron-sized primaryα-Al dendrites was prepared by progressive
solidification. By adjusting the alloy composition and solidification process, the formation of favorable
microstructural and micromechanical features can be achieved. The ultrafine lamellar eutectic
composite Al94Cu6 exhibits excellent mechanical properties with 472 MPa fracture strength and 7.4%
tensile plastic strain. The plasticity of the ultrafine lamellar eutectic composite relies on the volume
fraction and work hardening ability of micron-scale primary phase. The present results provide a
new perspective for improving the plasticity of the ultrafine lamellar eutectic alloys.
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1. Introduction

Bulk nanocrystalline alloys have been highlighted since the first report by Gleiter et al. [1] in
the 1980s, because of their high strength and low elastic modulus in comparison with conventional
coarse-polycrystalline alloys. Several synthesis methods for the bulk nanocrystalline alloys have
been developed, such as powder consolidation [2], amorphous crystallization [3], severe plastic
deformation [4] and electrodeposition [5–7]. However, these methods have multiple processing steps
and are not easily commercially viable. Recently, some nano/ultrafine lamellar eutectic alloys have
been developed just using the simple and low-cost single step casting [8–10] and have attracted
much attention for both significant science and engineering interests. However, like the most bulk
nano-structured alloys and bulk metallic glasses (BMGs), these nano/ultrafine lamellar eutectic alloys
usually fail catastrophically at ambient temperature by the highly localized deformation behavior,
which severely restricts their commercial application as structural materials.

To block the high localized shear deformation, some inhomogeneous microstructures such
as the micron-scale soft and ductile dendritic phase have been introduced into the nano/ultrafine
matrix [11–19]. Although these nano/ultrafine structured composites exhibited an excellent compressive
plasticity, they still exhibited very limited macroscopic plasticity under tensile stress. For example [19],
the compressive plasticity of the Ti-based alloys with ultrafine lamellar eutectic structure is as high as
30%, while the tensile plasticity is less than 1%. Similar to the nano/ultrafine structured composites,
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the BMG composites containing in situ soft and ductile dendrites were developed in 2000, which
also exhibit high compressive plasticity and very limit tensile plasticity [20]. In 2008, Hofmann et
al. [21] made a breakthrough in tensile plasticity in BMG composites. They proposed two basic
principles based on matching fundamental micromechanical characteristics and microstructural length
scales to design the ductile BMG composites, which were: (1) introduction of ‘soft’ elastic/plastic
inhomogeneities to initiate local shear banding; and (2) matching of microstructural length scales to
the characteristic length scale RP (plastic shielding of an opening crack tip) to suppress the instability
propagation of shear bands and micro-cracks. Subsequently, numerous ductile BMG composites with
large tensile plasticity were developed [22–26].

The authors proposed that these principles are applicable to the nanocrystalline and ultrafine
lamellar eutectic alloys. In this study, we select the simple Al-Cubinary alloy system, which has
significant scientific and commercial interests due to its high specific strength and relatively low cost.
By matching the characteristics of the in situ ductile dendrites, including size, volume fraction and
hardness, the bulk Al-Cu ultrafine lamellar eutectic composites with enhanced tensile plasticity were
developed using simple casting. The effects of the microstructure and micromechanical features on the
macromechanical properties of ultrafine eutectic composites are also discussed in detail. Our current
findings give a new clue for developing nanoscale or ultrafine-grained composites with excellent
mechanical properties.

2. Experimental Procedures

The master alloys of Al83Cu17, Al90Cu10 and Al94Cu6 (at. %) were prepared from the Al and Cu
pieces with industrial purities of 99.2 (wt. %) by arc-melting. The master alloys were then cast into Cu
molds to form the rod-shaped samples with 7 mm diameter. To minimize the cast flaws, these rods
were remelted and progressively solidified at a withdrawal velocity of 4.0 mm/s under the directional
solidification device. The temperature gradient was about 17 K/mm.

X-ray diffractometry (XRD) and optical microscopy (OM) were used to observe the microstructure.
The element distribution in the solidified microstructures was determined by energy dispersive X-ray
spectrometer (EDS) attached to the scanning electron microscopy (SEM) JSM-6380LV (JEOL Ltd.,
Akishima, Tokyo and Japan). The tensile specimens with a 12.4 mm gauge length and 2.5 mm diameter
were machined and tested on an Instron-8801 testing machine under quasistatic loading at an initial
engineering strain rate of 5 × 10−4

·s−1. A CSM-NHT2 (CSM Instruments, Peuseux and Switzerland)
nano-indentation instrument was applied to investigate the hardness and elastic modulus (E) of
composites. The nano-indentation tests were loaded to 50 mN and kept for 10 s. Each sample was
measured at least five times to ensure that the results are reproducible and statistically meaningful.
The fracture surfaces were carefully observed though SEM.

3. Results and Discussion

The XRD patterns and optical microscopies of the alloys are presented in Figure 1. As shown
in Figure 1a, the three alloys show very similar diffraction patterns, indicating that all the alloys are
composed of α-Al solid solution and θ-Al2Cu phase. However, the microstructures of alloys are
obviously different. The Al83Cu17 alloy exhibits a typical ultrafine lamellar eutectic microstructure,
in which the white α-Al and black θ-Al2Cu are arranged alternately. The lamellar spacing is about
0.6 µm, as show in Figure 1b. In a previous study, Park et al. [27] reported that the lamellar spacing was
0.2–0.3 µm for the Al83Cu17 alloy which was only for 1 mm diameter rod-shaped samples prepared by
Cu mold casting. Obviously, the cooling rate in present study is much lower than previously reported.
However, the increase in lamellar spacing is not very significant, only from 0.2–0.3 µm to 0.6 µm, which
is very beneficial to industrial production.
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Figure 1. (a) X-ray diffractometry (XRD) patterns of alloys and their optical microscopy (OM)
micrographs of the (b) Al83Cu17, (c) Al90Cu10 and (d) Al94Cu6. The up-insets in (b–d) show their
magnified views of the corresponding microstructures.

The hypoeutectic Al90Cu10 alloy shows a typical composite structure, in which white particles are
uniformly embedded in the eutectic matrix. According to the EDS analysis (see Figure 2), the primary
phase is enriched in Al and can be identified as the α-Al phase with the average compositions of
Al92.9Cu7.1. The volume fraction and average grain size of the α-Al phase in the Al90Cu10 alloy is
about 44% and 7 µm, respectively. It is noteworthy that the eutectic matrix is still composed of the
ultrafine lamellar α-Al + θ-Al2Cu eutectic microstructure, and the lamellar spacing is similar to the
Al83Cu17 alloy. For the Al94Cu6 alloy, the volume fraction of α-Al phase increases to 74%, and the grain
morphology changes from particle to the dendrite. While the average compositions of the primary
α-Al phase is Al97.8Cu2.2 in the Al94Cu6 alloy, which obviously has a lower Cu content than that of the
Al90Cu10 alloy.

Figure 3 presents the engineering stress-strain curves and nano-indentation load-displacement
curves of the alloys. The corresponding mechanical properties are summarized in Tables 1 and 2.
As shown, the Al83Cu17 alloy exhibits the highest hardness and tensile strength, which are 2.5 GPa and
758 MPa, respectively, because of its completely ultrafine lamellar eutectic structure. However, the
Al83Cu17 alloy fails catastrophically without any plasticity. In the previous study [27], the Al83Cu17

alloy with finer lamellar spacing also fails in a brittle manner under the room compressive tests.
This brittle fracture is mainly due to the lack of a work hardening mechanism, resulting in highly
localized deformation.
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load-displacement curves of the ultrafine lamellar eutectic matrices and α-Al phase in alloys.

Table 1. Summary of yield strength (σy), tensile strength (σb) and tensile plastic strain (εp) of
Al-based alloys.

Composition σy (MPa) σb (MPa) εp (%)

Al83Cu17 - 758 -

Al90Cu10 392 571 2.0

Al94Cu6 306 472 7.4

Table 2. Hardness (H) and elastic modulus (E) of different structures in alloys, measured
by nano-indentation.

Structure H (GPa) E (GPa)

Eutectic (α-Al + θ-Al2Cu) 2.5 ± 0.2 86 ± 2

α-Al in Al90Cu10 alloy 1.8 ± 0.2 64 ± 3

α-Al in Al94Cu6 alloy 1.3 ± 0.2 40 ± 1

When some primary α-Al particles are precipitated on the ultrafine lamellar eutectic matrix as
in the case of Al90Cu10 and Al94Cu6, the alloys present lower tensile strengths (Table 1). In general,
like most composites, we proposed that the deformation behaviors of these ultrafine lamellar eutectic
composites should follow a rule-of-mixtures relationship. According to the nano-indentation analysis,
the hardness and E of the ultrafine eutectic matrix in the Al90Cu10 and Al94Cu6 alloys are almost the
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same as that of the Al83Cu17 alloy, due to the similar compositions and lamellar spacing of ultrafine
eutectic matrix in the three alloys. While the hardness and E of the α-Al phase in the Al90Cu10 and
Al94Cu6 alloys are much lower than that of the ultrafine eutectic matrix (Table 2). Therefore, the yield
strength of the ultrafine lamellar eutectic composites Al90Cu10 and Al94Cu6 obviously decreases with
the precipitation of the α-Al phase.

As expected, the precipitated α-Al phase can enhance the ductility of alloys. The Al90Cu10 alloy
exhibits obvious work hardening and 2% tensile plastic strain, while the plastic strain of the Al94Cu6

alloy is significantly improved to 7.4%. Obviously, the volume fraction of the primary α-Al phase
has significant effects on the plasticity of the composites. For high enough volume fractions, the
precipitated α-Al dendrites not only bear more deformation in themselves, but also connect with
each other and form a continuous network distribution of “hand-in-hand”, which are beneficial to
suppress the local instability propagation of shear bands and micro-cracks. In previous studies, Lee et
al. [28] also found that there was a critical content of 40 vol% primary soft dendrites, beyond which
the ductility of the La-based BMG composites escalates rapidly. Moreover, as show in Figure 3b and
Table 2, the hardness and E of the α-Al phase in the Al94Cu6 alloy are much lower than that of the
Al90Cu10 alloy, indicating it has much higher ductility and stronger work hardening ability. Under the
process of deformation, the primary α-Al phase with higher work hardening ability can promote the
redistribution of stress and avoid excessive stress concentration, thus delaying the plastic instability
and obtaining larger plasticity. Xia et al. [29] also found that with the same α-Al volume fraction and
size, the tensile plasticity of the Cu–Al alloys with bimodal structures was significantly enhanced by
increasing the work hardening ability of the micron-scale primary phase. These results indicate that
the microstructure (volume fraction, size and morphology) and micromechanical properties (hardness,
E and work hardening ability) of the micron-scale primary phase have a significant effect on the
plasticity of the ultrafine lamellar eutectic composite. More quantitative analysis and discussion on
the relationships between the microstructure, micromechanical features and macroscopic properties
should be further studied in the future.

Figure 4 shows the fracture surface morphologies. As shown, the macroscopic fracture surface
of the Al83Cu17 alloy (inset in Figure 4a) shows cleavage-like features, and only a few main cracks
penetrate the whole fracture surface, indicating a brittle fracture. The detailed microscopic observation
evidently shows that the deformation of α-Al layers is accompanied with pull-out and softening, as
indicated by white arrows in Figure 4a. While the θ-Al2Cu layers fail by a predominantly faceted
cleavage fracture. As shown in Figure 4b, ultrafine lamellar eutectic composite Al90Cu10 shows a
complex fracture surface with many isolated dimple-like patterns and some cleavage-like features,
which are fractures characteristic of the ductile α-Al and brittle ultrafine lamellar eutectic matrix,
respectively. For the Al94Cu6 alloy, the main fracture feature is similar to the Al90Cu10 alloy, but much
more dimple-like patterns connect with each other and form a continuous distribution. Moreover, an
apparent necking can be observed, indicating more plastic deformation.
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4. Conclusions

In conclusion, the ultrafine lamellar eutectic Al-Cu alloy and the composites with primary soft
α-Al dendrites have been prepared by progressive solidification. Compared with the ultrafine lamellar
eutectic alloy, the composites exhibit excellent mechanical properties combining high strength and large
tensile plasticity. Moreover, the present results indicate that the microstructural and micromechanical
features including volume fraction, distribution and hardness and E of the primary phase are very
crucial to the mechanical properties of the ultrafine lamellar eutectic composites. These findings
give a new clue for developing nanoscale or ultrafine-grained composites with excellent mechanical
properties, especially in the binary or ternary ultrafine lamellar eutectic systems.

Author Contributions: J.C., Y.Y. and J.R.: Co-organized the work, prepared the materials, characterized the
materials with OM, XRD and SEM, and wrote the manuscript draft.
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