iriried applied
L sciences

Article
Free Vibration of a Taut Cable with Two Discrete
Inertial Mass Dampers

Zhihao Wang *(), Fangfang Yue ! and Hui Gao 2

1 International Joint Research Lab for Eco-Building Materials and Engineering of Henan Province,

North China University of Water Resources and Electric Power, Zhengzhou 450045, China;
ffyuel993@126.com (EY.); hgao1993@126.com (H.G.)

Key Laboratory of Concrete and Prestressed Concrete Structure of Ministry of Education, Southeast
University, Nanjing 210096, China

Correspondence: wangzhihao@ncwu.edu.cn; Tel.: +86-150-9340-8299

check for

Received: 15 August 2019; Accepted: 12 September 2019; Published: 18 September 2019 updates

Abstract: Recently, inertial mass dampers (IMDs) have shown superior control performance over
traditional viscous dampers (VDs) in vibration control of stay cables. However, a single IMD may
be incapable of providing sufficient supplemental modal damping to a super-long cable, especially
for the multimode cable vibration mitigation. Inspired by the potential advantages of attaching
two discrete VDs at different locations of the cable, arranging two external discrete IMDs, either at
the opposite ends or the same end of the cable is proposed to further improve vibration mitigation
performance of the cable in this study. Complex modal analysis based on the taut-string model
was employed and extended to allow for the existence of two external discrete IMDs, resulting in a
transcendental equation for complex wavenumbers. Both asymptotic and numerical solutions for
the case of two opposite IMDs or the case of two IMDs at the same end of the cable were obtained.
Subsequently, the applicability of asymptotic solutions was then evaluated. Finally, parametric
studies were performed to investigate the effects of damper positions and damper properties on the
control performance of a cable with two discrete IMDs. Results showed that two opposite IMDs can
generally provide superior control performance to the cable over a single IMD or two IMDs at the
same end. It was also observed that attaching two IMDs at the same end of the cable had the potential
to achieve significant damping improvement when the inertial mass of the IMDs is appropriate,
which seems to be more promising than two opposite IMDs for practical application.

Keywords: stay cable; vibration control; hybrid control; inertial mass damper; viscous damper

1. Introduction

With the flourishing development of materials and construction technologies, civil engineering
structures are becoming larger, lighter, and more flexible, especially for long-span bridges. Cable-stayed
isa common option for bridges in the medium to long-span ranges due to its unique structural formation,
economic advantage, and esthetic value [1]. However, as important load-bearing components of
cable-stayed bridges, stay cables are highly susceptible to dynamic excitations due to their high
flexibility and low intrinsic damping [2,3]. Frequent and excessive amplitude cable vibrations may lead
to fatigue failure of cables. These problems may inevitably shorten the service life and cause the risk
of losing public confidence in cable-stayed bridges. To guarantee structural safety, several solutions
have been proposed to dampen cable vibrations, which include modifying aerodynamic surface of
cables [4], connecting cables together via cross tie [5], and attaching external dampers on cables [6-9].

Though these practical measures have been well applied in the field, each has its own shortcomings.
Changing the surface of the cable is difficult to implement for retrofit and may increase drag forces at
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high wind velocities [10]. Cross-ties are incapable of direct energy dissipation and make the aesthetics
of cable-stayed bridges deteriorate [11]. Compared to the two methods above, attaching external
dampers on the cable seems to be more promising. Nevertheless, the installation location of a passive
viscous damper is typically restricted to within a few percentage points of the cable length from the
cable anchorage [12]. As expected, passive viscous dampers cannot provide sufficient damping to
eliminate vibrations for super-long cables, such as the Sutong Bridge, with cables nearly 600 m long.
Moreover, the results based on both theoretical and experimental studies indicated that the existence
of the cable sag [13,14], the cable flexural rigidity [15,16], the damper stiffness [17], and the damper
support stiffness [18] or their coexistence [19-23] would have adverse impacts on the efficiency of
passive viscous dampers.

An active damper can produce a force-deformation relationship with the negative-stiffness
behavior that benefits damper efficiency when the linear quadratic regulator (LQR) algorithm is
employed [24,25]. However, active dampers often require high power sources beyond practical limits
and are thus rarely used for cable vibration mitigation in real bridges. Alternatively, semiactive dampers,
which can produce similar hysteresis and achieve control performance comparable to that of active
dampers, were proposed [26-29]. For instance, the semiactive control based on magnetorheological
dampers has been successfully applied on the Dongting Lake Bridge [30], Binzhou Bridge [31],
and Sutong Bridge [32]. Compared to active dampers, semiactive dampers require less power.
Nevertheless, possible implementations of semiactive dampers on site still require an external stable
power supply, a sensing system, and a controller, which seems to be complicated and costly. This fact
has inspired researchers to introduce a negative stiffness mechanism into passive dampers to mitigate
cable vibrations.

Recently, several representative passive dampers with negative stiffness mechanisms, including
pre-spring negative stiffness dampers (pre-spring NSDs) [33,34] and magnetic negative stiffness
dampers (magnetic NSDs) [35,36], have been successfully developed. Negative stiffness dampers
have well demonstrated to be capable of providing superior damping over that of traditional passive
viscous dampers [37-39]. However, extremely large passive negative stiffness may make the NSD lose
its stability. Alternatively, an inerter has the potential to provide similar negative stiffness without a
stability problem [40]. Many inerter-based absorber layouts have been proposed, and their control
performance advantages have been proven for civil engineering structures [41-59]. As for the vibration
suppression of cables, typical inertial mass dampers (IMDs) [60-65] and tuned inerter dampers [66,67]
were well developed, and their significant improvement on the achievable modal damping ratio of the
cable was verified via both theoretical and experimental investigations.

With the increasing cable length, it may be difficult to attain a desired level of supplemental modal
damping with a single damper or a pair of dampers installed near the deck anchorage. Hence, some
hybrid techniques have been further proposed. The idea of combining external dampers with cross-ties
for cable vibration control was considered, which not only addresses the deficiencies of these two
commonly used countermeasures but also still retains their respective merits [68-73]. A hybrid damper
system, combining a viscous damper and a tuned mass damper, can overcome the shortcomings of
single type of dampers and improve effectiveness and robustness in suppressing cable vibration [74].
In addition, application of two viscous dampers or two high-damping rubber dampers at different
locations of a cable was proposed [75-77]. The results have shown that when two viscous dampers
are installed at opposite ends of a cable, their damping effects are approximately the sum of the
contributions from each damper [77]. However, when they are at the same cable end, the maximum
modal damping ratio of the cable is determined by a single damper at the further distance, indicating
no benefits over a single damper configuration [77].

Inspired by the potential advantages of attaching two external discrete viscous dampers (VDs)
on a cable, this study aimed to evaluate the feasibility of a cable with two discrete IMDs, either on
the opposite end or on the same end of the cable, to improve the vibration mitigation performance of
the cable in each mode. Complex modal analysis based on the taut-string model was employed and
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extended to allow for the existence of two external discrete IMDs. The formulation for free vibration
of a taut cable with two discrete IMDs was established, and corresponding complex wavenumber
equations of free damped vibration were derived. The asymptotic and numerical solutions of the
wavenumber equation were obtained, and the applicability of asymptotic solutions was then evaluated.
Finally, parametric studies were performed to investigate the effects of damper positions and damper
properties on the control performance of the cable with two discrete IMDs.

2. Formulation of the Cable-IMD System

A taut cable with two transversely attached inertial mass dampers is shown in Figure 1. The length,
the mass per unit length, and the tension of the cable are L, m, and T, respectively. The coordinate
system defines that the x-axis and the v-axis are along the cable chord and the transverse direction,
respectively. x* = L — x represents the coordinate from the right end of the cable. Two discrete IMDs
are respectively installed at distances x; and x; from the left end of the cable (x; > x1). The distance
between the right IMD and the right end is denoted as x}, = L —x;. The damping coefficient and
inertial mass of the j" IMD are denoted as c¢jand b; (j = 1, 2), respectively. The equation of motion of
the cable-IMD system is given by:

Po Pv ¢
5 -mS2 =Y Fapj(Ho(x-x)), (1)

2 o 4
j=1

where v(x, t) is the cable transverse displacement and 6(-) is delta function to specify the location of
the damping force Fiyp; at x = x;.

X, J x,=L-x,
i 1
X, <X
o m R
b, e b} c,
v

Figure 1. The taut cable with two discrete inertial mass dampers.

Under free vibration, applying separation of variables, the cable transverse displacement and the
IMD force can be respectively expressed as:

where i = —1, @ is a complex natural frequency of the cable, and 7(x) is the corresponding complex
mode shape. To find v(x), the cable can be considered as a multispan structure connected at the
damper locations [77]. Substituting Equation (2) into Equation (1), v(x) in each span needs to satisfy a
homogeneous equation [77]:

27 0<x<x
ﬁ—b—ﬁzgzo x1SXSX2 7 (3)
* 0<x <x)

where § = w Vm/T refers to the wavenumber.
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Applying boundary conditions at cable ends, i.e., v(0) = v(L) = 0, and the transverse displacement
compatibility conditions at damper locations, i.e., v(x1) = vy, v(x;) = v, the general solution of
Equation (3) can be further written in the form [77]:

~ sinfx
15inBx; : 0<x<x
~ ~ sinB(x—x) ~ sinp(x—x;
U(x) =491 sinflo—x1) + 02 SnB(xax1) X1 <x<x2, 4)
~ sin fx” . .
02 sin px; 0<x*< X5

where 7} is the mode shape amplitude at the j" damper location.
At damper locations, there is:

dov

dov
T(a

L=
Yo dx

x7) = Fivpj (B). (@)

Substituting Equation (4) into Equation (5), it yields:

1 __EM@/T

[
cot fx1 + cot(xy —x7) — % ) = T g ©)
3 1 « _ _FiMpp/T
"3 Spla T Ot —x) + cotfry = —THE

Substituting v1 /v, from the second one into the first one of Equation (6) and rearranging, the
characteristic equation of the wavenumber f is derived as:

(cotBx1 + F—I%%/T) (cotpxs + Fnpp /Ty 4

02
(cotﬁx1+fngTll/T—l—cotﬁx;—i—fﬁ“ﬁDTi/T)cotﬁ(xZ—xl) =1 7
3. Two Opposite IMDs
3.1. The Wavenumber Equation
The damper force of the j# IMD can be expressed as [45]:
azv(xj, £) Bv(xj, £ = . —
Frvpj(t) = bj R +¢; o or Fivpj = —bjwvj + cjwv;. (8)

When two IMDs are installed at different ends of the cable, substituting Equation (8) into
Equation (7) and using trigonometric relations, Equation (7) can be rearranged to the form relating to
x1 and x;, as:

A +iBy
t L= —, 9
anf C1+iDq ©)
Ay = —x; sin? Bx1—x2 sin? B + (x1X2 — mim2) sin By sin fx sin f(xq + x3), (9a)
By =m sin? Bx1+m sin? B — (x1m2 + x2m1) sin fxy sin B sin f(xq + x3), (9b)
C1 = 1— x1 sin fxq cos fx — x2 sin fx; cos fx; + 90)
(X1X2 — mm2) sin Bxq sin px;, cos B(x1 + x;)

Dy = 11 sin Bxy cos fxq + 12 sin fx;, cos fx;— 9d)

(x1m2 + x2m1 ) sin Bxg sin px; cos Bx1 + xE)
where 7); = \/C_n]TT and x; = \/’T% represent the dimensionless damping coefficient and the dimensionless

inertial mass of the j* IMD, respectively.
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The form of Equation (9) is suitable for solutions, either for asymptotic solutions or numerical
solutions by iteration.

3.2. Asymptotic Solution

The following assumptions are introduced [12,17,77]: (1) The locations of IMDs are very close to
the ends, i.e., xq, Xy, < L; (2) the wavenumber §,, of eachmode n (n =1, 2, ... ) has a small perturbations
ABy = Bn — Y from the undamped value p) = n7n/L. The assumptions above lead to the following
approximations:

tan(B,L) = ByL — nm sin(Buxy) = ﬁ?lxl sin(Bux5) = ﬁ?lx; cos(Bnx1) = cos(Bux;) = 1. (10)

The asymptotic formula for the wavenumber f;; takes the form:

Eq +iF

~ o E1 1
Bnl = nm +ﬁn—G1 H (11)
Ey = —bix1 — boxy + (biby — ¢162) (x1 + X3), (11a)
Fy = cixy + 6% — (5163 + bacy) (1 + X3), (11b)
G =1-b1—by + (b2 —T122) (%1 +%3), (11c)
Hy =¢1 + 6 — (b1 + bycr) (x1 + %3), (11d)

where ¢ = mB9x; and ¢; = nlﬁgxa represent dimensionless damping coefficient groups, while
E =x [ngl and 5 = )(zﬁgxé represent dimensionless inertial mass groups.

The complex eigen-frequency corresponding to the wavenumber B, is denoted as w,. The n'"
supplemental modal damping radio of a cable &, can be obtained by [17]:

£ = Im|wy] _ Im[B,] N Im[AB,]
oal g [

Substituting Equation (11) into Equation (12), the asymptotic supplemental modal damping ratio
of the cable is finally derived as:

(12)

1 o, 2 % (13)

n g ——————
- +@?2* L -0+ @72k

IR

If two identical IMDs are symmetrically installed at the cable for practical implementation, some
simplifications in the notation can be introduced, i.e, x =x; =L—-xa =x, b1 = by = b, x1 = x2 = X,
by=by=bc,=c=c 1 =M =1, and ¢; = ¢2 = ¢. Equation (13) can be further simplified as:

2c X1

= ————
(1-8) +@? L

(14)

3.3. Numerical Solution

The numerical solution of the wavenumber 5, to Equation (9) is obtained by the fixed point
iteration [12,14], which starts from the undamped wavenumber ). Substituting ) into the right side
of the Equation (9), the resulting value ‘B,lz is obtained. Similarly, with current estimate ﬁ,’;, k=1,2,3.,a

new estimate ﬁ]ﬁl will be derived. The iterative scheme is given by:

Ay +iB
BEHIL = nm + arctan%, (15)
C1+iDq
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Ay = —xy sin® Bixy — xosin® Bixs + (x1x2 — n172) sin Braxy sin oy sin Bl (v + x5), (15a)
By = my sin? Bhxy + mosin® Bixs — (xamz + xam) sin Bl sin By sin Bl (v + x3), (15b)
Cy = 1- xysin Bhxy cos pixy — xo sin pix; cos B+ (15¢)

(x1x2 = ) sin Bloxy sin Bhacy cos B (x1 +x3)
Dy = 1y sin Blxy cos Bhxy + 1 sin B cos By — (15d)

(x1m2 + x2n1) sin ﬁlfle sin ﬁ’;xg cos ‘B’,ﬁ (v + x;)

Finally, the supplemental modal damping ratio of a cable with two opposite IMDs can be calculated
by Equation (12) after solving the wavenumber f3,,.

3.4. Comparison of Asymptotic and Numerical Solutions

Figure 2 shows the comparison of asymptotic and numerical complex wavenumbers of a cable
with two symmetric identical IMDs for various inertial masses. Two IMDs are assumed to be
respectively installed at distances x; of 1%L and x; of 99%L from the left end of the cable, i.e.,
x =x1 = x; = L—xp = 1%L. When inertial masses remain constant and damping coefficients of two
IMDs increase from zero to infinity, the loci, which nearly trace a semicircular contour, start from the
undamped wavenumber and finally attach to the real axis. According to Equation (12), the damping
properties result from the imaginary part of the wavenumber. Maximum supplemental modal damping
can be obtained at the top point of the semicircle [17]. The diameter of the loci is quite small but
increases with the increase of the inertial masses of IMDs, indicating that two symmetric identical IMDs
have slight influences on the damped frequency of the cable and can achieve higher supplemental
modal damping ratios than traditional VDs. By comparing asymptotic and numerical complex
wavenumbers, it is seen that two results coincide well with each other for small or moderate inertial
mass (y < 0.6/ (nmx/L)) adopted in the IMDs. Nevertheless, the results deviate significantly from each
other when the big inertial mass (x = 0.9/ (nmx/L)) shown in Figure 2d is adopted. Hence, solutions
via numerical iteration are used to accurately predict the maximum supplemental modal damping
ratio of the cable and corresponding optimal damper size of the IMD in the following discussions.
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Figure 2. Comparison of asymptotic and numerical complex wavenumbers of a cable with two

symmetric identical inertial mass dampers (IMDs) (x = x; = x5 = 1%L).

3.5. Parametric Studies

7 of 16

Figure 3 presents the supplemental modal damping ratio of a cable with two symmetric identical
VDs versus damping coefficients. For the convenience of comparisons, the results of a cable with a
single VD are also shown. It is observed that symmetrically attaching two VDs on the opposite end
of a cable is favorable to increasing the maximum supplemental damping ratio of the cable, and its
maximum supplemental modal damping ratio is asymptotically the sum of contributions from each
VD separately. The findings above are quite consistent with those reported in previous studies [76,77].

1.2

- VD (x,/L=1%)
1Ok — VD ( x,/L=1%)+ VD ( x3/L=1%)
08t
ay 06
-
S
- S
0.4 7/ - _
/ T
02 H TRy
/
00 1 L i L i L i 1 i L i L
0 20 40 60 80 100 120 140 160

Figure 3. The supplemental modal damping ratio curve of a cable with a single viscous damper (VD)

1

or two symmetric identical VDs (x = x1 = x} = 1%L).
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Figure 4 presents the supplemental modal damping ratio of a cable with two symmetric identical
IMDs or a single IMD versus damping coefficients for various inertial masses. It is clear that two
opposite IMDs can provide superior control performance to the cable over a single IMD. Figure 5
directly compares the maximum supplemental modal damping ratio of a cable equipped with a single
IMD or two symmetric identical IMDs. For two symmetric identical IMDs with small or medium inertial
mass, similarly to the case of two symmetric identical VDs, the maximum achievable supplemental
damping ratio is approximately doubled with that provided by a single IMD. It indicates that two
opposite IMDs are almost independent from each other. This finding may explain why the optimal
damping coefficients of the IMDs for both the single configuration and two-symmetric configuration
are similar to each other in magnitude, as shown in Figure 4. Moreover, the maximum achievable
supplemental modal damping ratio of a cable provided by two symmetric identical IMDs is larger
than that provided by a single IMD or two symmetric identical VDs.

1.5 2.5

- -IMD (x,/L=1%) — -IMD (x/L=1%)
12} —IMD (x,/L=1% )+ IMD (x,/L=1%) 20f —IMD (x/L=1%)+IMD (x,/L=1%)
g 09} g
Wi Wi
0.6} -
L ~
/7 S -
03¢/)7 s -a o
I - -
00 L L L
0 40 80 120 160
n n
) (@  x=0.1/(nrx/L) by x= 0.4/(nzx/L)
— -IMD (x,/L=1%) g[ = -IMD (x/L=1%)
5 —IMD (x,/L=1% )+ IMD ( x;/L=1% ) —IMD (x,/L=1% ) +IMD (x,/L=1% )

(70)

() x=0.7/(nzx/L) (d  x=0.9/(nzx/L)

Figure 4. The supplemental modal damping ratio curve of a cable with a single IMD or two symmetric
identical IMDs (x = x1 = x5 = 1%L).
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4.136
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3.322

1.705
1.660

1.021
1.135
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T
.505
0.562

7=0/(nzx/L) y=0.1/(nzx/L) x=04/(nzx/L) x=0.7/(nxx/L) x=0.9/(nzx/L)

the dimensionless inertial massy

Figure 5. The maximum achievable supplemental modal damping ratio of a cable equipped with a
single IMD or two symmetric identical IMDs (x = x1 = x, = 1%L).

4. Two IMDs at the Same End

4.1. The Wavenumber Equation

When two IMDs are installed at the same end of the cable, substituting Equation (8) into
Equation (7) and rearranging terms gives the following expression relating to x; and xy:

tan gL = %, (16)
Ay = —x1 sin? Bx1— X2 sin? Bx2 4+ (x1X2 — N112) sin By sin Bx; sin f(xp — x71), (16a)
By = 1y sin? Bx; + np sin? Bxa — (X172 -+ x211) sin By sin fxo sin f(xz — x1), (16b)
C=1-x1 sin.ﬁxl cos fx1 — )(‘2 sin fxo cos Bxz+ (160)

(X1X2 — M) sin Bx1 cos Bxz sin B(xz — x1)
Dy = 11 sin fxq cos fx1 + 172 sin fxp cos fxp— (16d)

(x1M2 + x2m1) sin Bx1 cos Bxy sin f(xp — x7)

4.2. Asymptotic Solution

Similarly to the case of two opposite IMDs, assuming two IMDs locations x1, xp < L and the wave
number B, of the damped cable to be small perturbations from ), Equation (16) can be simplified as:

E> +iF

~ 0 L2 2
BnL = nm + ﬁ”—Gz i (17)
Ey = —b1x1 — baxy + (byby — €162) (%2 — x1), (17a)
Fy = &1x; + Gaxa — (b163 + bacy) (x2 — x1), (17b)
Gy =1-by—by + (b1by — 162) (1 - x1/x2), (17¢)

Hy =1 + &3 — (b1 + boe1) (1 - x1/x2). (17d)
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From Equations (12) and (17), the asymptotic modal damping ratio of a cable with two IMDs at
the same end can be obtained as:
Im[ABn]  F2Gy - ExHp

n = = . 18
y 18] (G2)* + (Ha)? o

4.3. Numerical Solution

Similarly to the case of two opposite IMDs, Equation (16) can be solved for the wavenumber
using the fixed-point iteration. Starting from the undamped wavenumber ), the iterative scheme is
given by:

A, +iB
BEHIL = nm + arctan%, (19)
Cy +1iDy
Ay = —xq sin? ,kal — xpsin? ﬁkxz + (x1x2 — m112) sin ﬁkxl sin ,kaz sin ﬁk (22 —x1) (19a)
n n n n n 4
By = my sin® Bhay + masin® Bixa — (x1ma + xam ) sin By sin g sin B (xo — x1), (19b)

Co = 1— x1sin kxy cos B¥x; — xo sin s cos Bhxa+

. . 19¢
(X1X2 —mn2) sin ﬁ,’gaq cos ﬁ’,‘lxz sin ‘B’,‘l (x2—x1) (19¢)

Dy = 1y sin flx; cos Biay 4 1 sin fExs cos flxy—

. . 19d
(x11m2 + x2m1) sin Bhaq cos BExa sin B (xp — x7) (19d)

After solving numerically for the wavenumber, the supplemental modal damping ratio of a cable
with two IMDs at the same end can be determined from Equation (12).

4.4. Comparison of Asymptotic and Numerical Solutions

Figure 6 shows the comparison of asymptotic and numerical complex wavenumbers of a cable
with two IMDs at the same end for various inertial masses, where two IMDs are installed at distances
x1 of 1%L and x, of 2%L from the left end of the cable, i.e., x; = 1%L, x, = 2%L. Seeing that two
IMDs are usually identical, some simplifications in the notation are introduced, i.e.,, by = by = b,
X1 =X2=X,c1 =c =c,and n = 12 = 1. Similar to the case of two opposite IMDs, the loci start
from the undamped wavenumber along a semicircular contour and finally attach to the real axis when
damping coefficients of the IMDs increase from zero to infinity, and the effect of two IMDs installed at
the same end of the cable on the cable frequency is also not significant. For a cable with two IMDs at
the same end, although the asymptotic complex wavenumber agrees well with the numerical solution
when the small inertial mass (y < 0.3/(nmx,/L)) is used, it will lose accuracy when moderate or large
inertial mass (0.6/ (nmxp /L) < x <0.9/(nmxy /L)) is adopted. Compared to the case of two opposite
IMDs, prediction accuracies of the asymptotic solution are found to be relatively poor when two
IMDs are installed at the same end of the cable. Hence, numerical results are used for the following
parametric study.
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Figure 6. Comparison of asymptotic and numerical complex wavenumbers of a cable with two identical
IMDs at the same end (x; = 1%L, xp = 2%L).

4.5. Parametric Studies

Figure 7 presents the supplemental modal damping ratio of a cable with two identical VDs at
the same end or a single VD versus damping coefficients. It is observed that attaching two VDs at
the same ends of the cable may help to reduce the damper size but cannot increase the maximum
supplemental modal damping ratio. Moreover, its maximum modal damping ratio is slightly smaller
than that provided by a single VD at the further distance. These observations are in agreement with
previous findings [76,77].
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Figure 7. The modal damping ratios curves of a cable equipped with a single VD or two identical VDs

at the same end (x; = 1%L, xp = 2%L).

Figure 8 presents the supplemental modal damping ratio of a cable with two identical IMDs at the
same end or a single IMD versus damping coefficients of the IMD. If two IMDs with relatively small
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or big inertial masses (x < 0.1/(nnxy/L) or x = 0.9/ (n7mxp /L)) are installed at the same end of the
cable, similarly to the case of two VDs at the same end of a cable, there is no advantage of increasing
the maximum modal damping ratio over that of a single IMD. However, if moderate inertial mass
(0.4/(nmxy /L) < x £0.7/(nmxy /L)) of the IMD is used, it is interesting to observe that two IMDs at
the same end can lead to smaller optimum damping coefficients and larger maximum supplemental
modal damping ratios than that of a single IMD at a bigger distance.

3.0
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Figure 8. The modal damping ratios curves of a cable equipped with a single IMD or two identical
IMDs at the same end (x1 = 1%L, xo = 2%L).

The maximum achievable supplemental modal damping ratios of a cable equipped with a single
IMD and two IMDs at the same end are directly compared in Figure 9. It is worth noting that the
maximum supplemental modal damping ratio provided by two IMDs is higher than the sum of
contributions from each IMD when inertial mass y = 0.7/ (nmx, /L) is used. Though the strategy of two
opposite IMDs has demonstrated that it can provide superior control performance, installing a damper
at cable-tower anchorage is difficult and inconvenient. Thus, attaching two IMDs with appropriate
inertial mass installed at the same end of the cable seems to be more promising for practical application.
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Figure 9. The maximum achievable supplemental modal damping ratio of a cable equipped with a
single IMD or two identical IMDs at the same end (x; = 1%L, x, = 2%L).

5. Conclusions

In this paper, the combined damping effect of two discrete IMDs on a stay cable, either on
the opposite end or the same end, was theoretically investigated in comparison with a single IMD,
especially for the single-mode cable vibration control. Results showed that the maximum supplemental
modal damping ratio of a cable provided by two opposite IMDs with small or moderate inertial
mass is approximately the sum of contributions from each IMD. However, damping performances
of the cable with two opposite IMDs will be reduced when the IMDs adopt relatively large inertial
mass, in which the superposition effect of each IMD gets weak. As for a cable with two IMDs at the
same end, the maximum modal damping ratio of the cable is smaller than that of a single IMD at
the further distance when the IMDs adopt relatively small or large inertial mass. Fortunately, when
the inertial mass of the IMD is appropriate, attaching two IMDs at the same end of the cable is able
to obtain a larger maximum modal damping ratio than that of a single IMD at a bigger distance,
which is even more than the sum of contributions from each IMD. Generally, attaching two opposite
IMDs on a cable has shown better control performance than two IMDs at the same end. However,
installing a damper at cable-tower anchorage is difficult and inconvenient. As an alternative, attaching
two IMDs with appropriate inertial mass at the same end of a cable seems to be more promising for
practical application. However, it is still necessary to explore the performance of two IMDs for the
multimode cable vibration control, especially for super-long cables, which will be our consideration
for further study.
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