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Abstract: Tool wear and breakage are inevitable due to the severe stress and high temperature
in the cutting zone. A highly reliable tool condition monitoring system is necessary to increase
productivity and quality, reduce tool costs and equipment downtime. Although many studies have
been conducted, most of them focused on single-step process or continuous cutting. In this paper, a
high robust milling tool wear monitoring methodology based on 2-D convolutional neural network
(CNN) and derived wavelet frames (DWFs) is presented. The frequency band of high signal-to-noise
ratio is extracted via derived wavelet frames, and the spectrum is further folded into a 2-D matrix to
train 2-D CNN. The feature extraction ability of the 2-D CNN is fully utilized, bypassing the complex
and low-portability feature engineering. The full life test of the end mill was carried out with S45C
steel work piece and multiple sets of cutting conditions. The recognition accuracy of the proposed
methodology reaches 98.5%, and the performance of 1-D CNN as well as the beneficial effects of the
DWFs are verified.
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1. Introduction

In the past few decades, equipment-manufacturing technology has developed rapidly.
The automation level and production capacity of the machine tool are significantly improved. However,
there are still many uncertain factors in the production process, such as tool wear and breakage, which
are an important and common source of machining problems. Tools are end-effectors that execute
efficiency and quality, and are the cost-intensive consumable parts [1]. The tool condition monitoring
system can achieve immediate benefits, and thus receive extensively study [2]. The industrial
manufacturing processes are dynamic and complex, especially for multi-axis computer numerical
control (CNC) equipment, tools often perform a variety of tasks. Work piece properties such as
hardness and cutting allowance also change frequently, which makes the condition of the tool difficult
to predict. According to statistical research, one effective tool condition monitoring system can help to
increase the cutting speed, maximize the effective working life of the tool and reduce machine tool
downtime by pre-arranging tool change time [3].

Severe damage such as breaks or large-size chippings can be reliably identified online because
the signal patterns of these phenomena are rarely obvious [4]. Tool failure due to the accumulation
of wear and weak chipping is relatively difficult to detect in time. At present, there have been many
successes in tool wear monitoring during continuous cutting [5–7]. However, it still requires more
effort in milling, where tools and material removal processes are more complex. A tool condition
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monitoring system can be divided into three parts: Sensing and data acquisition, data processing and
feature engineering, and pattern recognition and classification [8].

Sensing and data acquisition methods include direct acquisition and indirect acquisition.
The contact detection is the most widely used direct approach, but the tool can only be measured
after the end of one process. The indirect method that detecting the tool health condition by physical
signals is more suitable for online measurement. The cutting force is the most mature indirect
measurement method [9]. Nouri M. established a milling force model and then coupled the normalized
tangential and radial forces in the model into a single parameter to monitor the wear of the end
mill [10]. Liu C. combines cutting force signals and vibration signals to identify tool wear and work
piece deformation during processing of thin-walled parts [11]. Jose B. adopts the cutting force to
monitor tool wear and product surface quality during the CNC turning of D2 steel [12]. Nevertheless,
the dynamometer is costly and does not fit large work pieces such as engine cases. Acoustic emission
sensor [13], current/power sensor [14] and sound pressure sensor [15] also have their own advantages
and disadvantages. In contrast, vibration acceleration sensing technology offers comprehensive
advantages in terms of cost, flexibility, non-intrusiveness, information capacity and industrial reliability.
Nakandhrakumar R. applied torsional–axial vibrations to monitor flank wear during drilling, with an
accuracy of 80% [16]. Mohanraj T. extracted the effective features for tool condition from the vibration
signal under the interference of the cutting fluid [17]. The ever-increasing theoretical knowledge of
sensing and signal processing can further enhance the reliability and signal-to-noise ratio of vibration
sensors. Yan R. proposed a closed loop calibration system to improve the calibration accuracy and
efficiency of vibration sensors [18].

Signal processing and feature engineering aims to clean the raw data, segment and label the valid
data, and further extract feature vectors to suit the needs of the decision subsystem. As a complex
process system, no matter what kind of sensing method is used, we collect a mixture of various
signals and noise. For the vibration signal, the unbalance of rotating parts, the inertial impact of
reciprocating parts, and the insufficient smoothness of each shaft will produce forced vibration. Du Z.
used an adaptive variable window to locate the signature segments in the signal and successfully
align them [19]. Chudzikiewicz A. proposed a modified Karhunen–Loève transformation algorithm
for preprocessing acceleration signals [8]. For the original time domain signal, principal component
analysis can be used to extract the effective features [20]. The regularization based on convex sparsity
can be used to decompose noisy signals, while non-convex regularization can further promote the
sparsity of reconstructed signals, while preserving the global convexity [21]. Studies have also shown
that the method of extracting features from frequency domain signals is easier to implement and more
stable [22]. The monitoring signals in the milling process are often similar to the modulated signals, and
the information carried in different frequency bands is quite different. Therefore, the time–frequency
domain analysis represented by wavelet transform becomes a powerful tool. Segreto T. used the
wavelet packet transform to extract the feature vector from the tool-holder vibration signal to identify
the machinability of the nickel–titanium alloy turning process, and the recognition accuracy is not less
than 80% [23]. Madhusudana C. employed dual-tree complex wavelets to extract features from sound
pressure signals to monitor the health of indexable inserts [15]. He W. proposed a sparsity-based
feature extraction method using the tunable Q-factor wavelet transform with dual Q-factors [24].
Kurek J. adopted wavelet transform to decompose the original monitoring signals, and extract features
from each sub-signal to form a mixed feature vector. The trained RF model identifies the wear state of
the drill with an accuracy of no less than 96% [25]. Hong Y. applied the wavelet packet decomposition
to the low SNR cutting force signal in the micro end milling process, which effectively improved the
feature extraction efficiency [26].

The decision subsystem is the most important part of achieving tool condition monitoring.
It is a complex nonlinear model that identifies the health condition of the tool based on the feature
vector. Various machine learning models have succeeded in the field, such as artificial neural network
(ANN) [27], fuzzy inference systems (FIS) [28], hidden Markov model (HMM) [29] and support vector
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machine (SVM) [30] and others [31–33]. The special network structure makes the machine learning
model also able to achieve ideal classification accuracy when the data set is small, but they are not
suitable for data samples with big size. This imposes stringent requirements on feature engineering. In
addition to the evolutionary factors we expect to monitor, other operational parameters of the monitored
object will also affect the features extracted by the feature engineering. [8]. For the milling process, not
only tool wear, but also cutting condition adjustment and changes in work piece material properties
have significant effects on statistical features such as RMS, kurtosis and entropy. The portability of the
system is thus reduced and is not suitable for automated production sites where cutting conditions
are variable.

The new learning algorithms empower us to build neural networks with more layers, as well as
train them with big samples. Coupled with the extremely increasing computing power, especially
parallel computing, the powerful feature extraction capabilities of convolutional neural network (CNN)
have been validated in many pattern recognition [34,35] and phonetic recognition projects [36,37].
The monitoring signal such as vibration acceleration is similar to the speech signal, and the line graph
or time spectrum of the signal is similar to the visual image. Therefore, many scholars adopt the CNN
to equipment fault diagnosis and health monitoring. Sun W. adopts CNN to the identification of
gear faults, and the recognition rate reached 99.97% under the enhancement of double-tree complex
wavelet [38]. Wang F. proposed an adaptive convolutional neural network for fault diagnosis of rolling
element bearings, which proved to be superior to ANN and SVM [39]. Chen L. mapped the original
monitoring signals into feature maps to fit the 2-D convolutional neural network, and the recognition
accuracy of bearing faults was not less than 90% [40]. Yang F. mapped the raw 1-D signals into 2-D
images to identify the vibration state of the machine tool. The recognition accuracy of the 2-D CNN is
not less than 90%, which is obviously superior to the traditional signal-feature-model [41].

This paper proposes a tool condition monitoring system based on 2-D convolutional neural
network and assisted by complex wavelet. The reminder of this paper is organized as follows.
In Section 2, some background and preliminaries are reviewed. In Section 3, we detailed the proposed
monitoring system, including data acquisition, data preprocessing and methods for constructing
2-D maps. The spectrum band of the spindle vibration signal is converted to a normalized data
map to train the convolutional neural network. In Section 4, based on the collected data sets, we
optimized the hyperparameters of CNN through a series of single factor experiments. In Section 5,
the parameter-optimized monitoring system is implemented in the multi-parameter cutting experiment
to monitor the wear state of the tool, and the monitoring effect is compared with other methods.
Section 6 finally presents our conclusions.

2. Background and Preliminaries

2.1. Translation-Invariant Signal Decomposition Using the Derived Wavelet Frames

Transient features are important for identifying dynamic changes in tool wear and breakage.
However, irrelevant low frequency vibrations and background noise often overwhelm them [42].
Fidelity signal decomposition is beneficial for improving the signal-to-noise ratio and reducing the
subsequent computation of the model. Due to the lack of shift-invariance, the ability of traditional
wavelet transform to mine repetitive shock vibrations in the raw signal is relatively weak [43]. In this
section, we introduced derived wavelet frames to perform a nearly shift-invariant multiresolution
analysis. Derived wavelet frames (DWFs) are based on dyadic doubletree complex wavelet packets
and are supplemented by non-dyadic implicit wavelet packets. The latter enhances the ability of the
algorithm to extract transition-band features.

2.1.1. Dual-Tree Complex Wavelet Packet Decomposition

Dual-tree complex wavelet packet decomposition (DCWPD) is constructed based on dual-tree
complex wavelet basis, which it consists of two scaling functions and two wavelet functions.
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In orthonormal cases, for the complex valued wavelet function:

ψC(t) = ψ<e(t) + i ·ψ=m(t), (1)

there is a restriction of approximate Hilbert transform shown as:

ψ=m(t) = H
{
ψ<e(t)

}
, (2)

where ψ<e(t) and ψ=m(t) are the real part and imaginary part of ψC(t) respectively, and i =
√
−1 is

the imaginary unit. Equivalently, a half sample delay equation exists for impulse response functions of
imaginary wavelets h=m

1 (t) and real wavelets h<e
1 (t).

h=m
1 (t)(n) ≈ h<e

1 (n− 0.5). (3)

Let the Z transform of a discrete series
{
x(n)

}
be represented as:

X(z) = Z{x(n)} =
+∞∑

n=−∞
x(n)z−n. (4)

The filter-bank structure of DCWPD is shown in Figure 1.
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Figure 1. Filter-bank structure of the dual tree wavelet packet decomposition.
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The notation ′(·)′ denotes<e or =m. This means that the real filter tree of DCWPD is independent
of the imaginary filter tree, but uses the same filter structure. Both are iterative decomposition processes
based on a special hybrid wavelet bases and a binary tree structure. More details about the two filter
branches can be found in the original article published by Kingsbury and Selesnick [44]. The employed
filters can be classified into three categories:

(1) Wavelet basis at the first level. These filters are
{
h<e

10 (n), h<e
11 (n), h=m

10 (n), h=m
11 (n)

}
(Figure 2a,b)),

and they satisfy the following equation. h=m
10 (n) = h<e

10 (n− 1)

h=m
11 (n) = h<e

11 (n− 1)
. (5)

(2) Conventional dual-tree complex wavelet basis to obtain wavelet series
{
dCk, j(n)

∣∣∣∣ k ≥ 2, j = 1, 2
}
.

The associated filters are
{
h<e

0 (n), h<e
1 (n), h=m

0 (n), h=m
1 (n)

}
(Figure 2c,d).

(3) Additional basis to generate extended wavelet packet series
{
dCi, j(n)

∣∣∣∣ i ≥ 2, j ≥ 2
}
. The associated

filters are:  f0(n) = h=m
10 (n)

f1(n) = h<e
11 (n− 1)

. (6)

The more similar the filter-bank basis function is to the raw signal, the better the defect-related
features will be extracted [45]. This paper employed the wavelet basis constructed by Chen B. in the
literature [46], the related time-frequency atoms are shown in Figure 2.
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2.1.2. Implicit Wavelet Packets and the Frequency-Scale Paving of Derived Wavelet Frames

The frequency response curves of the dyadic wavelets overlap each other at the boundary, so that
the performance of extracting incipient vibration signatures located in transition bands is not perfect. In
order to improve its performance supplementary, implicit wavelet packets were constructed based on
DCWPD. The derivation process of the implicit wavelet packets (IWPs) mainly includes the following
steps, wherein

{
x(n)

}
denotes the input signal.
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Step (1): Decompose the original signal into a set of sub-signals Dk at multiple scales based on the
dual tree wavelet packet decomposition: Dk =

{
Dq

k(n)
∣∣∣ q = 1, 2, . . . , 2k

}
.

Step (2): Reorganize set Dk according to the order of central frequency, and generate a new
sequence of sub signal Rk =

{
Rq

k(n)
∣∣∣ q = 1, 2, . . . , 2k

}
:

The conversion relationship of the sequence number of a sub-signal in these two sets is:
For Rq

k, let the binary code of the index q be:

q =
∑k−1

m=0
2mnm + 1. (7)

A new integer q′ is expressed as:

q′ =
∑k−1

m=0
2mn′m + 1, (8)

where n′m is defined as:

n′m =

{
nm, m = k− 1
mod(nm + nm+1, 2), m = 0, 1, . . . , k− 2

. (9)

Step (3): Generate the implicit wavelet packet:

iwpq
k(n) = R2q

k (n) + R2q+1
k (n), 1 ≤ 2k−1

− 1. (10)

The frequency-scale paving of implicit wavelet packets are represented by the block identified as
iwp∗∗ in Figure 3. It can be seen that implicit wavelet packets realize multiresolution analysis around
fixed central frequencies. Mathematical definitions of such sets can be expressed as:

IWPSk, j =
{
iwp(2q−1)×2k′−1

k+k′−1

∣∣∣∣∣ k′ ∈ Z, k′ ≥ 1
}

,

(k, q ∈ Z, k ≥ 1, 1 ≤ q ≤ 2k−1)
. (11)
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2.2. The Feature Learning Process of CNN

As a deep learning model, CNN can adaptively extract implicit features from input data, and
has achieved many successful applications on multi-classification issues. Convolution and down
sampling operations enable CNN to simplistically stack deep learning networks without computational
explosions, taking into account learning accuracy and learning efficiency. As shown in Figure 4, the 2-D
convolutional neural network includes an input layer, an output layer and a series of hidden layers.
In the hidden layer, the input image is first convoluted with the filter to extract features, which are then
down sampled to obtain a feature map that is halved or smaller in size. There are several published
methods to convert a temporal signal into a 2-D matrix to train 2-D CNN [38,47]. In this paper,
a segment of the spectrum of raw signal was converted to logarithmic coordinates and normalized,
and finally folded into a 2-D matrix as the input of the 2-D CNN. The feature map will continue to
transmit information in the network as input to the next hidden layer.
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2.2.1. Convolution Layer

In the convolutional neural network, the convolution layer, the activation layer and the pooling
layer are fixedly combined to form a nonlinear hidden layer. As shown in Figure 5a, the 2-D convolution
kernel characterizes the local texture for the image, and the 1-D convolution kernel characterizes
the tone for the sound signal. In the case of success, the width of the neural network model, that is,
the number of convolution kernels of each convolution layer, is generally set according to the specific
conditions of the identification task. The size of the convolution kernel is generally small, and the
entire image shares the same weights. This reduces the computational complexity and gives the model
translation invariance.
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The convolution process of obtaining the j-th feature map XCl
j in the l-th convolution layer can be

expressed as follows:

XCl
j = f


∑

i∈M
Sl−1
j

(XSl−1
i ∗WCl

j + bCl
j )

, (12)

where XSl−1
i denotes the i-th feature map generated from l-1th pooling layer Sl−1; WCl

j denotes the

weight matrix of the j-th filter in the l-th convolution layer; bCl
j denotes the j-th element of the bias

of the l-th convolution layer; MSl−1
j denotes the subset associated with XCl

j in the set of feature maps
output from the l-1th pooling layer and ‘∗’ denotes the 2-D convolution operation. The activation
function f (·) is the core of machine learning, which turns the model into a nonlinear model to enhance
the expressive power of the model. In this paper, the rectified linear unit (ReLU) is employed, which is
defined as follows:

ReLU(x) =
{

x x > 0
0 x ≤ 0

. (13)

As shown in Figure 5b, the output gradient is always 1 on the positive half-axis, so the model can
converge quickly. However, the negative half-axis output is always zero, which endows the model
with good sparsity. Recent research cases have shown that the ReLU can effectively solve the gradient
diffusion problem and show better generalization capacity than the saturating nonlinearities such as
the sigmoid and tangh functions with respect to large scale training datasets [48].

2.2.2. Pooling Layer

The pooling layer immediately follows the activation layer, and it has two main functions: First,
spatially down sampling the image to reduce the size of the feature map as well as keep the number
of features in a reasonable range as the number of feature maps increase. Second, the filter of the
subsequent convolution layer obtains a larger receptive field and can extract features of a larger size.
Average-pooling and max-pooling are two of the most common pooling methods across various tasks.
In this research, max-pooling is chosen for the pooling layers, as it is reported particularly suitable for
the separation of features that are very sparse [49]. As shown in Figure 5c, the pooling layer can be
defined as follows:

XSl
j = f (βSl

j ↓ (X
Cl
j ) + bSl

j ), (14)

where XSl
j denotes the j-th feature map in the l-th pooling layer; XCl

j denotes the j-th feature map

generated from l-th convolution layer; βSl
j denotes the j-th scaling factor of the l-th pooling layer, bSl

j
denotes the j-th bias of the l-th pooling layer and · ↓ (·) represents the subsampling function.
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2.2.3. Fully Connected Layer

The feature maps convert into a 1-D feature vector through a flatten layer, as shown in Figure 6a.
Next is a set of fully connected layers, as shown in Figure 6b, to implement classification or regression.
Adding a dropout layer in the middle of the fully connected layer has proven to be an effective way
to reduce overfitting since it can prevent the network from becoming too dependent on any small
combination of neurons [50]. A fully connected layer enhanced with Dropout is shown in Figure 6c,
the output can be represented as the following:

y = r·( f (w f ·x)), (15)

where x = [x1, x2, · · · xn]
T denotes the input feature vector; w f ∈ Rn×d is the weight matrix and r is

a binary vector of size n whose elements are drawn from a Bernoulli distribution with parameter
p = 1−DR, where DR denotes the dropout rate.
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Figure 6. Illustration of the (a) flatten layer, (b) fully connected layer and (c) dropout network.

Based on local perception and weight sharing, convolutional neural networks maximize the
reference of sample local information to classification. As the tool wears, the contact state of the tool
with the work piece changes. The time domain signal and the spectrum shape will change accordingly.
This is similar to speech recognition and image recognition. It can be inferred that the convolutional
neural network can effectively classify the vibration signals of the tool in different wear states.

3. Proposed CNN + DWFs Methodology and Dataset

In this section, an intelligent recognition method for tool wear state based on convolutional neural
network enhanced by derived wavelet frames was proposed. The proposed method was composed of
four major steps, as illustrated in Figure 7.
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3.1. Multi-Process Parameter Milling Experiment and Data Acquisition

In order to verify the effectiveness of the proposed method, a series of S45C steel plane milling
experiments were conducted on VMC650E/850E machining center (Shenyang Machine Tool Company
(Shenyang, China)), as shown in Figure 7. The work piece was an S45C quenched and tempered steel
solid block of size 200 mm × 150 mm × 200 mm. Uncoated four-fluted carbide end mill 20 mm in
diameter was used to perform the cutting experiment. The overhang was set to 60 mm while the
overall length was 100 mm. Two accelerometers mounted on the spindle housing, parallel to the X-axes
and Y-axes. The raw vibration signal was collected via the NI PXIe-1078 data acquisition platform, and
the sampling frequency was 12.8 kHz.

At the industrial manufacturing site, the machine tool will adopt different cutting conditions
according to the characteristics of the product. In order to better simulate the actual production,
four different combinations of cutting conditions were used in the experiment, as shown in Table 1.
Milling along the Y-axis of the machine tool, the four combinations of cutting conditions are executed
in sequence, and four milling passes are performed under each combination of cutting conditions.
Each sixteen milling passes forms a milling task that simulates the manufacturing of a product. Each
time a milling task is completed, the machine is paused and images of the cutting edges of the tool
are acquired.

Table 1. Cutting conditions.

Combination
of Cutting
Conditions

Milling
Pass

Radial Cutting
Depth (mm)

Axial Cutting
Depth (mm)

Feed Per Tooth
(mm)

Spindle Speed
(r/min)

# 1 1–4 1 5 0.08 800
# 2 5–8 2.5 5 0.06 800
# 3 9–12 1 5 0.08 1200
# 4 13–16 2.5 5 0.06 1200

3.2. Tool Wear State Labeling and Raw Signal Segmentation

In the International standard ISO 8668-2, regarding the tool-life criteria, the first recommendation
is the width of the flank wear land (VB). Nevertheless, due to the lack of necessary measurement
equipment, the author failed to obtain this data during the experiment. On the other hand, as the
cutting time increases, the tool will inevitably wear out gradually. A total of 25 milling tasks were
performed in the experiment. The authors therefore chose six out of the 25 milling tasks at the same
interval (the first, fifth, tenth, fifteenth, twentieth and twenty-fifth) and defined that the tool was in
different wear states during the six milling tasks. Then, the raw monitoring data of the six milling
tasks were libeled as #1, #2, · · · #6 respectively.

The spindle-vibration-acceleration signal for each cutting task is completely collected, with the
data of the cutting period being approximately 12 min. The vibration during the idle period is
significantly weaker than the cutting period, and there are significant differences in the spectrum.
In this paper, the turning point of the effective value of the signal is adopted in order to determine
the intersection time of the idle and the milling, and then partition the data of the idle period and the
milling passes. According to experience, cutting conditions such as spindle speed and feed rate can
decisively affect the cutting process and even obscure the loss of sharpness. Due to different feed rates,
the cutting time for each milling pass is not the same. The 9th to 12th steps are the shortest, 120 s;
the 5th to 8th steps are the longest, 240 s. For each milling pass, 50 data segments of 1-s duration are
extracted from a random initial time in the valuable data of each milling pass. Thus, there are 800 raw
signal samples for each cutting state, and the total capacity of the raw signal data set is 4800.
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It should be noted that in this paper, the signal segments in the same milling task are set to the
same label. That is, the cutting conditions of the signal samples in the data set are unknown.

3.3. Signal Decomposition and 2-D Data Set Generation

During the milling process, the impact of the cutting edge on the work piece is one of the main
excitations of the spindle. As a complex mechanical system, the machine tool spindle’s response
to the cutting impact is complex and interfered by other excitations such as shaft eccentricity and
mesh impact. The acquired vibration signal is a complex mixture, including harmonics of excitation
frequencies, resonance of mechanical parts and broadband Gaussian noise. Although, the ability
of deep neural networks to extract implicit features from input has been widely recognized. Using
advanced signal processing knowledge to extract the informative sub-signal from the raw signal is
undoubtedly beneficial for CNN to further extract effective features. Drawing on the experience of
feature engineering in traditional fault diagnosis, the information of transient impact in vibration
signals is often concentrated in certain frequency bands.

Kurtosis is often used to select the proper demodulation band for further data processing and
feature extraction since it can measure the impulsiveness of the signal [51,52]. Figure 8 shows the
normalized mean kurtosis map of 20 samples for each subset. The raw data samples were decomposed
using the DWFs, the number of decomposition layers is set to 3. A subset of 20 samples was randomly
selected for each set of cutting conditions for each tool wear state. It can be seen that the kurtosis of the
reconstructed signals in different frequency bands was quite different. At the same time, for every
subset, the kurtosis of the frequency band iwp2

1 (1600–4800 Hz) and iwp2
2(800–2400 Hz) were higher

than other frequency bands of the same layer. A wider frequency band may contain more feature
information, but it also increases the computational complexity of the neural network. Therefore, iwp2

1
and iwp2

2 were utilized to create data sets in 1-D format, respectively. Compared to 1-D convolution,
2-D convolution creates a broader connection between the elements in the inputs. This means that for
a particular frequency, 2-D CNN can learn more about its relationship to other frequencies. For the
advantages of 2-D convolution, this paper folds the 1-D band spectrum into a 2-D matrix to create a
2-D data set.

Transforming the temporal signal into the frequency domain and training the neural network
with the spectral samples could eliminate the interference of the initial phase and reduce the difficulty
of recognition. On the other hand, the length of the temporal signal sample was 12800 data points (1 s).
Cutting the spectrum of the uninformative band would significantly reduce the size of the sample,
further significantly reducing the computational time of the CNN.

The spectral samples were then converted to logarithmic coordinates and normalized. The final
step was to fold the sample into a 2-D matrix to accommodate the 2-D CNN format requirements for
the input.

3.4. Tool Wear State Classification Based on CNN

The data set was randomly divided into three subsets, named as the train set, validation set and
test set. The CNN network was trained with the train set and validation set. After the training process
was completed, the test set that did not involve the training process was used for the test.

In this paper, data processing, CNN training and tool wear state recognition were all implemented
on a single PC. The processor model was Intel Core i7, the CPU memory capacity was 8GB and the
GPU memory capacity was 4 GB.



Appl. Sci. 2019, 9, 3912 13 of 26Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 27 

CoCC #1  TWS #1

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #2  TWS #1

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #3  TWS #1

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #4  TWS #1

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #1  TWS #2

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #2  TWS #2

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #3  TWS #2

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #4  TWS #2

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #1  TWS #3

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #2  TWS #3

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #3  TWS #3

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #4  TWS #3

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #1  TWS #4

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #2  TWS #4

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #3  TWS #4

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #4  TWS #4

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #1  TWS #5

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #2  TWS #5

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #3  TWS #5

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #4  TWS #5

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #1  TWS #6

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #2  TWS #6

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #3  TWS #6

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

CoCC #4  TWS #6

0 1.6 3.2 4.8 6.4 (KHz)

0
wp1
wp2

iwp1
wp3

iwp2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 k
ur

to
sis

 v
al

ue

 
Figure 8. The kurtosis map of the vibration signal after being decomposed via derived wavelet 
frames (DWFs), where “CoCC” means the combination of cutting conditions and “TWS” means the 
tool wear state. 
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Figure 8. The kurtosis map of the vibration signal after being decomposed via derived wavelet frames
(DWFs), where “CoCC” means the combination of cutting conditions and “TWS” means the tool
wear state.

4. Parameter Optimization for CNN

4.1. CNN Structure Optimization

The modeling capabilities of convolutional neural networks depend on the effects of their depth
and width. In theory, any non-linear data distribution can be fitted as long as the model is deep
enough and wide enough. However, for a simpler classification problem, blindly expanding the
network model will not only cause a surge in feature mapping, but also lead to serious over-fitting.
In order to optimize the width of the model, 10 neural network models with different widths were
constructed. The 10 models have the same structural form, consisting of four convolution layers
immediately followed by pooling layer and two fully connected layers. However, the widths of the
respective convolution layers were different, and the number of filters in each convolution layer was
as shown in Figure 9. In the legend, ‘04-08-12-16’ indicates that the number of filters in the four
convolution layers was 4, 8, 12 and 16, respectively.
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In this study, we used the cross entropy as the loss function, and adapted the Adam optimizer.
Cross entropy is an efficient objective function for combinatorial and continuous optimization and
is now widely used to train neural networks for classification [53,54]. Experimental studies have
shown that the cross entropy loss function has significant, practical advantages over squared-error [55].
A series of advantages of the Adam optimization algorithm have been widely recognized, such as
straightforward to implement, high computationally efficiency, low memory space requirements and
invariant to diagonal rescaling of the gradients. Moreover, the adaptability of Adam optimizer is
powerful, and there is typically little requirement to hyperparameters tuning [56].

A ten-fold crossover experiment was performed using 2-D dataset #1 with a fixed 150 epoch.
Figure 9 shows the validation accuracy convergence graph for each model’s typical training process.
Figure 10 shows the average test accuracy and average time consumption per epoch for each model’s
ten-fold crossover experiment. It can be seen from Figure 9 that as the width increased, the learning
speed and convergence stability of the model increased. At the same time, however, the computational
complexity of the model also rose rapidly. It can be seen from Figure 10 that the duration of the
single-epoch training was increasing. Considering the modeling ability and calculation speed of the
model, the 12-16-20-24 structure was selected in this paper.
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The size of the input sample and the structure of the model determine the size of the feature vector
output by the flatten layer. The number of sample categories determines the number of neurons in the
last fully connected layer. In the random dropout layer, increasing the dropout rate may increase the
robustness of the model, or it may cause the model to be unstable and difficult to converge. For the
first fully connected layer, increasing neurons can improve the learning ability and may also exacerbate
overfitting. Therefore, this paper explored the different combinations of these two parameters, and the
results are shown in Figure 11.
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Figure 11a shows the average test accuracy of the ten-fold crossover experiment. Under the
premise of a dropout rate, the accuracy increased with the increase of the neurons in the fully connected
layer, especially when the dropout rate was high. When the number of neurons was fixed, the dropout
rate had no obvious effect on the accuracy. Conversely, there was a significant drop in accuracy when
there were fewer neurons. Figure 11b shows the average test loss value. It can be seen that the dropout
layer could reduce the test loss value of the model and improved the fitting accuracy of the model.
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Figure 12. The architecture of the CNN model used in this paper, where “Conv2d_1 (12-5*5)” refers to
the first convocation layer consists of 12 filters with a size of 5*5, “MaxPooling (2*2)” refers to max
pooling layer with a pooling size of 2*2.



Appl. Sci. 2019, 9, 3912 16 of 26

4.2. Training Process Hyperparameter Optimizatioon

Hyperparameters in the training process, such as batch size and learning rate, also have an
important impact on the learning ability of the neural network model. Based on the specific situation
of the subject, this paper made a further experimental exploration with reference to the published
hyperparameter combination with good performance.

Batch size: Due to the limitations of computer GPU memory, the deep learning model could not
process the entire data set at the same time, but split it into multiple batches, making multiple iterations
in each epoch. It is necessary to select a suitable batch with a consideration of various factors such
as the data set size, single sample size, feature variability and computing power. For the data set in
the text, when using different batches, the test error, loss value and training time in the convergence
process are shown in Figures 13–15. When the batch is very small, fewer samples can be referenced
when the model weight is corrected after each iteration, and the global estimation is inaccurate, so that
the convergence process is unstable. As shown in Figure 13, when the batch size was no more than
256, the model was basically stable after the 200th epoch. Figure 14 shows the standard deviation of
validation errors and validation loss values between the 201st and 300th epochs when using different
batch sizes. When the batch size was 256, the standard deviation of the two indicators was the smallest
and the convergence process was the most stable. At the same time, the sample matrix in the GPU
memory was small, and the acceleration effect of the GPU linear algebra library was not obvious.
As the batch size increased, the stability of the convergence process was enhanced. The parallelization
multiplication capability of GPU memory was also fully utilized, effectively improving the calculation
speed of each epoch. On the other hand, as shown in Figure 15, as the batch size increased, the epoch
required to achieve the same accuracy increased, and the efficiency of the entire learning process
decreased. Considering the learning efficiency, convergence stability and learning accuracy, the batch
size in this paper was determined to be 256.Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 27 
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model learning.

Learning rate: The error and the learning rate together determine the adjustment of the model
weight after each iteration. An ideal learning process is that the convergence curve of loss values falls
smoothly and eventually converges to a small residual error. There is an optimal learning rate for a
specific task and data set. The higher learning rate allows the model to be quickly adjusted. However,
an excessive learning rate will cause the model to deviate in terms of the objective loss function,
the convergence curve becomes unstable, the oscillations intensify and even the convergence cannot be
achieved. Shrinking the learning rate result into less adjustment of the model parameters after each
iteration, which is beneficial to smoothing the convergence curve and is beneficial to reduce the final
residual error, but also significantly reduces the convergence speed of the model [57–59]. Using the
previously optimized model structure and batch size, the results of the ten-fold crossover experiment
using different learning rates are shown in Figure 16. It can be seen that increasing the learning rate in
a certain range could accelerate the convergence speed of the model. However, an excessive learning
rate could also cause the convergence curve of validation accuracy to be unstable or even could not
converge. In the end, this article set the learning rate to 0.003.
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5. Results and Discussion

5.1. The Advantages of the Spectrum in Training Neural Networks

Zhang W. trains 1-D CNN based on temporal signals to identify bearing faults [60]. There are initial
phase differences between the temporal samples, which will interfere with the learning process of CNN.
Therefore, the spectrum of the signal was utilized as the input of CNN in this paper. In this section, we
will conduct an experimental study of the performance of these two methods of training CNN.

A 1-D temporal data set and a 1-D spectral data set were respectively created based on the
reconstructed temporal signal and spectrum of the frequency band iwp2

1. Then, a normalized 1-D
temporal data set and a normalized 1-D spectral data set were respectively created by normalization
processing. The depth of the 1-D CNN model used was the same as the depth of the previously
optimized 2-D CNN model. The size and number of convolution kernels in each layer were set with
reference to published literature and optimized using the process described above. The optimized
model hyperparameters are listed in Table 2, and the specific optimization process will not be described
in detail.
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The data sets were randomly divided to the training set, validation set and test set by a ratio
of 3:1:1. The result is shown in Figure 17, where TD means the temporal data set, NTD means the
normalized temporal data set, SD means the spectral data set and NSD means the normalized spectral
data set. Tra-Acc denotes training accuracy, Val-Acc denotes validation accuracy and Test-Acc denotes
test accuracy. Tra-Loss denotes training loss value, Val-Loss denotes validation loss value and Test-Loss
denotes test loss value.

Table 2. Model structure of the employed 1D CNN.

Layer Name Filter Number Filter Size Activation

Conv1D_1 16 64*1 ReLU
MaxPooling1D_1 —- 8*1 ReLU

Conv1D_2 32 32*1 ReLU
MaxPooling1D_2 —- 4*1 ReLU

Conv1D_3 64 16*1 ReLU
MaxPooling1D_3 —- 2*1 ReLU

Conv1D_4 128 8*1 ReLU
Global-max-

-pooling1D_1 —- —- —-

Dense_1 72 —- ReLU
output 6 —- Softmax

As the tool wears, the mechanism of the cutting edge removing material gradually changed, and
the vibration state of the spindle changed accordingly. The vibration signal records the tool wear
process. As can be seen from Figure 17, the 1-D CNN could extract effective features from the spindle
vibration signal. The test accuracy of the model trained with the temporal data set was 74.7%. For a
6-class problem, this was far beyond the accuracy of a random decision. Transforming the temporal
signal to the frequency domain eliminated the interference of the initial phase of the signal sample
on the classification process. The trained model had a test accuracy of 90%, which made it more
informative for industrial sites.

The normalization process reduced the discrimination of temporal signals, but the test accuracy
of the spectral data set was improved, and the test loss value was also significantly reduced. When
the neural network was trained with the unnormalized segment spectrum data set, from the 50th
epoch, the training accuracy was significantly higher than the validation accuracy, which means the
model began to over fit. At the 100th epoch, the training accuracy had stabilized at 100%, and the
validation accuracy reached a steady state, but not more than 90%. The unnormalized spectrum
retained the intensity information of the vibration signal, which was the parameter most directly related
to the sharpness of the cutting edge, which was also the parameter most tightly related to the cutting
conditions. Therefore, when using it to train a neural network, the model could converge quickly;
nevertheless, it was also easier to over fit. Normalization could cancel out the intensity information,
forcing the model to mine the variation of the spectrum shape and enhance the generalization of the
model. In summary, converting the original signal to the frequency domain and normalizing it was
most beneficial to the neural network model. The test accuracy was 92.2%, and the test loss value
was 0.246.
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5.2. Performance Comparison between 1D CNN and 2D CNN

In order to verify the applicability of these two models to this subject, 100 1-D CNNs and 100 2-D
CNNs were trained with 100 epochs, respectively, using the 1-D and 2-D normalized spectral data
set based on the iwp2

1 sub band. The data set was re-randomly divided by a ratio of 3:1:1 each time.
The results of the repeated tests are shown in Figure 18 below.
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Whether in terms of recognition accuracy or stability, the performance of 2-D CNN was significantly
better than 1-D CNN. Although we could not find any specific shape features with the naked eye.
The experimental results show that after training, 2-D CNN could learn effective features from 2D map
and achieve better recognition accuracy than 1-D CNN. In a 1-D CNN, if the length of the feature vector
in a certain convolution layer was m2, and the length of the filter was n2. Then, in the convolution
operation, there were at most 2n2

− 2 elements that could be associated with the element Px in the
feature vector. If the feature vector was folded into a feature map of m × m, and the size of the 2-D
filter was set to n × n. In the 2-D convolution operation, the elements that could be associated with
the element Px,y were at most 4n2

− 4n. Therefore, when the 2-D filter was the same as the 1-D filter
in size, the 2-D convolution operation could make the elements in the feature map establish a wider
relationship with each other. More importantly, because the 2-D filter spans multiple lines, the relation
scope was broader. Therefore, in this paper, although the total parameters of the 1-D CNN were more
than twice that of the 2-D CNN, the learning ability was still far less than the latter.

5.3. DWFs’ Optimization of the Sample

As described in Section 3.3, two bands containing more transient impact information, iwp2
1 and

iwp2
2, were extracted using the DWFs algorithm. Two data sets were created based on the spectra of the

two sub-spectrum, respectively. In order to verify the beneficial effects of the DWFs, this paper also
created a 2-D data set based on the complete fast Fourier transform spectrum of the raw 1-D sample.
Its frequency band was 0–6400Hz, which was twice that of iwp2

1. Repeated modeling experiments
were performed 100 times with 100 epochs, and the results are shown in Figure 19. It can be seen
that the effect of the frequency band iwp2

2 was obviously less than that of iwp2
1 and the full spectrum.

Although the bandwidth of this band was narrower, more noise could be filtered out, and the impact
characteristics were more prominent in the time domain. However, the impact forms of the cutting
edge and the work piece were similar under different degrees of wear. After normalizing the spectrum,
only the information retained in this narrow frequency band might be insufficient. iwp2

1 had improved
performance compared to the full spectrum. This might be due to the elimination of interference from
other frequency bands, especially the noise in the high frequency band and the steady state signal
in the low frequency band. More notably, iwp2

1 was reduced by half compared to the full spectrum
calculation, which significantly improved the recognition speed of the model.
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5.4. The Effectiveness of the Proposed Methodology

Finally, the iwp2
1 band normalized spectrum in 2-D format was used as the input of the 2-D CNN.

The data set with a total sample size of 4800 was randomly divided into the training set, validation set
and test set. The convolutional neural network was trained with the first two subsets, with 150 epochs.
After the training was completed, the model’s recognition ability was tested with the test set that was
not involved in the training process. The test accuracy was 98.65%, and the confusion matrix of the
recognition results is shown in Figure 20. The confusion matrix was an effective visualization tool to
estimate the performance of classification algorithm. Each element in the matrix represents a type of
sample. The abscissa of the element is the real label of the sample. The ordinate of the element is the
label of the CNN output. The value of the element is the number of such elements.
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As can be seen from the figure, the recognition accuracy of all these six types was fairly high.
The recognition accuracy of the fourth type (tool wear state label is state #4) was relatively low,
but it also reached 95.2%, which met the requirements of the manufacturing site, which proved the
effectiveness of the method given in this paper.

6. Conclusions

This paper expanded the application of 2-D CNN in the field of tool wear state identification.
The raw signal was decomposed with constant power via DWFs. Then the frequency band with more
impulsive components and higher signal-to-noise ratio was selected according to the kurtosis of the
reconstructed sub-signal. Further, the 1-D spectrum was folded into 2-D spectral map. After converting
the spectrum of the sample signal in different wear states into normalized 2-D maps, no significant
difference characteristics could be found by visual observation. Therefore, the CNN model was trained
to extract features from the 2-D map and achieve good classification accuracy. The deep convolutional
neural network could adaptively extract implicit features from large input data. However, in the
spindle vibration signal, the information on tool wear was interfered by other contents. The feature
engineering based on DWFs constructed a better data set for CNN, and thus significantly improved
the learning speed and recognition accuracy of CNN.

In high-automation workshops that perform small-batch production, a milling tool often
participates in the processing of different products. At this industrial site, the number of machined
parts is not sufficient to accurately predict the remaining life of the milling tool. The experimental
results show that the proposed method could indirectly monitor the wear state of the milling tool based
on the spindle vibration signal. Even if the cutting conditions were unknown when acquiring signals,
the wear state of the milling tool could still be accurately recognized. The 2-D CNN model constructed
in this paper contained a total of 24,306 trainable parameters. After the CNN model was trained, the
time cost of one sample was less than 0.005 s, while the data processing based on DWFs took about
0.13 s. Coupled with data acquisition and transmission time, the total time cost to perform a tool wear
state recognition was less than 1.5 s, which basically met the requirements of online monitoring. Some
conclusions could be drawn as follows:

(1) The impact of the cutting edge and the work piece was the main stimulus for the machine shaft
vibration. As the sharpness of the cutting edge gradually decreased, the vibration mode of the
spindle changed. The vibration acceleration data indirectly recorded the wear process of the tool.
The 1-D CNN could extract implicit features from it, nevertheless, the test accuracy was only
75%. There were many interfering contents in the raw signal, and changes in cutting conditions
interfered with the neural network, so proper feature engineering was indispensable.

(2) Transforming the signal from the time domain to the frequency domain eliminated the interference
of the initial phase on the neural network when the signal was acquired. Normalization could
reduce the dependence of neural networks on signal strength, forcing them to mine features
that were less relevant to cutting conditions. Using the normalized spectrum to train 1-D CNN,
the test recognition accuracy reached 92%, which was obviously better than the temporal signal.

(3) Folding the 1-D spectra into 2-D spectral maps gave full play to the more powerful learning
ability of the 2-D CNN. The 1600–4800 Hz frequency band selected by the DWFs algorithm had
a higher signal-to-noise ratio, which reduced the size of the input to CNN by half, and further
improved the recognition accuracy of the neural network model, reaching 98.6%.

The tool wear condition monitoring method proposed in this paper could also be used for other
machining methods, such as drilling and turning. The method to identify the state of the monitoring
signal using a 2-D CNN might also be extended to other fault diagnosis occasions, such as gear fault
diagnosis based on vibration signals.
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